[1] B. Allison, S. Azam, S. Berman, Y. Gao, and A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126(603), 1997.
[2] S. Azam, Construction of extended affine Lie algebras by the twisting process, Comm. Algebra 28(6) (2000), 2753-2781.
[3] S. Azam, G. Behboodi and M. Yousofzadeh, Direct unions of Lie tori (realization of locally extended ane Lie algebras), Comm. Algebra 44(12) (2016), 5309-5341.
[4] R. Hegh-Krohn and B. Torresani, Classification and construction of quasisimple Lie algebras, J. Funct. Anal. 89(1) (1990), 106-136.
[5] N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ. 39, 1968.
[6] O. Loos, Spiegelungsraume und homogene symmetrische Raume, Math. Z. 99 (1967), 141-170.
[7] O. Loos and E. Neher, Locally finite root systems, Mem. Amer. Math. Soc. 171(811), 2004.
[8] J. Morita and Y. Yoshii, Locally extended affine Lie algebras, J. Algebra 301(1) (2006), 59-81.
[9] E. Neher, Lie tori, C. R. Math. Acad. Sci. Soc. R. Can. 26(3)(2004), 84-89.
[10] E. Neher, Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can. 26(3) (2004), 90-96.
[11] E. Neher, Extended ane Lie algebras and other generalizations of affine Lie algebras -a survey, in: Developments and trends in infinite-dimensional Lie theory, 53-126, Progr. Math., 288, Birkhauser Boston, Inc., Boston, MA (2011).
[12] Y. Yoshii, Locally extended affine root systems, in: Contemporary Math. 506 (2010), 285-302.