[1] Barr, M., The point of the empty set, Cah. Topol. Geom. Differ. Categ. 13 (1972), 357-368.
[2] Barr, M. and Wells, C., “Toposes, Triples and Theories”, Repr. Theory Appl. Categ. 21 (2005), 1-288.
[3] Benabou, J., Introduction to bicategories, Lecture Notes in Math. 47 (1967), 1-77.
[4] Bird, G.J., Kelly, G.M., Power, A.J., and Street, R.H., Flexible limits for 2-categories, J. Pure Appl. Algebra 61(1) (1989), 1-27.
[5] Blackwell, R., Kelly, G.M., and Power, A.J., Two-dimensional monad theory, J. Pure Appl. Algebra 59(1) (1989), 1-41.
[6] Börger, R., Tholen, W., Wischnewsky, M.B., and Wolff, H., Compact and hypercomplete categories, J. Pure Appl. Algebra 21 (1981), 219-144.
[7] Bourke, J., Two-dimensional monadicity, Adv. Math. 252 (2004), 708-747.
[8] Deligne, P., Action du groupe des tresses sur une categorie, Invent. Math. 218(1) (1997), 159-175.
[9] Dubuc, E., Adjoint triangles, Reports of the Midwest Category Seminar (1968), 69-91.
[10] Dubuc, E., Kan extensions in enriched category theory, Lecture Notes in Math. 145, Springer-Verlag, 1970.
[11] Fujii, S., Katsumata, S., Melliès, P., Towards a formal theory of graded monads, Foundations of software science and computation structures, 513-530, Lecture Notes in Comput. Sci. 9634, Springer, 2016.
[12] Gurski, N., “An algebraic theory of tricategories”, PhD Thesis, The University of Chicago, 2006.
[13] Hermida, C., Descent on 2-fibrations and strongly regular 2-categories, Appl. Categ. Structures 21 (2004), 427-459.
[14] Hermida, C., From coherent structures to universal properties, J. Pure Appl. Algebra 165(1) (2000), 7-61.
[15] Janelidze, G., and Tholen, W., Facets of descent II, Appl. Categ. Structures 5(3) (1997), 229-248.
[16] Johnstone, P.T., Adjoint lifting theorems for categories of algebras, Bull. Lond. Math. Soc. 7 (1975), 294-297.
[17] Kelly, G.M., “Basic Concepts of Enriched Category Theory”, London Math. Soc. Lecture Note Ser. 64., Cambridge University Press, 1982.
[18] Kelly, G.M., Elementary observations on 2-categorical limits, Bull. Austral. Math. Soc. 39(2) (1989), 301-317.
[19] Kelly, G.M. and Lack, S., On property-like structures, Theory Appl. Categ. 3(9) (1997), 213-250.
[20] Kock, A., Monads for which structures are adjoint to units, J. Pure Appl. Algebra 104(1) (1995), 41-59.
[21] Lack, S., A coherent approach to pseudomonads, Adv. Math. 152(2) (2000), 179-220.
[22] Lack, S., Codescent objects and coherence, Special volume celebrating the 70th birthday of Professor Max Kelly, J. Pure Appl. Algebra 175(1-3) (2002), 223-241.
[23] Lack, S., Icons, Appl. Categ. Structures 18(3) (2000), 289-307.
[24] Lack, S., A 2-categories companion, in “Towards Higher Categories”, Springer, The IMA Volumes in Mathematics and its Applications 152 (2000), 105-191.
[25] Le Creurer, I.J., Marmolejo, F., and Vitale, E.M., Beck’s theorem for pseudo-monads, J. Pure Appl. Algebra 173(3) (2020), 293-313.
[26] Leinster, T., “Higher Operads, Higher Categories”, London Math. Soc. Lecture Note Ser. 298, Cambridge University Press, 2004.
[27] Leinster, T., “Basic Category Theory”, Cambridge Studies in Advanced Mathematics 143, Cambridge University Press, 2004.
[28] Lucatelli Nunes, F., On biadjoint triangles, Theory Appl. Categ. 31(9) (2016), 217-256.
[29] Lucatelli Nunes, F., Pseudo-Kan extensions and descent theory, arXiv:1606.04999 or Preprints-CMUC (16-30).
[30] Marmolejo, F., Doctrines whose structure forms a fully faithful adjoint string, Theory Appl. Categ. 3(2) (1997), 24-44.
[31] Marmolejo, F., Distributive laws for pseudomonads, Theory Appl. Categ. 5(5) (1999), 91-147.
[32] Marmolejo, F. andWood, R.J., Coherence for pseudodistributive laws revisited, Theory Appl. Categ. 20(5) (2008), 74-84.
[33] Power, A.J., A unified approach to the lifting of adjoints, Cah. Topol. Geom. Diver. Categ. 29(1) (1988), 67-77.
[34] Power, A.J., A general coherence result, Special volume celebrating the 70th birthday of Professor Max Kelly, J. Pure Appl. Algebra 57 (1989), 165-173.
[35] Power, A.J., Cattani, G.L., and Winskel, G., A representation result for free cocompletions, J. Pure Appl. Algebra 151(3) (2000), 273-286.
[36] Street, R.H., The formal theory of monads, J. Pure Appl. Algebra 2(2) (1972), 149-168.
[37] Street, R.H., Fibrations and Yoneda’s lemma in a 2-category, Category Sem., Proc., Sydney 1972/1973, Lecture Notes Math. 420 (1974), 104-133.
[38] Street, R.H., Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra 8(2) (1976), 149-181.
[39] Street, R.H., Wischnewsky, M., Wolf, H., and Tholen, W., Semi-topological functors III: Lifting of monads and adjoint functors, J. Pure Appl. Algebra 16 (1980), 299-314.
[40] Street, R.H., Fibrations in bicategories, Cah. Topol. Geom. Diver. Categ. 21(2) (1980), 111-160.
[41] Street, R.H., Correction to: “Fibraer. Categ. 28(1) (1987), 53-56.
[42] Street, R.H., Categorical structures, in the “Handbook of Algebra, Volume 1”, Elsevier (1996), 529-577.
[43] Day, B. and Street, R., Monoidal bicategories and Hopf algebroids, Adv. Math. 219(1) (1997), 99-157.
[44] Street, R.H., Categorical and combinatorial aspects of descent theory, Appl. Categ. Structures 21(5-6) (2004), 537-576.
[45] Tholen, W., Adjungierte dreiecke, colimites und Kan-erweiterungen, Math. Ann. 217(2) (1975), 211-219.