[1] Gould, V. and Hollings, C., Restriction semigroups and inductive constellations, Comm. Algebra 38(1) (2009), 261-287.
[2] Gould, V. and Zenab, R.E., Semigroups with inverse skeletons and Zappa-Sz´ep products, Categ. Gen. Algebr. Struct. Appl. 1(1) (2013), 59-89.
[3] Gould, V. and Stokes, T., Constellations and their relationship with categories, Algebra Universalis 77(3) (2017), 271-304.
[4] Gould, V. and Stokes, T., Constellations with range and IS-categories, J. Pure Appl. Algebra 226(8) (2022), Paper No. 106995.
[5] Hirsch, R., Mikul´as, S., and Stokes, T., The algebra of non-deterministic programs: demonic operators, orders and axioms, Logic J. IGPL 30(5) (2022), 886-906.
[6] Hughes, K., “On D-inverse Constellations: an Alternative View of Ordered Groupoids”, Master Thesis, University of Waikato, 2024.
[7] Jackson, M.G. and Stokes, T., An invitation to C-semigroups, Semigroup Forum 62 (2001), 279-310.
[8] Lawson, M.V., Semigroups and ordered categories I: the reduced case, J. Algebra 141 (1991), 422-462.
[9] Lawson, M.V., “Inverse Semigroups: The Theory of Partial Symmetries”, World Scientific, 1998.
[10] Nambooripad, K.S.S., “Structure of Regular Semigroups I”, Mem. Amer. Math. Soc. 224 (1979).
[11] Stokes, T., Generalised domain and E-inverse semigroups, Semigroup Forum 97 (2018), 32-52.