[1] Abbott, J.C., Implicational algebras, Bull. Math. Soc. Sci. Math. Roumanie 11(1)
(1967), 3-23 .
[2] Chajda, I., Sheffer operation in ortholattices, AActa Univ. Palack. Olomuc. Fac.
Rerum Natur. Math. 44(1) (2005), 19-23.
[3] Cornish, W.H., On positive implicative BCK-algebras, Mathematics Seminar Notes
8 (1980), 455-468.
[4] Diego, A., Sur les algebras de Hilbert, Ed. Hermann, Collection de Logique Math.
21, (1966).
[5] Henkin, L., An algebraic characterization of quantifiers, Fund. Math. 37 (1950),
63-74.
[6] Idziak, P.M., Lattice operations in BCK-algebras, Sci. Math. Jpn. 29 (1984) 839-846.
[7] Iorgulescu, A., "Algebras of logic as BCK algebras", Editura ASE, Bucharest, 2008.
[8] Iseeki, K. and Tanaka, S., An introduction to the theory of BCK-algebras, Sci. Math.
Jpn., 23(1) (1978), 1-26.
[9] Jun, Y.B., Commutative Hilbert Algebra, Soochow Journal of Mathematics, 22(4)
(1996), 477-484.
[10] McCune, W., Veroff, R., Fitelson, B., Harris, K., Feist, A., and Wos, L., Short single
axioms for Boolean algebra, J. Automat. Reason., 29(1) (2002), 1-16.
[11] Oner T., and Senturk I.,The Sheffer Stroke Operation Reducts of Basic Algebras,
Open Math. 15 (2017), 926-935.
[12] Rasiowa, H., "An algebraic approach to non-classical logics", Studies in Logic and
the Foundations of Mathematics 78, North-Holland and PWN, 1974.
[13] Sheffer, H.M., A set of five independent postulates for Boolean algebras, with appli-
cation to logical constants, Trans. Amer. Math. Soc., 14(4) (1913), 481-488.
[14] Schmid, J., Distributive lattices and rings of quotients, Coll. Math. Societatis Janos
Bolyai 33 (1980), 675-696.