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Realization of locally extended affine Lie
algebras of type A1

G. Behboodi

Abstract. Locally extended affine Lie algebras were introduced by Morita
and Yoshii as a natural generalization of extended affine Lie algebras. Af-
ter that, various generalizations of these Lie algebras have been investigated
by others. It is known that a locally extended affine Lie algebra can be re-
covered from its centerless core, i.e., the ideal generated by weight vectors
corresponding to nonisotropic roots modulo its centre. In this paper, in order
to realize locally extended affine Lie algebras of type A1, using the notion of
Tits-Kantor-Koecher construction, we construct some Lie algebras which are
isomorphic to the centerless cores of these algebras.

1 Introduction

Extended affine Lie algebras were first introduced 1990 in [4] and later were
systematically studied by Allison et al. in [1]. Then, Morita and Yoshii in [8]
introduced locally extended affine Lie algebras as a natural generalization
of extended affine Lie algebras. After that, various generalizations of these
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Lie algebras have been investigated (see [2, 9–11]).

The ideal of a locally extended affine Lie algebra L generated by weight
vectors corresponding to nonisotropic roots modulo its center is called the
centerless core of L. Centerless cores play an important role in the theory
of these algebras, in particular, it is shown that any locally extended affine
Lie algebra can be recovered from its centerless core. From this point of
view, the authors in [1, §III.1] gave a construction for extended affine Lie
algebras. More precisely, they considered a class of Lie algebras satisfying
certain 11 conditions and, by starting from a Lie algebra G of this class,
they constructed an extended affine Lie algebra whose centerless core is
isomorphic to G. Later, Neher in [11, §6] gave a similar construction for
locally extended affine Lie algebras starting from a class of Lie algebras
called Lie tori. Recently, Azam et al. in [3] introduced a new class, called
the class T , of Lie algebras which is a generalization of the class in [1].
In fact, the elements of this class are considered as the centerless cores of
invariant affine reflection algebras [11] and in particular locally extended
affine Lie algebras. Moreover, it is shown that each element of T is the
direct union of its subalgebras belonging to this class. This provides a
framework for realization of the centerless cores of invariant affine reflection
algebras and locally extended affine Lie algebras. The aim of this work is to
realize centerless cores of some locally extended affine Lie algebras of type
A1. Roughly speaking, we construct some Lie algebras and show that they
are isomorphic to the centerless cores of some locally extended affine Lie
algebras of type A1.

The paper is organized as follows. In Section 2, we provide some pre-
liminaries and definitions which we need in the sequel. In Section 3, we
construct some Lie algebras, obtained from Jordan algebras using the Tits-
Kantor-Koecher (TKK) construction, which are isomorphic to the center-
less cores of some locally extended affine Lie algebras of type A1. These
examples are general versions of the ones in [1, §III.1] in the sense that the
isotropic roots live in an arbitrary abelian group instead of a free abelian
group of finite rank.
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2 Preliminaries

In this section we recall the preliminaries and definitions needed throughout
the paper. In this work all algebras and vector spaces are considered over
a field F of characteristic zero and all groups are written additively. Also
for a set S, by |S|, we mean the cardinal number of S. For a subset S of
a group G, we denote by 〈S〉, the subgroup of G generated by S. For an
associative algebra (A, ·) and a, b ∈ A, we mean by [a, b], the commutator of
a and b. Also, for two indices i and j, by δi,j we mean the Kronecker delta.

Definition 2.1. Suppose that G is an abelian group. An algebra (A, ·) is
called a G-graded algebra if there are subspaces Aσ (σ ∈ G) such that

A = ⊕σ∈GAσ and Aσ ·Aτ ⊆ Aσ+τ (σ, τ ∈ G).

Definition 2.2. Let (A, ·) be a commutative algebra. It is called a Jordan
algebra if [La, La2 ] = 0, for all a ∈ A, where the operator La is defined by
La(b) = a · b for b ∈ A.

Definition 2.3. Let G be a Lie algebra and H be a subalgebra of G. We
say that H is a toral subalgebra of G and G has a root space decomposition
with respect to H if G =

∑
α∈H∗ Gα(H) where

Gα(H) := {x ∈ G | [h, x] = α(h)x for all h ∈ H},

for each α ∈ H∗. Also α ∈ H∗ is called a root if Gα(H) 6= {0} and R := {α ∈
H∗ | Gα(H) 6= {0}} is called the root system of G with respect to H. We
will usually abbreviate Gα(H) by Gα. Since any toral subalgebra is abelian,
H ⊆ G0 and so 0 ∈ R (we discard the case H = {0} = G).

Definition 2.4. [7, Definition 3.3] Let V be a nontrivial vector space and
R be a subset of V. R is said to be a locally finite root system in V of rank
dim(V) if the following are satisfied:

(i) R is locally finite, contains zero and spans V,
(ii) for every α ∈ R\{0}, there exists α∨ ∈ V∗ such that α∨(α) = 2 and

sα(β) ∈ R for α, β ∈ R where sα : V → V maps u ∈ V to u − α∨(u)α. We
set by convention 0̌ to be zero,

(iii) α∨(β) ∈ Z, for α, β ∈ R.
The locally finite root system R is also denoted by (R,V).
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Suppose that R is a locally finite root system in V. The subgroup of
automorphisms of V generated by the set {sα | α ∈ R} is called the Weyl
group of R denoted by WR. We say two nonzero roots α, β are connected if
there exist finitely many roots α1 = α, α2, . . . , αn = β such that α∨i+1(αi) 6=
0, 1 ≤ i ≤ n− 1. Connectedness defines an equivalence relation on R \ {0}
and so R\{0} is the disjoint union of its equivalence classes called connected
components of R. A nonempty subset X of R is called irreducible, if each
two nonzero elements x, y ∈ X are connected.

Two locally finite root systems (R,V) and (S,U) are said to be isomor-
phic if there is a linear isomorphism f : V → U such that f(R) = S. Suppose
that I is a nonempty index set and V := ⊕i∈IFεi is the free F-module over
the set I. Define the form

(·|·) : V × V −→ F

(εi|εj) := δi,j , for i, j ∈ I

and set
ȦI := {εi − εj | i, j ∈ I},

DI := ȦI ∪ {±(εi + εj) | i, j ∈ I, i 6= j},

BI := DI ∪ {±εi | i ∈ I},

CI := DI ∪ {2εi | i ∈ I},

BCI := BI ∪ CI .

One can see that these are irreducible locally finite root systems in their F-
span’s which we refer to as type A,D,B,C and BC respectively. Moreover,
each irreducible locally finite root system is either an irreducible finite root
system or a locally finite root system of infinite rank isomorphic to one of
these root systems (see [7, §4.14, §8]). Note that DI , BI , CI and BCI span
V while ȦI spans a subspace of V of codimension one. Therefore, following
the usual notation in the literature, we use ȦI instead of AI .

Let G be any abelian group. We recall from [6] that a subset X of G
is called a symmetric reflection subspace if X − 2X ⊆ X. A symmetric
reflection subspace X satisfies X = −X. Also a symmetric reflection sub-
space X of G is called a pointed reflection subspace if 0 ∈ X and is called
full if G = 〈X〉. The special of G = 〈X〉 = Zn has been treated in [1] in
which case X is called a semilattice in Zn.
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Next we recall a class of Lie algebras, refereed to as the class T , intro-
duced in [3] which will be used in our main theorem. A 4-tuple (G, (·|·),H, G)
is said to be in class T if it satisfies the following axioms:

(T 1) G is a Lie algebra and (·|·) is an invariant symmetric bilinear form on
G,
(T 2) H is a nontrivial toral subalgebra of G, the corresponding root system
is denoted by R,
(T 3) (·|·)|H×H is nondegenerate,
(T 4) G is generated, as a Lie algebra, by

∑
α∈R\{0} Gα,

(T 5) G is an abelian group and G = ⊕
∑

σ∈G Gσ is a G-graded Lie algebra,
(T 6) G, as a group, is generated by σ ∈ G for which Gσ 6= {0},
(T 7) the form (·|·) is G-graded,
(T 8) the G-grading and the H∗-grading on G are compatible,
(T 9) if Gσα := Gα ∩ Gσ 6= {0} for some α ∈ R \ {0} and σ ∈ G, then
[Gσα,G−σ−α] 6= {0}, and G0

α 6= {0} for each α ∈ R such that 1
2α /∈ R,

(T 10) H = G0
0 ,

(T 11) R is a locally finite root system in its F-span such that the restriction
of the form (·|·) to the subspace of H∗ spanned by R is invariant under the
Weyl group WR and it is nonzero on each irreducible component.

3 Main results

The authors in [1, § III.2] start from a semilattice of a finitely-generated
free abelian group to construct a Lie algebra G which is isomorphic to the
centerless core of an extended affine Lie algebra whose root system is of
type A1. In this section, starting from a pointed reflection subspace of an
arbitrary abelian group G, we construct new examples of Lie algebras and
show that, if G is torsion free, these Lie algebras are isomorphic to the
centerless cores of some locally extended affine Lie algebras of type A1.

From now on, we assume that G is a non-trivial abelian group and S
is a full pointed reflection subspace of G. Then S = ∪i∈ISi, where I is a
nonempty index set and Si’s are some distinct cosets of 2G in G with 0 ∈ Si
for some i (see [1, §II.1]). For the sake of convenience, for each i, we fix
a coset representative τi ∈ Si of 2G, namely Si = τi + 2G for i ∈ I. We
take τ0 = 0 and set I× := I \ {0}. Let A := F[G] be the group algebra
on G, i.e., A =

⊕
σ∈G Fxσ with xσ · xτ = xσ+τ . As one knows, (A, ·) is a
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unital commutative associative algebra over F. Consider the free A-module
W :=

⊕
i∈I× Awi with basis {wi | i ∈ I×} and let f : W × W −→ A

defined by f(wi, wj) = δi,j , for i, j ∈ I×, be a symmetric A-bilinear form.
Take, W = 0 and f = 0 if I = {0}. Now set F := A ⊕W with product
(a+ v) · (b+w) = ab+ f(v, w) + aw+ bv for a, b ∈ A, v, w ∈ W. By [5, pg.
14], F is a Jordan algebra, called the Jordan algebra of type f . If we set
w0 = 1, we have F =

⊕
i∈I Awi and its product as an algebra over A is

determined by w0 · w0 = 1, wi · w0 = wi and wi · wj = δi,jw0 for i, j ∈ I×.
Next let J = J (S) be the F-subspace of F spanned by {xσwi | σ ∈

Si, i ∈ I}. We show that J is a subalgebra of F . If σ ∈ S0 and τ ∈ Si,
i ∈ I, then σ + τ ∈ S0 + Si = Si and so

xσw0 · xτwi = xσ+τwi ∈ J .

Also if σ ∈ Si, τ ∈ Sj for some i, j ∈ I×, then

xσwi · xτwj = δi,jx
σ+τw0 ∈ J ,

as Si + Si = S0 for each i ∈ I. Thus J is a subalgebra of the Jordan
algebra F . If we identify xσwi with xσ for σ ∈ Si and i ∈ I, we may write
J =

⊕
σ∈S Fxσ with Jordan algebra multiplication

(1) xσ · xτ =

{
xσ+τ if σ, τ ∈ S0 ∪ Si, i ∈ I,
0 otherwise.

Now, set LJ := {La | a ∈ J } which is the space of left multiplications on
J and

Inder(J ) := {
∑
i

[Lai , Lbi ] | ai, bi ∈ J }

which is an ideal of derivation algebra of J . Then, one checks that

Instrl(J ) := Inder(J ) + LJ

is a subalgebra of gl(J ). Using the well-known Tits-Kantor-Koecher (TKK)
construction for producing a Lie algebra out of a Jordan algebra, we set

G := J + Instrl(J ) + J̄ ,

where J̄ is a copy of J in which, by j̄ (j ∈ J ), we mean the element of J̄
correspon ding to the element j. The Lie bracket on G is defined as follows.
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Consider the automorphism ¯ of order two on the Lie algebra Instrl(J )
defined by La +D = −La +D and define the Lie algebra bracket on G by

[a1 +D1 + b̄1, a2 +D2 + b̄2] = D1(a2)−D2(a1) + D̄1(b2)

− D̄2(b1) + a1∆b2 − a2∆b1 + [D1, D2],

for ai ∈ J , b̄i ∈ J̄ and Di ∈ Instrl(J ), and a∆b = La·b + [La, Lb] for
a, b ∈ J . Note that from the definition of the operation ∆, one checks that

(2) J∆J = Instrl(J ).

Next we consider the map ε : A −→ F defined by linear extension of

ε(xσ) =

{
1 if σ = 0,
0 otherwise.

This defines a symmetric F-bilinear form (a|b) := ε(a · b) on J which turns
out to be nondegenerate as S = −S. Using ε, one defines a symmetric
invariant bilinear form (·|·) on Inder(J ) by

(D|[La, Lb]) = (D(a)|b) for D ∈ Inder(J ), a, b ∈ J .

Then this form extends to a symmetric invariant bilinear form, denoted
again by (·|·), on G by

(a1 + Lb1 +D1 + c̄1|a2 + Lb2 +D2 + c̄2) =(3)

(a1|c2) + (a2|c1)+(b1|b2) + (D1|D2),

for ai, bi, ci ∈ J and Di ∈ Inder(J ). Since the form (·|·) in nondegenerate
on J , it follows easily that

(4) the defined form (·|·) on G is nondegenerate.

Set H := FL1 and define α ∈ H∗ by α(L1) = 1. For β ∈ H∗ let
Gβ = {x ∈ G | [h, x] = β(h)x for all h ∈ H}. Then we have,

(5) G = Gα ⊕ G0 ⊕ G−α,

with

(6) Gα = J , G0 = Instrl(J ), and G−α = J̄ .
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Also, we have (L1|L1) = 1. The form on H can be naturally transferred to
H∗, in which case we have

(7) (α|α) = 1.

We note that R = {0,±α} is an irreducible finite root system of type A1.
It follows that G is H∗-graded with Gα, α ∈ R as its set of non-zero homo-
geneous spaces.

Next, we would like to put a G-grading on G. First, we put a G-gradation
on the Jordan algebra J by J σ = Fxσ, if σ ∈ S and J σ = {0}, otherwise.
For σ ∈ G, set g̃`(J )σ = {A ∈ g`(J ) | AJ τ ⊆ J σ+τ for τ ∈ G}. Then
g̃`(J ) :=

∑
σ∈G g̃`(J )σ is a G-graded algebra which is a subalgebra of

g`(J ). Since Instrl(J ) is generated by homogeneous elements with respect
to this grading, we have

(8) Instrl(J ) =
⊕
σ∈G

Instrl(J )σ

with
Instrl(J )σ = LJ σ ⊕

∑
τ,ζ∈G,τ+ζ=σ

[LJ τ , LJ ζ ].

Thus G is a G-graded Lie algebra:

(9) G =
⊕
σ∈G
Gσ with Gσ = J σ ⊕ Instrl(J )σ ⊕ J σ, (σ ∈ G).

Since [Lxσ , Lx−σ ] = {0}, then, using (8) and (9), we have

(10) G0 = F1⊕ FL1 ⊕ F1.

Theorem 3.1. The 4-tuple (G, (·|·),H, G), constructed above, is in the class
T . Moreover, if G is torsion free, G is the centerless core of a locally ex-
tended affine Lie algebra of type A1.

Proof. (T 1), (T 2) and (T 5) follow respectively from (3), (5) and (9). Since
H = FL1 and (L1|L1) = 1, then the form (·|·)|H×H is nondegenerate and so
(T 3) holds. Using (2) and (6), we see that G is generated by the root spaces
corresponding to the nonzero roots and so (T 4) holds. Since S generates
G, then (T 6) holds. Now, note that (J σ|J τ ) = {0} if σ + τ 6= 0, and from
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the way (·|·) is defined on G (see (3) and (8)), we see that (Gσ|Gτ ) 6= {0}
only if (J σ|J τ ) 6= {0}. Thus (T 7) holds. Using (6), (8) and (9), one checks
that for α ∈ R, Gα =

⊕
σ∈G(Gα ∩ Gσ) which shows that the H∗-grading

and G-grading are compatible and so (T 8) is fulfilled. One can easily check
(T 9) and (T 10) using (6), (9), (10) and the definition of the bracket on G.
Finally, note that R is an irreducible finite root system in its Q-span, say
V, and also the restriction of the form (·|·) on H∗ to V is a positive definite
Q-valued form. Then (T 11) holds and so (G, (·|·),H, G) is in the class T
with root system R. Next, assume that G is torsion free. Since the form
(·|·) is nondegenerate on G (see (4)), by [3, Remark 2.3 (ii)] we conclude
that G is the centerless core of a locally extended affine Lie algebra of type
A1. This completes the proof.

Remark 3.2. Note that if G is a torsion free abelian group, the rank of G
is defined by

rank(G) = dimQ(Q⊗Z G).

Now let G be a torsion free abelian group of rank 1, i.e., G is a subgroup
of Q. Then, the only full pointed reflection subspace of G is G (see [12,
Lemma 12]). In this case, the 4-tuple (G, (·|·),H, G), constructed above,
with S = G is the only Lie algebra obtained from our construction. There-
fore, using the construction of a locally extended affine Lie algebra starting
from (G, (·|·),H, G) in [11, §6], we obtain a locally extended affine Lie alge-
bra of type A1 which its centerless core is isomorphic to G.
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