[1] Abdollahi, A., Woodroofe, R., and Zaimi, G., Frankl’s Conjecture for subgroup lattices, Electron. J. Combin. 24(3) (2017), P3.25.
[2] Abe, T., Strong semimodular lattices and Frankl’s Conjecture, Algebra Universalis 44 (2000), 379-382.
[3] Abe, T. and Nakano, B., Lower semimodular types of lattices: Frankl’s Conjecture holds for lower quasi-modular lattices, Graphs Combin. 16 (2000), 1-16.
[4] Baker, K.A., Fishburn, P.C., and Roberts, F.S., Partial orders of dimension 2, Networks 2 (1972), 11-28.
[5] Bruhn, H. and Schaudt, O., The journey of the Union-Closed Sets Conjecture, Graphs Combin. 31 (2015), 2043-2074.
[6] Czédli, G. and Schmidt, E.T., Frankl’s conjecture for large semimodular and planar semimodular lattices, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 47 (2008), 47-53.
[7] Grätzer, G., “General Lattice Theory”, Birkhäuser, 1998.
[8] Hunh, A.P., Schwach distributive Verbdnde-I, Acta Sci. Math. (Szeged) 33 (1972), 297-305.
[9] Joshi, V., Waphare, B.N., and Kavishwar, S.P., A proof of Frankl’s Union-Closed Sets Conjecture for dismantlable lattices, Algebra Universalis 76 (2016), 351-354.
[10] Poonen, B., Union-closed families, J. Combin. Theory Ser. A. 59 (1992), 253-268.
[11] Rival, I., Combinatorial inequalities for semimodular lattices of breadth two, Algebra Universalis 6 (1976), 303-311.
[12] Shewale, R.S., Joshi, V., and Kharat, V.S., Frankl’s conjecture and the dual covering property, Graphs Combin. 25(1) (2009), 115-121.
[13] Stanley, R.P., “Enumerative Combinatorics”, Vol I. Wadsworth & Brooks/Cole Advanced Books & Software, 1986.
[14] Stern, M., “Semimodular Lattices”, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1999.
[15] Thakare, N.K., Pawar, M.M., and Waphare, B.N., A structure theorem for dismantlable lattices and enumeration, Period. Math. Hungar. 45(1-2) (2002), 147-160.