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On lifting of biadjoints and lax algebras

F. Lucatelli Nunes

Abstract. Given a pseudomonad T on a 2-category B, if a right biad-
joint A → B has a lifting to the pseudoalgebras A → Ps-T -Alg then this
lifting is also right biadjoint provided that A has codescent objects. In
this paper, we give general results on lifting of biadjoints. As a conse-
quence, we get a biadjoint triangle theorem which, in particular, allows us
to study triangles involving the 2-category of lax algebras, proving analogues
of the result described above. In the context of lax algebras, denoting by
` : Lax-T -Alg → Lax-T -Alg` the inclusion, if R : A → B is right biadjoint
and has a lifting J : A → Lax-T -Alg, then ` ◦ J is right biadjoint as well
provided that A has some needed weighted bicolimits. In order to prove such
result, we study descent objects and lax descent objects. At the last section,
we study direct consequences of our theorems in the context of the 2-monadic
approach to coherence.
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Introduction

This paper has three main theorems. One of them (Theorem 2.3) is about
lifting of biadjoints: a generalization of Theorem 4.4 of [27]. The others
(Theorem 5.2 and Theorem 5.3) are consequences of the former on lifting
biadjoints to the 2-category of lax algebras. These results can be seen as
part of what is called two-dimensional universal algebra, or, more precisely,
two-dimensional monad theory : for an idea of the scope of this field (with
applications), see for instance [5, 7, 13, 19, 22, 27, 28, 33, 34].

There are several theorems about lifting of adjunctions in the litera-
ture [1, 6, 16, 38, 44], including, for instance, adjoint triangle theorems [2, 9].
Although some of these results can be proved for enriched categories or more
general contexts [27, 32], they often are not enough to deal with problems
within 2-dimensional category theory. The reason is that these problems
involve concepts that are not of (strict/usual) Cat-enriched category theory
nature, as it is explained in [5, 24].

For example, in 2-dimensional category theory, the enriched notion of
monad, the 2-monad, gives rise to the 2-category of (strict/enriched) al-
gebras, but it also gives rise to the 2-category of pseudoalgebras and the
2-category of lax algebras. The last two types of 2-categories of algebras
(and full sub-2-categories of them) are usually of the most interest despite
the fact that they are not “strict” notions.

In short, most of the aspects of 2-dimensional universal algebra are not
covered by the usual Cat-enriched category theory of [10, 17] or by the formal
theory of monads of [35]. Actually, in the context of pseudomonad theory,
the appropriate analogue of the formal theory of monads is the formal theory
(and definition) of pseudomonads of [21, 29]. In this direction, the problem
of lifting biadjunctions is the appropriate analogue of the problem of lifting
adjunctions.

Some results on lifting of biadjunctions are consequences of the biadjoint
triangle theorems proved in [27]. One of these consequences is the following:
let T be a pseudomonad on a 2-category B. Assume that R : A → B,
J : A → Ps-T -Alg are pseudofunctors such that we have the pseudonatural
equivalence below. If R is right biadjoint then J is right biadjoint as well
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provided that A has some needed codescent objects:

A
J //

R ��

Ps-T -Alg

U
zz

B

'

One simple application of this result is, for instance, within the 2-monadic
approach to coherence [27]: roughly, the 2-monadic approach to coherence
is the study of biadjunctions and 2-adjunctions between the many types
of 2-categories of algebras rising from a given 2-monad. This allows us
to prove “general coherence results” [5, 22, 33] which encompass many co-
herence results – such as the strict replacement of monoidal categories, the
strict/flexible replacement of bicategories [22, 23], the strict/flexible replace-
ment of pseudofunctors [5], and so on [12].

If T ′ is a 2-monad, the result described above gives the construction of
the left biadjoint to the inclusion

T ′-Algs → Ps-T ′-Alg

subject to the existence of some codescent objects in T ′-Algs. The strict
version of the biadjoint triangle theorem of [27] shows when we can get a
genuine left 2-adjoint to this inclusion (and also studies when the unit is a
pseudonatural equivalence), getting the coherence results of [22] with respect
to pseudoalgebras.

In this paper, we prove Theorem 2.3, which is a generalization of Theo-
rem 4.3 of [27] on biadjoint triangles. Our result allows us to study lifting
of biadjunctions to lax algebras. Hence, we prove the analogue of the result
described above for lax algebras. More precisely, let T be a pseudomonad
on a 2-category B and let ` : Lax-T -Alg → Lax-T -Alg` be the locally full
inclusion of the 2-category of lax T -algebras and T -pseudomorphisms into
the 2-category of lax T -algebras and lax T -morphisms. Assuming that

A
J //

R ��

Lax-T -Alg

zz
B

'
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is a pseudonatural equivalence in which R is right biadjoint, we prove that
J is right biadjoint as well, provided that A has some needed codescent
objects. Moreover, ` ◦ J is right biadjoint if and only if A has lax codescent
objects of some special diagrams. Still, we study when we can get strict left
2-adjoints to J and ` ◦ J , provided that J is a 2-functor.

As an immediate application, we also prove general coherence theorems
related to the work of [22]: we get the construction of the left biadjoints of
the inclusions

T ′-Algs → Lax-T ′-Alg`, Ps-T -Alg→ Lax-T -Alg`

provided that T ′ is a 2-monad, T is a pseudomonad and T ′-Algs, Ps-T -Alg
have some needed lax codescent objects.

We start in Section 1 establishing our setting: we recall basic results and
definitions, such as weighted bicolimits and computads. In Section 2, we
give our main theorems on lifting of biadjoints: these are simple but pretty
general results establishing basic techniques to prove theorems on lifting of
biadjoints. These techniques apply to the context of [27] but also apply to
the study of other biadjoint triangles, such as our main application - which
is the lifting of biadjoints to the 2-category of lax algebras.

Then, we restrict our attention to 2-dimensional monad theory: in order
to do so, we present the weighted bicolimits called lax codescent objects
and codescent objects in Section 3. Our approach to deal with descent
objects is more general than the approach of [27, 28, 40], since it allows us
to study descent objects of more general diagrams. Thanks to this approach,
in Section 4, after defining pseudomonads and lax algebras, we show how
we can get the category of pseudomorphisms between two lax algebras as a
descent object at Proposition 4.5. This result also shows how we can get the
category of lax morphisms between two lax algebras as a lax descent object.

In Section 5, we prove our main results on lax algebras: Theorem 5.2
and Theorem 5.3. They are direct consequences of the results of Section 2
and Section 4, but we also give explicit calculations of the weighted bicolim-
its/weighted 2-colimits needed in A to get the left biadjoints/left 2-adjoints.
We finish the paper in Section 6 giving straightforward applications of our
results within the context of the 2-monadic approach to coherence explained
above.
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1 Preliminaries

In this section, we recall some basic results related to our setting, which is the
tricategory 2-CAT of 2-categories, pseudofunctors, pseudonatural transfor-
mations and modifications. Most of what we need was originally presented
in [3, 37, 39, 40]. Also, for elements of enriched category theory, see [17]. We
use the notation established in Section 2 of [27] for pseudofunctors, pseudo-
natural transformations and modifications.

We start with considerations about size. Let cat = int(Set) be the carte-
sian closed category of small categories. Also, assume that Cat,CAT are
cartesian closed categories of categories in two different universes such that
cat is an internal category of the subcategory of discrete categories of Cat,
while Cat is itself an internal category of the subcategory of discrete cate-
gories of CAT. Since these three categories of categories are complete and
cartesian closed, they are enriched over themselves and they are cocomplete
and complete in the enriched sense.

Henceforth, Cat-category is a Cat-enriched category such that its col-
lection of objects is a discrete category of CAT. Thereby, we have that
Cat-categories can be seen as internal categories of CAT such that their
categories of objects are discrete. In other words, there is a full inclu-
sion Cat-CAT → int(CAT) in which Cat-CAT denotes the category of Cat-
categories. Moreover, since there is a forgetful functor int(CAT) → CAT,
there is a forgetful functor Cat-CAT→ CAT.

So, we adopt the following terminology: Firstly, a 2-category is a Cat-
category. Secondly, a possibly (locally) large 2-category is an internal cate-
gory of CAT such that its category of objects is discrete. Finally, a small
2-category is a 2-category which can be seen as an internal category of cat.

Let W : S → Cat,W ′ : Sop → Cat, and D : S → A be 2-functors with
small domains. If it exists, we denote the weighted limit of D with weight
W by {W,D}. Dually, we denote by W ′∗D the weighted colimit provided
that it exists.

Remark 1.1. Consider the category, denoted in this remark by Sist, with
two objects and two parallel arrows between them. We can define the weight

Winsert : Sist → Cat
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1 //

//
2 � // I

domain
//

codomain//
2

in which 2 is the category with two objects and only one morphism between
them and I is the terminal category. The colimits with this weight are called
coinserters (see [18]).

The bicategorical Yoneda Lemma says that there is a pseudonatural
equivalence

[S,Cat]PS(S(a,−),D) ' Da

given by the evaluation at the identity, in which [S,Cat]PS is the possi-
bly large 2-category of pseudofunctors, pseudonatural transformations and
modifications S → Cat. As a consequence, the Yoneda embedding Y

Sop :
Sop → [S,Cat]PS is locally an equivalence (that is, it induces equivalences
between the hom-categories).

If W : S → Cat,D : S → A are pseudofunctors with a small do-
main, recall that the weighted bilimit, when it exists, is an object {W,D}bi

of A endowed with a pseudonatural equivalence (in X) A(X, {W,D}bi) '
[S,Cat]PS(W,A(X,D−)).

The dual concept is that of weighted bicolimit: if W ′ : Sop → Cat,D :
S → A are pseudofunctors, the weighted bicolimit W ′∗biD is the weighted
bilimit {W ′,Dop}bi in Aop. That is to say, it is an object W ′∗biD of A en-
dowed with a pseudonatural equivalence (in X)
A(W ′∗biD, X) ' [Sop,Cat]PS(W ′,A(D−, X)). By the bicategorical Yoneda
Lemma, {W,D}bi ,W ′∗biD are unique up to equivalence, if they exist.

Remark 1.2. If W and D are 2-functors, {W,D}bi and {W,D} may exist,
without being equivalent to each other. This problem is related to the
notion of flexible presheaves/weights (see [4]): whenever W is flexible, these
two types of limits are equivalent, if they exist.

Definition 1.3. Let R : A→ B, E : B→ A be pseudofunctors. Then E is
left biadjoint to R (or R is right biadjoint to E) if there exist

(1) pseudonatural transformations ρ : IdB −→ RE and ε : ER −→ IdA,
(2) invertible modifications

v : idE =⇒ (εE)(Eρ) and w : (Rε)(ρR) =⇒ idR,
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satisfying coherence axioms [27].

Remark 1.4. Recall that a biadjunction (E a R, ρ, ε, v, w) has an associ-
ated pseudonatural equivalence χ : B(−, R−) ' A(E−,−), in which

χ
(X,Z)

: B(X,RA) → A(EX,A)

f 7→ ε
A
E(f)

m 7→ idε
A
∗ E(m),

(
χ

(h,g)

)
f

:=
(

id
ε
A
∗ e

(hf)R(g)

)
·
(
ε
g
∗ e

hf

)
.

If L,U are 2-functors, we say that L is left 2-adjoint to U whenever
there is a biadjunction (L a U, η, ε, s, t) in which s, t are identities and η, ε
are 2-natural transformations. In this case, we say that (L a U, η, ε) is a
2-adjunction.

1.1 On computads We employ the concept of computad, introduced
in [37], to define the 2-categories ∆̇`, ∆̇,∆` in Section 3. For this reason, we
give a short introduction to computads in this subsection.

Herein a graph G = (d1, d0) is a pair of functors d0, d1 : G1 → G0 between
discrete categories of CAT. In this case, G0 is called the collection of objects
and, for each pair of objects (a, b) of G0 , d

−1
0 (a) ∩ d−1

1 (b) = G(a, b) is the
collection of arrows between a and b. A graph morphism T between G,G′ is a
function T : G0 → G′

0
endowed with a function T(a,b) : G(a, b)→ G′(Ta,Tb)

for each pair (a, b) of objects in G0 . That is to say, a graph morphism
T = (T1 ,T0) is a natural transformation between graphs. The category of
graphs is denoted by GRPH.

We also define the full subcategories of GRPH, denoted by Grph and grph:
the objects of Grph are graphs in the subcategory of discrete categories of Cat
and the objects of grph, called small graphs, are graphs in the subcategory of
discrete categories of cat. The forgetful functors CAT→ GRPH, Cat→ Grph
and cat→ grph have left adjoints.

We denote by F : GRPH→ CAT the functor left adjoint to CAT→ GRPH
and F the monad on GRPH induced by this adjunction. If G = (d1, d0) is
an object of GRPH, FG is the coinserter of this diagram (d1, d0).

Recall that FG, called the category freely generated by G, can be seen as
the category with the same objects of G but the arrows between two objects
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a, b are the paths between a, b (including the empty path): composition is
defined by juxtaposition of paths.

Definition 1.5 (Computad). A computad c is a graph cG endowed with a
graph c(a, b) such that c(a, b)0 =

(
FcG

)
(a, b) for each pair (a, b) of objects

of cG.

Remark 1.6. A small computad is a computad c such that the graphs cG

and c(a, b) are small for every pair (a, b) of objects of cG. Such a computad
can be entirely described by a diagram

c2

∂0 //

∂1
//
(
FcG

)
1

d0 //

d1
// c

G
0

in Set such that:

– (d1, d0) is the graph FcG;

– c2 :=
⋃

(a,b)∈cG
0
×cG

0

c(a, b)1 ;

– d1∂1 = d1∂0 and d0∂1 = d0∂0.

A morphism T between computads c, c′ is a graph morphism TG : cG →
c′G endowed with a graph morphism T(a,b) : c(a, b)→ c(TGa,TGb) for each
pair of objects (a, b) in cG such that T(a,b)

0
coincides with F(TG)(a,b). The

category of computads is denoted by CMP.
We can define a forgetful functor U : Cat-CAT → CMP in which (UA)G

is the underlying graph of the underlying category of A. Recall that, for
each pair of objects (a, b) of (UA)G, an object f of (UA) (a, b) is a path
between a and b. Then the composition defines a map ◦ : (UA) (a, b) →
A(a, b) and we can define the arrows of the graphs (UA) (a, b) as follows:
(UA) (a, b)(f, g) := A(a, b)(◦(f), ◦(g)).

The left reflection of a small computad c along U is denoted by Lc and
called the 2-category freely generated by c. The underlying category of Lc is
FcG and its 2-dimensional structure is constructed below:
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c2
∐(

FcG
)
1

∂0,id

��
∂1,id

��

d0∂0, d0 //

d1∂0, d1
// c

G
0

id

��(
FcG

)
1

d0 //

d1
// c

G
0

The diagram of Remark 1.6 induces the graph morphisms ((∂0, id), id) and
((∂1, id), id) above between a graph denoted by c− and FcG. Using the
multiplication of the monad F, these morphisms induce two morphisms
Fc− → FcG. These two morphisms define in particular the graph c− be-
low and Fc− defines the 2-dimensional structure of Lc:

(Fc−)
1
−
(
F2cG

)
1

//
//
(
FcG

)
1

Defining all compositions by juxtaposition, we have a sesquicategory (see
[41]). We define Lc to be the 2-category obtained from the quotient of this
sesquicategory, forcing the interchange laws.

Remark 1.7. Let Preord the category of preordered sets. We have an
inclusion Preord → Cat which is right adjoint. This adjunction induces a
2-adjunction between Preord-CAT and Cat-CAT.

If c is a computad, the locally preordered 2-category freely generated by c
is the image of Lc by the left 2-adjoint functor Cat-CAT→ Preord-CAT.

2 Lifting of biadjoints

In this section, we assume that a small weightW : S→ Cat, a right biadjoint
pseudofunctor R : A → B, and a pseudofunctor J : A → C are given. We
investigate whether J is right biadjoint.

We establish Theorem 2.3 and its immediate corollary on biadjoint tri-
angles. We omit the proof of Lemma 2.2, since it is analogous to the proof
of Lemma 2.1.

Lemma 2.1. Assume that, for each object y of C, there are pseudofunc-
tors Dy : S × A → Cat,Ay : Sop → A such that Dy ' A(Ay−,−) and{
W,Dy(−, A)

}
bi
' C(y, JA) for each object A of A. The pseudofunctor J



38 F. Lucatelli Nunes

is right biadjoint if and only if, for every object y of C, the weighted bicol-
imit W∗biAy exists in A. In this case, J is right biadjoint to G, defined by
Gy =W∗biAy.

Proof. There is a pseudonatural equivalence (in A)
{
W,A(Ay−, A)

}
bi
'
{
W,Dy(−, A)

}
bi
' C(y, JA).

Thereby, an object Gy of A is the weighted bicolimit W∗biAy if and only if
there is a pseudonatural equivalence (inA) A(Gy, A) '

{
W,A(Ay−, A)

}
bi
'

C(y, JA). That is to say, an object Gy of A is the weighted bicolimitW∗biAy

if and only if Gy is a birepresentation of C(y, J−).

Lemma 2.2. Assume that J,W are 2-functors and, for each object y of C,
there are 2-functors Dy : S × A → Cat,Ay : Sop → A such that there is
a 2-natural isomorphism Dy

∼= A(Ay−,−) and
{
W,Dy(−, A)

} ∼= C(y, JA)
for every object A of A. The 2-functor J is right 2-adjoint if and only if, for
every object y of C, the weighted colimit W∗Ay exists in A. In this case, J
is right 2-adjoint to G, defined by Gy =W∗Ay.

Let D : S×A→ Cat be a pseudofunctor. We denote by |D| : S0 ×A→
Cat the restriction of D in which S0 is the discrete 2-category of the objects
ofS. Also, herein we say that |D| can be factorized throughR∗ := B(−, R−)
if there are a pseudofunctor D′ : S0 → Bop and a pseudonatural equivalence
|D| ' R∗ ◦ (D′ × Id

A
).

Theorem 2.3. Assume that, for each object y of C, there is a pseudofunc-
tor Dy : S × A → Cat such that

∣∣Dy

∣∣ can be factorized through R∗ and{
W,Dy(−, A)

}
bi
' C(y, JA) for every object A of A. In this setting, for

each object y of C there are a pseudofunctor Ay : Sop → A and a pseudo-
natural equivalence Dy ' A(Ay−,−).

As a consequence, the pseudofunctor J is right biadjoint if and only if,
for every object y of C, the weighted bicolimit W∗biAy exists in A. In this
case, J is right biadjoint to G, defined by Gy =W∗biAy.

Proof. Indeed, if E : B → A is left biadjoint to R, then there is a pseudo-
natural equivalence R∗ ' A(E−,−). Therefore, by the hypotheses, for
each object Y of C, there is a pseudofunctor D′y : S0 → Bop such that∣∣Dy

∣∣ ' R∗ ◦ (D′y × Id
A
) ' A(ED′y−,−). From the bicategorical Yoneda
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Lemma, it follows that we can choose a pseudofunctor Ay : Sop → A, which
is an extension of ED′y such that A(Ay−,−) ' Dy. The consequence follows
from Lemma 2.1.

Corollary 2.4 (Biadjoint Triangle). Assume that V : C′ → C is a pseudo-
functor and

A
J //

R ��

C′

U~~
B

is a commutative triangle of pseudofunctors satisfying the following: for each
object y of C, there is a pseudofunctor Dy : S×C′ → Cat such that

∣∣Dy

∣∣ can
be factorized through U∗ and

{
W,Dy(−, x)

}
bi
' C(y,Vx) for each object

x of C′. In this setting, for each object y of C, there is a pseudofunctor
Ay : Sop → A such that Dy(−, J−) ' A(Ay−,−).

As a consequence, the pseudofunctor V ◦ J is right biadjoint if and only
if, for every object y of C, the weighted bicolimit W∗biAy exists in A. In this
case, V ◦ J is right biadjoint to G, defined by Gy =W∗biAy.

Proof. We prove that Dy := Dy(−, J−) satisfies the hypotheses of Theorem
2.3. We have that, for each object y of C and each object A of A,

{
W,Dy(−, A)

}
bi
' C(y,VJA).

Also, for each object y of C, there is a pseudofunctor D′y : S0 → Bop

such that U∗ ◦ (D′y × IdC) '
∣∣Dy

∣∣. Therefore

R∗ ◦ (D′y × IdA) ' U∗ ◦ (D′y × J) '
∣∣Dy

∣∣ ◦ (IdS0
× J) '

∣∣Dy

∣∣ .

Corollary 5.10 of [27] is a direct consequence of the last corollary and
Proposition 5.7 of [27]. In particular, if T is a pseudomonad on B and
U : Ps-T -Alg → B is the forgetful 2-functor, Proposition 5.5 of [27] shows
that the category of pseudomorphisms between two pseudoalgebras is given
by a descent object (which is a type of weighted bilimit) of a diagram satis-
fying the hypotheses of Corollary 2.4. Therefore, assuming the existence of
codescent objects in A, J has a left biadjoint.
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In Section 4, we define the 2-category of lax algebras of a pseudomonad
T . There, we also show Proposition 4.5 which is precisely the analogue and
a generalization of Proposition 5.5 of [27]: the category of lax morphisms
and the category of pseudomorphisms between lax algebras are given by
appropriate types of weighted bilimits. Then, we can apply Corollary 2.4 to
get our desired result on lifting of biadjoints to the 2-category of lax algebras:
Theorem 5.2. In the next section, we define and study the weighted bilimits
appropriate to our problem, called lax descent objects and descent objects.

To finish this section, we get a trivial consequence of Corollary 2.4:

Corollary 2.5. If UJ = R are pseudofunctors in which R is right biadjoint
and U is locally an equivalence, then J is right biadjoint as well. Actually, if
E is left biadjoint to R, Gy := EUy defines the pseudofunctor left biadjoint
to J .

3 Lax descent objects

In this section we describe the 2-categorical limits called lax descent objects
and descent objects [15, 22, 28, 37, 39, 40, 43].

In page 177 of [37], without establishing the name “lax descent objects”, it
is shown that given a 2-monad T , for each pair y, z of strict T -algebras, there
is a diagram of categories for which its lax descent category (object) is the
category of lax morphisms between y and z. We establish a generalization
of this result for lax algebras: Proposition 4.5.

In order to establish such result, our approach in defining the lax descent
objects is different from [37], commencing with the definition of our “domain
2-category”, denoted by ∆`.

Definition 3.1 (t : ∆` → ∆̇` and j : ∆` → ∆̇). We denote by ∂̇` the
computad defined by the diagram

0
d // 1

d0 //

d1
// 2s0oo

∂0 //
∂1 //

∂2
// 3
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with the 2-cells:

σ00 : ∂0d0 ⇒ ∂1d0,

σ20 : ∂2d0 ⇒ ∂0d1,

σ21 : ∂2d1 ⇒ ∂1d1,

n0 : id1 ⇒ s0d0,

n1 : id1 ⇒ s0d1,

ϑ : d1d⇒ d0d.

The 2-category ∆̇` is, herein, the locally preordered 2-category freely
generated by ∂̇`. The full sub-2-category of ∆̇` with objects 1, 2, 3 is denoted
by ∆` and the full inclusion by t : ∆` → ∆̇`.

We consider also the computad ∂̇ which is defined as the computad ∂̇`
with one extra 2-cell d0d ⇒ d1d. We denote by ∆̇ the locally preordered
2-category freely generated by ∂̇. Of course, there is also a full inclusion
j : ∆` → ∆̇.

We define, also, the computad ∂`, which is the full subcomputad of ∂̇`
with objects 1, 2, 3.

Proposition 3.2. Let A be a 2-category. There is a bijection between the
2-functors ∆` → A and the maps of computads ∂` → UA. In other words,
∆` is the 2-category freely generated by the computad ∂`.

Also, there is a bijection between 2-functors D : ∆̇` → A and the maps
of computads D : ∂̇` → UA which satisfy the equations

– Associativity:

D0
D(d) //

D(d)

��

D(ϑ)−−−→

D1

D(d0)

��
=

D3 D2
D(∂1)

oo

D(σ00)−−−−→
D2D(σ20)−−−−→

D(∂0)

aa

D1
D(d0)oo

D(d0)

OO

D1
D(d1) //

D(d1)
��

D(σ21)−−−−→
D2

D(∂1)
��

D2

D(∂2)

OO

D(ϑ)−−−→
D1

D(d0)oo D(ϑ)−−−→

D(d1)

OO

D2
D(∂2)

// D3 D1

D(d1)

OO

D0
D(d)
oo

D(d)

OO
D(d)

UU
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– Identity:

D0
D(d) //

D(d)
��

D(ϑ)−−−→
D1

D(d0)
��

=

D0

D(d)
��

D1
D(d1)

//

D(n1)−−−→

D2

D(s0)
��

D1
D(d0)

//

D(n0)−−−→

D2

D(s0)
��

D1 D1

Moreover, there is a bijection between 2-functors ∆̇ → A and 2-functors
D : ∆̇` → A such that D(ϑ) is an invertible 2-cell.

Let A be a 2-category and D : ∆` → A be a pseudofunctor. If the
weighted bilimit

{
∆̇(0, j−),D

}
bi

exists, we say that
{

∆̇(0, j−),D
}

bi
is the

descent object of D. Moreover, if the weighted bilimit
{

∆̇`(0, t−),D
}

bi
exists, it is called the lax descent object of D.

Analogously, if such D is a 2-functor and the (strict) weighted 2-limit{
∆̇(0, j−),D

}
exists, we call it the strict descent object of D. Finally, the

(strict) weighted 2-limit
{

∆̇`(0, t−),D
}
is called the strict lax descent object

of D, if it exists.

Lemma 3.3. Strict lax descent objects are lax descent objects and strict
descent objects are descent objects. That is to say, the weights ∆̇`(0, t−) :
∆` → Cat, ∆̇(0, j−) : ∆` → Cat are flexible.

The dual notions of lax descent object and descent object are called the
codescent object and the lax codescent object. If A : ∆op

` → A is a 2-functor,
the codescent object of A is, if it exists, ∆̇(0, j−)∗biA and the lax codescent
object of A is ∆̇`(0, t−)∗biA if it exists.

Also, the weighted colimits ∆̇(0, j−)∗A, ∆̇`(0, t−)∗A are called, respec-
tively, the strict codescent object and the strict lax codescent object of A.

Remark 3.4. If D : ∆` → Cat is a 2-functor, then
{

∆̇`(0, t−),D
}
∼= [∆`,Cat]

(
∆̇`(0, t−),D

)
.
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Thereby, we can describe the strict lax descent object of D : ∆` → Cat
explicitly as follows:

(1) Objects are 2-natural transformations f : ∆̇`(0, t−) −→ D. We
have a bijective correspondence between such 2-natural transformations and
pairs (f,

〈
f
〉
) in which f is an object of D1 and

〈
f
〉

: D(d1)f → D(d0)f is a
morphism in D2 satisfying the equations

– Associativity:
(
D(σ

00
)
f

) (
D(∂0)(

〈
f
〉
)
) (

D(σ
20

)
f

) (
D(∂2)(

〈
f
〉
)
)

=
(
D(∂1)(

〈
f
〉
)
) (

D(σ
21

)
f

)
,

– Identity: (
D(s0)(

〈
f
〉
)
) (

D(n1)
f

)
=
(
D(n0)

f

)
.

If f : ∆̇(0,−) −→ D is a 2-natural transformation, we get such pair by the
correspondence f 7→ (f1(d), f2(ϑ)).

(2) The morphisms are modifications. In other words, a morphism
m : f → h is determined by a morphism m : f → g in D1 such that
D(d0)(m)

〈
f
〉

=
〈
h
〉

D(d1)(m).

Furthermore, there is a full inclusion
{

∆̇(0, j−),D
}
→
{

∆̇`(0, t−),D
}

such that the objects of
{

∆̇(0, j−),D
}

are precisely the pairs (f,
〈
f
〉
) (de-

scribed above) with one further property:
〈
f
〉
is actually an isomorphism in

D2.

4 Pseudomonads and lax algebras

Pseudomonads in 2-Cat are defined in [27, 28]. The definition agrees with
the theory of pseudomonads for Gray-categories [21, 29–31] and with the
definition of doctrines of [39].

For each pseudomonad T on a 2-category B, there is an associated (right
biadjoint) forgetful 2-functor Ps-T -Alg → B, in which Ps-T -Alg is the 2-
category of pseudoalgebras. In this section, we give the definitions of the
2-category of lax algebras Lax-T -Alg` and its associated forgetful 2-functor
Lax-T -Alg` → B, which are slight generalizations of the definitions given
in [22, 36].

Recall that a pseudomonad T on a 2-category B consists of a sextuple
(T ,m, η, µ, ι, τ), in which T : B→ B is a pseudofunctor, m : T 2 −→ T , η :
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Id
B
−→ T are pseudonatural transformations and τ : IdT =⇒ (m)(T η),

ι : (m)(ηT ) =⇒ IdT , µ : m (Tm) ⇒ m (mT ) are invertible modifications
satisfying the following coherence equations:

– Associativity:

T 4 T 2m //

TmT
!!

mT 2

��

T 3

Tm
!!

T̂ µ←−−

T 4 T 2m //

m−1
m←−−−mT 2

��

T 3

mT
��

Tm
!!

T 3

mT !!

µT←−− T 3 Tm //

mT
��

µ←−−
T 2

m

��

= T 3 Tm //

mT !!

T 2 µ←−−
m

!!

µ←−−
T 2

m

��
T 2

m
// T T 2

m
// T

– Identity:

T 2

T ηT

}}

T ηT

!!
IdT 2

��

T 2

T ηT
��

T 3

mT !!

τT←−− T 3T̂ ι←−
Tm}}

T 3

mT
}}

Tm
!!

T 2

m

��

= T 2 µ←−−
m

!!

T 2

m

}}
T T

in which

T̂ ι := (tT )−1 (T ι)
(
t
(m)(ηT )

)
T̂ µ :=

(
t
(m)(mT )

)−1
(T µ)

(
t
(m)(Tm)

)
.

Recall that the Cat-enriched notion of monad is a pseudomonad T = (T ,m, η, µ, ι, τ)
such that the invertible modifications µ, ι, τ are identities and m, η are 2-
natural transformations. In this case, we say that T = (T ,m, η) is a 2-
monad, omitting the identities.

Definition 4.1 (Lax algebras). Let T = (T ,m, η, µ, ι, τ) be a pseudomonad
on B. We define the 2-category Lax-T -Alg` as follows:
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(1) Objects: lax T -algebras are defined by z = (Z, alg
z
, z, z0) in which

alg
z

: T Z → Z is a morphism of B and z : alg
z
T (alg

z
) ⇒ alg

z
mZ , z0 :

IdZ ⇒ alg
z
ηZ are 2-cells of B satisfying the coherence axioms:

T 3Z
T 2(alg

z
)
//

T (m
Z

)

##
mT Z

��

T 2Z

T̂ (z)←−−−
T (alg

z
)

""
=

T 3Z
T 2(alg

z
)
//

m−1
algz←−−−

mT Z
��

T 2Z

m
Z

��

T (alg
z
)

""
T 2Z µ

Z←−−
m
Z ##

T 2Z

m
Z

��

T (alg
z
)
//

z←−

T Z
alg

z

��

T 2Z
T (alg

z
)
//

m
Z ##

T Z
z←−

z←−
alg

z

##

T Z
alg

z

��
T Z

alg
z

// Z T Z
alg

z

// Z

in which T̂ (z) :=
(
t
(algz )(mZ

)

)−1
(T (z))

(
t
(algz )(T (algz ))

)
and the 2-cells

T Z
alg

z //
ηT Z

##

Z
η
Z

}}

T Z
T (η

Z
)

##

T Z
T̂ (z0)←−−−

ι
Z←− T 2Z

η−1
algz←−−−

T (alg
z
)
//

m
Z{{

z←−

T Z z0←−

alg
z !!

τ−1
Z←−− T 2Z

T (alg
z
)
//

m
Z{{

z←−

T Z
alg

z

��
T Z

alg
z

// Z T Z
alg

z

// Z

are identities in which T̂ (z0) :=
(
t
(algz )(ηZ

)

)−1
(T (z0)) (tT Z ). Recall that, if

a lax algebra z = (Z, alg
z
, z, z0) is such that z, z0 are invertible 2-cells, then

z is called a pseudoalgebra.

(2) Morphisms: lax T -morphisms f : y→ z between lax T -algebras y =
(Y, alg

y
, y, y

0
), z = (Z, alg

z
, z, z0) are pairs f = (f,

〈
f
〉
) in which f : Y → Z

is a morphism in B and
〈
f
〉

: alg
z
T (f) ⇒ falg

y
is a 2-cell of B such that,

defining T̂ (
〈
f
〉
) := t−1

(f)(algy )
T (
〈
f
〉
)t

(algz )(T (f))
, the equations
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T 2Y

m−1
f←−−−

m
Y

||

T 2(f) // T 2Z
T (alg

z
)

""
m
Z{{

z←− =

T Z
alg

z //

T̂ (〈f〉)−−−−→

Z

〈f〉−−→
T Y

T (f)
//

alg
y ""

T Z
alg

z

##

〈f〉←−−

T Z

alg
z||

T 2Z

T (alg
z
)
;;

T Y
T (f)

bb

alg
y //

y−→

Y

f
aa

Y
f

// Z T 2Y

T (alg
y
)

<<

m
Y

//
T 2(f)

cc

T Y
alg

y

>>

Y
f //

η
Y

��
η−1
f←−−

Z
η
Z

}}
=

Y
η
Y

}}
T Y

T (f)
//

alg
y

��
〈f〉←−−

T Z z0←−
alg

z !!

T Y y
0←−

alg
y !!

Y
f

// Z Y
f
// Z

hold. Recall that a lax T -morphism f = (f,
〈
f
〉
) is called a T -pseudomorphism

if
〈
f
〉
is an invertible 2-cell and if it is an identity, it is called a (strict) T -

morphism.
(3) 2-cells: a T -transformation m : f ⇒ h between lax T -morphisms

f = (f,
〈
f
〉
), h = (h,

〈
h
〉
) is a 2-cell m : f ⇒ h in B such that the equation

below holds.

T Y

T (f)

��

T (m)−−−→ T (h)

��

alg
y // Y

h

��

T Y
alg

y //

T (f)

��

Y

f

!!

m−→ h

}}

〈h〉−−−→ = 〈f〉−−→

T Z
alg

z

// Z T Z
alg

z

// Z

The compositions are defined in the obvious way and these definitions
make Lax-T -Alg` a 2-category. The full sub-2-category of the pseudoalgebras
of Lax-T -Alg` is denoted by Ps-T -Alg`. Also, the locally full sub-2-category
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Lax-T -Alg` consisting of lax algebras and pseudomorphisms between them is
denoted by Lax-T -Alg. Finally, the full sub-2-category of the pseudoalgebras
of Lax-T -Alg is denoted by Ps-T -Alg. In short, we have locally full inclusions:

Ps-T -Alg //

��

Ps-T -Alg`

��
Lax-T -Alg ` // Lax-T -Alg`

Remark 4.2. If T = (T ,m, η) is a 2-monad, we denote by T -Alg` the full
sub-2-category of strict algebras of Lax-T -Alg`. That is to say, the objects
of T -Alg` are the lax T -algebras y = (Y, alg

y
, y, y

0
) such that its 2-cells y, y

0
are identities.

Also, we denote by T -Alg the locally full sub-2-category of T -Alg` consist-
ing of strict algebras and pseudomorphisms between them. Finally, T -Algs is
the locally full sub-2-category T -Alg` consisting of strict algebras and strict
morphisms between them. That is to say, the 1-cells of T -Algs are the pseu-
domorphisms f = (f,

〈
f
〉
) such that

〈
f
〉
is the identity. In this case, we have

locally full inclusions

T -Algs //

��

T -Alg //

��

T -Alg`

��
Ps-T -Algs

��

// Ps-T -Alg //

��

Ps-T -Alg`

��
Lax-T -Algs // Lax-T -Alg ` // Lax-T -Alg`

in which the vertical arrows are full.

Remark 4.3. There is a vast literature of examples of pseudomonads, 2-
monads and their respective algebras, pseudoagebras and lax algebras [5, 14,
20, 34]. The reader can keep in mind three very simple examples:

– The “free 2-monad” T on Cat whose pseudoalgebras are unbiased

monoidal categories. This is defined by T X :=

∞∐

n=0

Xn, in which Xn+1 :=

Xn × X and X0 := I is the terminal category, with the obvious pseu-
domonad structure. In this case, the T -pseudomorphisms are the so called
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strong monoidal functors, while the lax T -morphisms are the lax monoidal
functors [25].

– The most simple example is the pseudomonad rising from a monoidal
category. A monoidal category M is just a pseudomonoid [42] of Cat and,
therefore, it gives rise to a pseudomonad T : Cat → Cat defined by T X =
M ×X with obvious unit and multiplication (and invertible modifications)
coming from the monoidal structure of M . The pseudoalgebras and lax
algebras of this pseudomonad are called, respectively, the pseudoactions and
lax actions ofM . Lax actions of a monoidal categoryM are also called graded
monads (see [11]).

The inclusion Set → Cat is a strong monoidal functor with respect to
the cartesian structures, since this functor preserves products. In particular,
it takes monoids of Set to monoids of Cat. In short, this means that we
can see a monoid M as a (discrete) strict monoidal category. Therefore,
a monoid M gives rise to a 2-monad T X = M × X as defined above. In
this case, the 2-categories T -Algs, Ps-T -Alg and Lax-T -Alg` are, respectively,
the 2-categories of (strict) actions, pseudoactions (as defined in [8]) and lax
actions of this monoid M on categories. A lax action of the trivial monoid
on a category is the same as a monad.

– Let S be a small 2-category and A a 2-category. We denote by S0

the discrete 2-category of the objects of S and by [S,A] the 2-category
of 2-functors, 2-natural transformations and modifications. If the restric-
tion [S,A] → [S0,A] has a left 2-adjoint (called the global left Kan exten-
sion), then the restriction is 2-monadic and [S,A]PS is the 2-category of
T -pseudoalgebras (in which T is the 2-monad induced by the 2-adjunction).
Also, the 2-category of lax algebras is the 2-category [S,Cat]Lax of lax func-
tors S→ A, lax natural transformations and modifications [5].

Again, if M is a monoid (of Set), M can be seen as a category with only
one object [26], usually denoted by

∑
M . That is to say, the locally discrete

2-category
∑
M has only one object ∗ and ∑M(∗, ∗) := M is the discrete

category with the composition of 1-cells given by the product of the monoid.
In this case, the restriction

[∑
M,Cat

]
→
[(∑

M
)

0
,Cat

]
∼= Cat

has a left 2-adjoint (and, as explained, it is 2-monadic). The left 2-adjoint
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is given by X 7→ Lan
(
∑
M)0→

∑
M
X in which

Lan
(
∑
M)0→

∑
M
X :

∑
M → Cat

∗ →M ×X
M 3 g 7→ g : (h, x) 7→ (gh, x).

This 2-adjunction is precisely the same 2-adjunction between strict T -algebras
and the base 2-category Cat, if T is the 2-monad T X = M ×X described
above. Hence the 2-category of pseudoalgebras [

∑
M,Cat]PS and the 2-

category [
∑
M,Cat]Lax are, respectively, isomorphic to the 2-category of

pseudoactions and the 2-category of lax actions of M on categories. More-
over, T -Algs → Cat is 2-comonadic.

More generally, if M is a monoidal category, M can be seen as a bicate-
gory with only one object (see [3, 25]), also denoted by

∑
M . The restric-

tion 2-functor [
∑
M,Cat]PS → [(

∑
M)0 ,Cat]PS

∼= Cat is pseudomonadic
and pseudocomonadic. Furthermore, it coincides with the forgetful pseudo-
functor Ps-T -Alg→ Cat in which T X = M ×X is given by the structure of
the monoidal category (as above).

Remark 4.4. Let T = (T ,m, η, µ, ι, τ) be a pseudomonad on a 2-category
B. If C is any sub-2-category of Lax-T -Alg, we have a forgetful 2-functor

U : C → B

z = (Z, alg
z
, z, z0) 7→ Z

f = (f,
〈
f
〉
) 7→ f

m 7→ m

Proposition 4.5. Let T = (T ,m, η, µ, ι, τ) be a pseudomonad on a 2-
category B. Given lax T -algebras y = (Y, alg

y
, y, y

0
), z = (Z, alg

z
, z, z0)

the category Lax-T -Alg`(y, z) is the strict lax descent object of the diagram
Tyz : ∆` → Cat

B(Uy, Uz)

B(alg
y
,Uz)

//

B(T Uy,alg
z
)◦ T

(Uy,Uz)//

B(T Uy, Uz)B(η
Uy
,Uz)oo

B(T (alg
y
),Uz)

//
B(m

Uy
,Uz) //

B(T 2Uy,alg
z
)◦ T

(T Uy,Uz)//

B(T 2Uy, Uz)

(Tyz)
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such that
Ty
z(σ20)

f
:=
(

id
alg

z
∗ t

(f)(alg
y
)

)

Ty
z(σ21)

f
:=
(

id
f
∗ y
)

Ty
z(n1)

f
:=
(

id
f
∗ y

0

)

Ty
z(σ00)

f
:=
(

id
alg

z
∗m−1

f

)
·
(
z ∗ idT 2(f)

)
·
(

id
alg

z
∗ t−1

(alg
z
)(T (f))

)

Ty
z(n0)

f
:=
(

id
alg

z
∗ η−1

f

)
·
(
z0 ∗ id

f

)

Furthermore, the strict descent object of Tyz is Lax-T -Alg(y, z).

Proof. It follows from Definition 4.1 and Remark 3.4.

Remark 4.6. In the context of the proposition above, we can define a
pseudofunctor Ty : ∆` × Lax-T -Alg → Cat in which Ty(−, z) := Tyz, since
the morphisms defined above are actually pseudonatural in z with respect
to T -pseudomorphisms and T -transformations.

Assume that the triangles below are commutative, R is a right biadjoint
pseudofunctor and the arrows without labels are the forgetful 2-functors of
Remark 4.4. By Corollary 2.4, it follows from Proposition 4.5 (and last
remark) that, whenever A has lax codescent objects, ` ◦ J is right biadjoint
to a pseudofunctor G. Also, for each lax algebra y, there is a diagram Ay

such that Gy ' ∆̇`(0, t−)∗biAy defines the left biadjoint to ` ◦ J . Moreover,
J is right biadjoint as well if A has codescent objects of these diagrams Ay.
In the next section, we give precisely the diagrams Ay and prove a strict
version of our theorem as a consequence of Lemma 2.2.

A
J //

R
((

Lax-T -Alg

��

` // Lax-T -Alg`

ww
B

5 Lifting of biadjoints to lax algebras

In this section, we give our results on lifting right biadjoints to the 2-category
of lax algebras of a given pseudomonad. As explained above, we already
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have such results by Corollary 2.4 and Proposition 4.5. But, in this section,
we present an explicit calculation of the diagrams Ay whose lax codescent
objects are needed in the construction of our left biadjoint.

Definition 5.1. Let (E a R, ρ, ε, v, w) be a biadjunction and T be a pseu-
domonad T = (T ,m, η, µ, ι, τ) on B such that

A
J //

R ��

Lax-T -Alg

U
zz

B

is commutative, in which U is the forgetful 2-functor defined in Remark
4.4. In this setting, for each lax T -algebra y = (Y, alg

y
, y, y

0
), we define the

2-functor Ay : ∆op
` → A

EUy E(η
Uy

) // ET Uy
E(alg

y
)

oo

ε
EUy

E(alg
JEUy

T (ρ
Uy

))
oo

ET 2Uy

ET (alg
y
)

oo
E(m

Uy
)oo

ε
ETUy

E(alg
JETUy

T (ρTUy
))

oo

(Ay)
in which

Ay(σ21) := e−1
(alg

y
)(m

Uy
)
·E(y) ·e

(alg
y
)(T (alg

y
))

Ay(n0) := e−1
(alg

y
)(η
Uy

)
·E(y

0
) ·e

Uy

Ay(n1) :=

((
idε

EUy

)
∗
(
e−1
(alg

JEUy
T (ρ

Uy
))(η

Uy
)
· E(id

alg
JEUy

∗ η−1
ρ
Uy

) · E(JEUy
0
∗ idρ

Uy
)

))
· v

Uy

Ay(σ20) :=
(
ε−1
E(alg

y
)
∗ id

E(alg
JET y

T (ρTUy
))

)
·
(

id
ε
EUy
∗ e−1

(RE(alg
y
))(alg

JETUy
T (ρTUy

))

)
·

(
id
ε
EUy
∗
(
E(
〈
JE(alg

y
)
〉
∗ idT (ρTUy

)
) · E(id

alg
JEUy

∗ (T ρ)−1
alg

y

)
))
·

(
id
ε
EUy
∗
(
e
(alg

JEUy
T (ρ

Uy
))(T (alg

y
))

))
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Ay(σ00) :=
(

id
ε
EUy
∗
(
e−1
(alg

JEUy
T (ρ

Uy
))(m

Uy
)
· E(id

alg
JEUy

∗m−1
ρ
Uy

) · E(JEUy ∗ idT 2(ρ
Uy

)
)

))
·

(
idε

EUy
∗ E

(
id

alg
JETUy

∗
(
T (w

EUy
) · t−1

(R(ε
EUy

))(ρ
REUy

)

)
∗ idT (alg

JEUy
)T 2(ρ

Uy
)

))
·

(
id
ε
EUy
∗ E

(〈
J(ε

EUy
)
〉−1
∗ idT (ρ

REUy
)
∗ t−1

(alg
JEUy

)(T (ρ
Uy

))

))
·

(
id
ε
EUy
∗ e

(R(ε
EUy

))(alg
JEUTUy

T (ρ
REUy

)T (alg
JEUy

T (ρ
Uy

)))

)
·(

ε
ε
EUy
∗ E

((
id

alg
JEUTUy

∗ (T ρ)
alg

JEUy
T (ρ

Uy
)

)
·
(〈

JE(alg
JEUy
T (ρ

Uy
))
〉−1)))

·
(

id
ε
EUy

ε
EREUy

∗ e
(RE(alg

JEUy
T (ρ

Uy
)))(alg

JETUy
T (ρTUy

))

)
·(

idε
EUy
∗ ε

E(alg
JEUy

T (ρ
Uy

))
∗ id

E(alg
JETUy

T (ρTUy
))

)
.

Theorem 5.2 (Biadjoint Triangle Theorem). Let (E a R, ρ, ε, v, w) be a bi-
adjunction, T = (T ,m, η, µ, ι, τ) a pseudomonad on B and ` : Lax-T -Alg→
Lax-T -Alg` the inclusion. Assume that

A
J //

R ��

Lax-T -Alg

U
yy

B

is commutative. The pseudofunctor `◦J is right biadjoint if and only if A has
the lax codescent object of the diagram Ay : ∆op

` → A for every lax T -algebra
y. In this case, the left biadjoint G is defined by Gy = ∆̇`(0, t−)∗biAy.

Furthermore, J is right biadjoint if and only if A has the codescent object
of the diagram Ay : ∆op

` → A for every lax T -algebra y. In this case, the
left biadjoint G′ is defined by G′y = ∆̇(0, j−)∗biAy.

Proof. By Lemma 2.1, Proposition 4.5 and Remark 4.6, it is enough to
observe that, for each lax T -algebra y, there is a pseudonatural equivalence

ψy : Ty(−, J−) −→ A(Ay−,−)

defined by

ψy
(1,A)

:= χ
(Uy,A)

: B(Uy, RA)→ A(EUy, A)

ψy
(2,A)

:= χ
(T Uy,A)

: B(T Uy, RA)→ A(ET Uy, A)

ψy
(3,A)

:= χ
(T 2Uy,A)

: B(T 2Uy, RA)→ A(ET 2Uy, A)
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in which χ : B(−, R−) ' A(E−,−) is the pseudonatural equivalence corre-
sponding to the biadjunction (E a R, ρ, ε, v, w) (see Remark 1.4). Also,

(ψy

s0
)
f

:= idε
A
∗ e

(f)(η
Uy

)

(ψy

d1
)
f

:= idε
A
∗ e

(f)(algy )

(ψy

∂1
)
f

:= idε
A
∗ e

(f)(m
Uy

)

(ψy

∂2
)
f

:= idε
A
∗ e

(f)(T (algy ))

(ψy

d0
)
f

:=

(
idε

A
∗
(
E(id

alg
JA
∗ T (wA) ∗ idT (f)

) · E(id
alg
JA
∗ t

(R(ε
A

))(ρ
RA

)
∗ idT (f)

)
))
·(

idε
A
∗
(
E(
〈
J(εA)

〉−1
∗ idT (ρ

RA
)T (f)

) · e
(R(ε

A
))(alg

JERA
T (ρ

RA
)T (f))

))
·

(
id
ε
A
ER(ε

A
)
∗
(
E(id

alg
JERA

∗ (T ρ)
f
) · E(

〈
JE(f)

〉−1
∗ idT (ρ

Uy
)
)

))
·

(
εε
A
∗ e

(RE(f))(alg
JEUy

T (ρ
Uy

))

)
·
(

idε
A
∗ ε

f
∗ id

E(alg
JEUy

T (ρ
Uy

))

)

(ψy

∂0
)
f

:=

(
idε

A
∗
(
E(id

alg
JA
∗ T (wA) ∗ idT (f)

) · E(id
alg
JA
∗ t

(R(ε
A

))(ρ
RA

)
∗ idT (f)

)
))
·(

idε
A
∗
(
E(
〈
J(εA)

〉−1
∗ idT (ρ

RA
)T (f)

) · e
(R(ε

A
))(alg

JERA
T (ρ

RA
)T (f))

))
·

(
id
ε
A
ER(ε

A
)
∗
(
E(id

alg
JERA

∗ (T ρ)
f
) · E(

〈
JE(f)

〉−1
∗ idT (ρT Uy

)
)

))
·

(
εε
A
∗ e

(RE(f))(alg
JET Uy

T (ρT Uy
))

)
·
(

idε
A
∗ ε

f
∗ id

E(alg
JET Uy

T (ρT Uy
))

)

This defines a pseudonatural transformation which is a pseudonatural equiv-
alence, since it is objectwise an equivalence.

Theorem 5.3 (Strict Biadjoint Triangle). Let (E a R, ρ, ε) be a 2-adjunction,
(T ,m, η) a 2-monad on B and ` : Lax-T -Alg → Lax-T -Alg` the inclusion.
Assume that

A
J //

R ��

Lax-T -Alg

U
zz

A
J̃ //

J $$

Lax-T -Algs

ww
B Lax-T -Alg
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are commutative triangles, in which Lax-T -Algs → Lax-T -Alg is the locally
full inclusion of the 2-category of lax algebras and strict T -morphisms into
the 2-category of lax algebras and T -pseudomorphisms. The pseudofunctor
` ◦ J is right biadjoint if and only if A has the strict lax codescent object of
the diagram Ay : ∆op

` → A for every lax T -algebra y. In this case, the left
2-adjoint G is defined by Gy = ∆̇`(0, t−)∗Ay.

Furthermore, J is right 2-adjoint if and only if A has the strict codescent
object of the diagram Ay : ∆op

` → A for every lax T -algebra y.

Proof. We have, in particular, the setting of Theorem 5.2. Therefore, we
can define ψ as it is done in the last proof. However, in our setting, we get
a 2-natural transformation which is an objectwise isomorphism. Therefore
ψ is a 2-natural isomorphism.

By Lemma 2.2, Proposition 4.5 and Remark 4.6, this completes our
proof.

6 Coherence

As mentioned in the introduction, the 2-monadic approach to coherence con-
sists of studying the inclusions induced by a 2-monad T of Remark 4.2 to
get general coherence results [5, 22, 33].

Given a 2-monad (T ,m, η) on a 2-category B, the inclusions of Remark
4.2 and the forgetful functors of Remark 4.4 give in particular the com-
mutative diagram below, in which Ps-T -Alg → B is right biadjoint and
T -Algs → B is right 2-adjoint:

T -Algs //

&&

Ps-T -Alg //

��

Lax-T -Alg`

ww
B

In this section, we are mainly concerned with the triangles involving the
2-category of lax algebras. We refer to [27] for the remaining triangles involv-
ing the 2-category of pseudoalgebras. The inclusion T -Algs → Lax-T -Alg` is
also studied in [22]. Therein, it is proved that it has a left 2-adjoint whenever
the 2-category T -Algs has the lax codescent objects of some diagrams called
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therein lax coherence data. This is of course the immediate consequence of
Theorem 5.3 applied to the large triangle above.

Actually, we can study other inclusions of Remark 4.2 with the techniques
of this paper. For instance, by Theorem 5.3 and Corollary 2.5, the inclusion
of T -Alg into any 2-category of T -algebras and lax T -morphisms of Remark
4.2 has a left biadjoint provided that T -Alg has lax codescent objects. Also,
the inclusion of this 2-category into any 2-category of T -algebras and T -
pseudomorphisms (that is, vertical arrows with domain in T -Alg of Remark
4.2) has a left biadjoint provided that T -Alg has codescent objects.

In the more general context of pseudomonads, we can apply Theorem 5.2
and Theorem 5.3 to understand precisely when the inclusions Ps-T -Alg →
Lax-T -Alg` and Ps-T -Alg → Lax-T -Alg have left biadjoints. In particular,
we have:

Theorem 6.1. Let T = (T ,m, η, µ, ι, τ) be a pseudomonad on a 2-category
B. If Ps-T -Alg has lax codescent objects, then the inclusion Ps-T -Alg →
Lax-T -Alg has a left biadjoint. Furthermore, if Ps-T -Alg has codescent ob-
jects, Ps-T -Alg→ Lax-T -Alg has a left biadjoint.

In particular, if T = (T ,m, η, µ, ι, τ) is a pseudomonad that preserves lax
codescent objects, then Ps-T -Alg has lax codescent objects and, therefore,
satisfies the hypothesis of the first part of the result above. Similarly, if T
preserves codescent objects, it satisfies the hypothesis of the second part.

Acknowledgement

This work was realized in the course of my PhD studies at University of
Coimbra. I wish to thank my supervisor Maria Manuel Clementino for her
support, attention, and useful feedback. Also, I would like to thank the
referees for carefully reading the paper.

References

[1] Barr, M., The point of the empty set, Cah. Topol. Géom. Différ. Catég. 13 (1972),
357-368.

[2] Barr, M. and Wells, C., “Toposes, Triples and Theories”, Repr. Theory Appl. Categ.
21 (2005), 1-288.



56 F. Lucatelli Nunes

[3] Bénabou, J., Introduction to bicategories, Lecture Notes in Math. 47 (1967), 1-77.

[4] Bird, G.J., Kelly, G.M., Power, A.J., and Street, R.H., Flexible limits for 2-
categories, J. Pure Appl. Algebra 61(1) (1989), 1-27.

[5] Blackwell, R., Kelly, G.M., and Power, A.J., Two-dimensional monad theory, J.
Pure Appl. Algebra 59(1) (1989), 1-41.

[6] Börger, R., Tholen, W., Wischnewsky, M.B., and Wolff, H., Compact and hyper-
complete categories, J. Pure Appl. Algebra 21 (1981), 219-144.

[7] Bourke, J., Two-dimensional monadicity, Adv. Math. 252 (2004), 708-747.

[8] Deligne, P., Action du groupe des tresses sur une catégorie, Invent. Math. 218(1)
(1997), 159-175.

[9] Dubuc, E., Adjoint triangles, Reports of the Midwest Category Seminar (1968),
69-91.

[10] Dubuc, E., Kan extensions in enriched category theory, Lecture Notes in Math. 145,
Springer-Verlag, 1970.

[11] Fujii, S., Katsumata, S., Melliès, P., Towards a formal theory of graded monads,
Foundations of software science and computation structures, 513-530, Lecture Notes
in Comput. Sci. 9634, Springer, 2016.

[12] Gurski, N., “An algebraic theory of tricategories”, PhD Thesis, The University of
Chicago, 2006.

[13] Hermida, C., Descent on 2-fibrations and strongly regular 2-categories, Appl. Categ.
Structures 21 (2004), 427-459.

[14] Hermida, C., From coherent structures to universal properties, J. Pure Appl. Algebra
165(1) (2000), 7-61.

[15] Janelidze, G., and Tholen, W., Facets of descent II, Appl. Categ. Structures 5(3)
(1997), 229-248.

[16] Johnstone, P.T., Adjoint lifting theorems for categories of algebras, Bull. Lond.
Math. Soc. 7 (1975), 294-297.

[17] Kelly, G.M., “Basic Concepts of Enriched Category Theory”, London Math. Soc.
Lecture Note Ser. 64., Cambridge University Press, 1982.

[18] Kelly, G.M., Elementary observations on 2-categorical limits, Bull. Austral. Math.
Soc. 39(2) (1989), 301-317.

[19] Kelly, G.M. and Lack, S., On property-like structures, Theory Appl. Categ. 3(9)
(1997), 213-250.



On lifting of biadjoints and lax algebras 57

[20] Kock, A., Monads for which structures are adjoint to units, J. Pure Appl. Algebra
104(1) (1995), 41-59.

[21] Lack, S., A coherent approach to pseudomonads, Adv. Math. 152(2) (2000), 179-220.

[22] Lack, S., Codescent objects and coherence, Special volume celebrating the 70th birth-
day of Professor Max Kelly, J. Pure Appl. Algebra 175(1-3) (2002), 223-241.

[23] Lack, S., Icons, Appl. Categ. Structures 18(3) (2000), 289-307.

[24] Lack, S., A 2-categories companion, in “Towards Higher Categories”, Springer, The
IMA Volumes in Mathematics and its Applications 152 (2000), 105-191.

[25] Leinster, T., “Higher Operads, Higher Categories”, London Math. Soc. Lecture Note
Ser. 298, Cambridge University Press, 2004.

[26] Leinster, T., “Basic Category Theory”, Cambridge Studies in Advanced Mathematics
143, Cambridge University Press, 2004.

[27] Lucatelli Nunes, F., On biadjoint triangles, Theory Appl. Categ. 31(9) (2016), 217-
256.

[28] Lucatelli Nunes, F., Pseudo-Kan extensions and descent theory, arXiv:1606.04999
or Preprints-CMUC (16-30).

[29] Marmolejo, F., Doctrines whose structure forms a fully faithful adjoint string, The-
ory Appl. Categ. 3(2) (1997), 24-44.

[30] Marmolejo, F., Distributive laws for pseudomonads, Theory Appl. Categ. 5(5)
(1999), 91-147.

[31] Marmolejo, F. and Wood, R.J., Coherence for pseudodistributive laws revisited, The-
ory Appl. Categ. 20(5) (2008), 74-84.

[32] Power, A.J., A unified approach to the lifting of adjoints, Cah. Topol. Géom. Différ.
Catég. 29(1) (1988), 67-77.

[33] Power, A.J., A general coherence result, Special volume celebrating the 70th birthday
of Professor Max Kelly, J. Pure Appl. Algebra 57 (1989), 165-173.

[34] Power, A.J., Cattani, G.L., and Winskel, G., A representation result for free cocom-
pletions, J. Pure Appl. Algebra 151(3) (2000), 273-286.

[35] Street, R.H., The formal theory of monads, J. Pure Appl. Algebra 2(2) (1972), 149-
168.

[36] Street, R.H., Fibrations and Yoneda’s lemma in a 2-category, Category Sem., Proc.,
Sydney 1972/1973, Lecture Notes Math. 420 (1974), 104-133.



58 F. Lucatelli Nunes

[37] Street, R.H., Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra
8(2) (1976), 149-181.

[38] Street, R.H., Wischnewsky, M., Wolff, H., and Tholen, W., Semi-topological functors
III: Lifting of monads and adjoint functors, J. Pure Appl. Algebra 16 (1980), 299-
314.

[39] Street, R.H., Fibrations in bicategories, Cah. Topol. Géom. Différ. Catég. 21(2)
(1980), 111-160.

[40] Street, R.H., Correction to: “Fibrations in bicategories, Cah. Topol. Géom. Différ.
Catég. 21(2) (1980), 111-160”, Cah. Géom. Différ. Catég. 28(1) (1987), 53-56.

[41] Street, R.H., Categorical structures, in the “Handbook of Algebra, Volume 1”, Else-
vier (1996), 529-577.

[42] Day, B. and Street, R., Monoidal bicategories and Hopf algebroids, Adv. Math.
219(1) (1997), 99-157.

[43] Street, R.H., Categorical and combinatorial aspects of descent theory, Appl. Categ.
Structures 21(5-6) (2004), 537-576.

[44] Tholen, W., Adjungierte dreiecke, colimites und Kan-erweiterungen, Math. Ann.
217(2) (1975), 211-219.

Fernando Lucatelli Nunes, CMUC, Department of Mathematics, University of Coimbra,

3001-501 Coimbra, Portugal.

Email: lucatellinunes@student.uc.pt


