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D-inverse constellations

Victoria Gould and Timothy Stokes∗

Abstract. Constellations are partial algebras in the sense that they possess
a partial product, and a unary operation modelling domain. They were first
used to give an ESN-style theorem for left restriction semigroups in terms of
so-called inductive constellations. Here, we consider constellations in which
elements have a suitable notion of inverse, giving the notion of a D-inverse
constellation. We show that there is a categorical isomorphism between the
category of ordered groupoids and the category of D-inverse constellations.
This may be viewed as a generalisation of the ESN theorem, which relates
the category of inductive groupoids to the category of inverse semigroups.

1 Introduction

The Ehresmann-Schein-Nambooripad (ESN) Theorem establishes a cate-
gorical equivalence, indeed an isomorphism, between the category of inverse
semigroups and the category of inductive groupoids; we refer the reader
to [9] for an exposition of this result and its history. One can think of the
ESN Theorem as replacing an algebraic structure by an ordered one, which
in this case is a small category equipped with an order that allows one to
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reconstruct the ‘lost’ algebraic information. Following the establishment of
the ESN theorem, Lawson provided a correspondence along similar lines
in [8] that connected so-called Ehresmann semigroups (bi-unary semigroups
with both and domain and range-like operations) to certain types of ordered
categories. Two-sided restriction semigroups are Ehresmann semigroups,
and are covered as a special case in [8]. However, one-sided restriction
semigroups are perhaps even more natural than two-sided ones since they
provide the algebraic models for partial functions, so there was interest in
obtaining an analogous result for them. The problem was the lack of a
range operation, and more generally, the lack of sufficient left-right dual
properties.

Constellations are “one-sided” versions of categories, in which there is a
notion of domain but in general no notion of range. They were first defined
by Gould and Hollings in [1], where the purpose was to obtain a variant of
the ESN Theorem for left restriction semigroups, using so-called inductive
constellations, where order again plays a major role. Constellations have
since been studied further for their own sake in [3, 4] and their connections
with categories explored.

An inductive groupoid is an ordered groupoid in which the domain ele-
ments are a meet semilattice under the given order. The parent category of
ordered groupoids shares many of the nice properties of inductive groupoids
and hence of inverse semigroups: indeed ordered groupoids are important
in the study of inductive groupoids. There is therefore interest in whether
ordered groupoids in general correspond to any kind of purely algebraic
structure. The aim of this work is to show that they do - indeed they
correspond exactly to constellations having a natural notion of inverse.

In [7], the notion of a “true inverse” of an element in a left restriction
semigroup S was considered: s ∈ S has true inverse t if st = D(s) and
ts = D(t). It was shown that true inverses are unique if they exist, and that
if every element has a true inverse then S is an inverse semigroup in which
s′ (that is, the inverse of s in the inverse semigroup) is the true inverse of
s. Conversely, it is easy to show that every inverse semigroup gives rise to
a left restriction semigroup in which every element has a true inverse, by
setting D(s) = ss′ for all s ∈ S. These constructions are easily seen to be
mutually inverse, so one may view inverse semigroups as nothing but left
restriction semigroups in which every element has a true inverse.



D-inverse constellations 3

Our main result, Theorem 4.14, uses an analogous notion of D-inverse
to define analogues of ordered groupoids within the class of constellations.
This reframing of an ordered structure to a purely algebraic one gives a
new viewpoint, and allows alternative approaches to the theory of ordered
groupoids and of inverse semigroups, already demonstrated in [6].

In Section 2, we recall the required background notions. In Section 3,
attention turns to the definitions and basic properties of D-regular and D-
inverse constellations, defined by analogy with left restriction semigroups
in which each element has a true inverse. We show that small D-inverse
constellations have a Cayley-style representation theorem in terms of one-
to-one partial maps, generalising the Vagner-Preston theorem for inverse
semigroups.

In Section 4, we show in Theorem 4.14 that D-inverse constellations
are nothing but ordered groupoids “in disguise”. We do this by exploit-
ing a known correspondence between constellations with range and ordered
categories with restriction, established in [4]. This correspondence raises
the possibility of using D-inverse constellations as a tool to study ordered
groupoids and hence invere semigroups.

Indeed, in Section 5, we give an illustration of how one might use D-
inverse constellations, by giving a construction of D-inverse constellations
from semigroups with a distinguished set of idempotents. This construction
generalises both Nambooripad’s construction of an ordered groupoid from a
regular semigroup and Lawson’s construction of an ordered groupoid from
the partial isometries of a semigroup with involution.

Inverse semigroups are not defined using a domain operation, although
such an operation can be defined in any inverse semigroup, in terms of
composition and inverse. So it is not surprising that D-inverse constellations
may also be given a “domain-free” description, using the notion of a pre-
constellation (these satisfy the defining laws of constellations that do not
involve the domain operation). This is the subject of Section 6, where
we show that there is a more general notion of “inverse pre-constellation”
amongst which D-inverse constellations may be characterised in purely pre-
constellation terms.
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2 Background

We set out the necessary notions for this article, and clarify our notational
conventions.

2.1 Notational conventions Throughout, we generally write func-
tions on the right of their arguments rather than the left, so “xf” rather
than “f(x)”. Correspondingly, we write function compositions left to right,
so that “fg” is “first f , then g”. An exception to this is unary operation
application: if D is a unary operation on the set S, we write D(s) for s ∈ S.

2.2 Partial binary algebras In what follows our convention is that
if an algebra or partial structure is denoted by A, then we use A for the
underlying set.

Definition 2.1. Let C = (C, · ) be a class C (often a set) equipped with a
partial binary operation ·.

• We say e ∈ C is a right identity if it is such that, for all x ∈ C, if x · e
exists then it equals x; left identities are defined dually.

• The collection of right identities of C is denoted by RI(C).
• An identity is both a left and right identity.

• An element e ∈ C is idempotent if e · e exists and equals e.

• We let E(C) = {e ∈ C | e · e = e}.

2.3 Categories and groupoids For the purposes of this paper it is
convenient to give an object-free formulation of a category, as occurs in the
other works in this area, for example [3] and [8], which have brought us
to this point in the research development. Recall that in this framework a
category C = (C, ◦ ) is a class C equipped with a partial binary operation ◦
satisfying the following:

(Cat1) x ◦ (y ◦ z) exists if and only if (x ◦ y) ◦ z exists, and then the
two are equal;

(Cat2) if x ◦ y and y ◦ z exist then so does x ◦ (y ◦ z);
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(Cat3) for each x ∈ C, there are identities e, f such that e◦x and x◦f
exist.

The identities e, f in (Cat3) are easily seen to be unique, and we write
D(x) = e and R(x) = f . (Note that this is the opposite of the conven-
tion often used, and corresponds to the fact that we view a composition of
functions fg as “first f , then g”, discussed earlier.)

It also follows easily that every identity e is idempotent, and D(e) =
e = R(e), and that the collection of domain elements D(x) (equivalently,
range elements R(x)) is precisely the collection of identities in the category;
we denote this set by D(C). If x, y are elements of a category C, then the
product x ◦ y exists if and only if R(x) = D(y), and if x ◦ y exists then
D(x ◦ y) = D(x) and R(x ◦ y) = R(y).

A functor ρ from C to D, where C = (C, ◦ ) and D = (D, ◦ ) are cat-
egories, is a map ρ : C → D such that for all x ∈ C, D(x)ρ = D(xρ),
R(x)ρ = R(xρ), and if x ◦ y exists in C, then it equals xρ ◦ yρ (which must
exist); that this is equivalent to the usual object-morphism notion of functor
follows from the definitions.

In view of this, particularly when our category is small, we will often
view a category as a partial algebra C = (C, ◦ , D,R). With this viewpoint,
a small category with a single identity (equivalently, in which all products
are defined) is nothing but a monoid.

A groupoid is a structure Q = (Q, ◦ , ′ , D,R) such that (Q, ◦ , D,R)
is a category and ′ is a unary operation on Q, such that for all s ∈ Q,
s◦ s′ = D(s) and s′ ◦ s = R(s). Again with this viewpoint, a small groupoid
with a single identity is simply a group.

2.4 Ordered categories and groupoids Following [8] (and using
nomenclature consistent with that used there), we say a category C =
(C, ◦, D,R) equipped with a binary relation ≤ on C is an ordered category
with restrictions if:

(OC1) (C,≤) is a poset;

(OC2) x ≤ y implies D(x) ≤ D(y) and R(x) ≤ R(y);

(OC3) if x1 ≤ x2 and y1 ≤ y2 and both x1 ◦ y1 and x2 ◦ y2 exist, then
x1 ◦ y1 ≤ x2 ◦ y2;
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(OC4) if D(x) = D(y) and R(x) = R(y) and x ≤ y then x = y (≤ is trivial
on hom-sets).

It has

(OC8(i)) restrictions if, for all x ∈ C and e ∈ D(C) for which e ≤ D(x), there
exists a unique element, called the restriction of x to e and denoted
e|x, such that e|x ≤ x and D(e|x) = e.

(We remark that the term ‘ordered category’ is used in the literature to
mean a category satisfying the conditions above, together with the left-right
dual of (OC8(i)).)

An ordered groupoidQ = (Q, ◦ , ′ , D,R,≤) is a groupoidQ = (Q, ◦ , ′ , D,R)
equipped with a partial order ≤ obeying the following axioms:

(OG1) x ≤ y implies x′ ≤ y′;

(OC2) Law (OC3) for ordered categories with restrictions:

(OG3) Law (OC8(i)) for ordered categories with restrictions.

Note that although Laws (OC2) and (OC4) in the definition of an ordered
category with restrictions given earlier are not part of the definition of an
ordered groupoid, they follow easily. So ordered groupoids are certainly
ordered categories with restriction. It follows that there is also a notion
of corestriction, defined as s|e = (e|s′)′ whenever e ≤ R(s), satisfying the
obvious axiom dual to 2.4, and this is often included as part of the definition.

2.5 Inductive groupoids and inverse semigroups To provide
the context for our main result, Theorem 4.14, we recall the ESN theorem.

First, an inductive groupoid is an ordered groupoid Q in which D(Q)
forms a semilattice under the ordering. On the other hand, a semigroup S
is inverse if for every a ∈ S there exists a unique b ∈ S such that a = aba
and b = bab; usually, b is denoted by a′. In an inverse semigroup the
idempotents of S commute, and thus form a semilattice under the ordering
a ≤ b if ab = a, where meets are given by the semigroup product. (For
the details, see [9].) The canonical example of an inverse semigroup is the
symmetric inverse monoid IX on a set X. The elements of IX are partial
bijections of X and the composition fg of f and g in IX is that of partial
functions.
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The ESN theorem says that the category of inductive groupoids with
appropriately defined functors is equivalent (in fact, isomorphic) to the cat-
egory of inverse semigroups and semigroup morphisms. An exposition of
this result and its history is given in [9]. One aspect crucial to setting up
this equivalence is the inductive nature of the groupoid. We aim to answer
the question: what algebraic construct corresponds to an ordered groupoid?
For this, we use constellations.

2.6 Constellations In what follows we make use of an earlier equiv-
alent definition given in [1] and make use of a result in [3]. We define a
constellation Q = (Q, · ) to be a class Q equipped with a partial binary
operation · satisfying the following:

(Const1) if x · (y · z) exists then (x · y) · z exists, and then the two are
equal;

(Const2) if x · y and y · z exist then so does x · (y · z);
(Const3) for each x ∈ P , there is a unique right identity e such that
e · x = x.

Since e in (Const3) is unique given x ∈ Q, we call it D(x). It follows
that D(Q) = {D(s) | s ∈ Q} = RI(Q), the set of right identities of Q.
We call D(Q) the projections of Q. We adopt the usual convention of
referring to the constellation Q = (Q, · ) simply as Q if there is no ambiguity.
However, following the convention for categories, and sinceD may be viewed
as a unary operation, we also often view constellations as partial algebras
(Q, · , D). We say a constellation Q is small if Q is a set.

The following are some useful basic facts about constellations, to be
found in [1] or [3].

Result 2.2. For elements s, t of the constellation Q, we have that s ·t exists
if and only if s ·D(t) exists, and then D(s · t) = D(s).

As shown in [3], every category becomes a constellation when the op-
eration R is ignored. It is easy to see that a constellation arises from a
category as a reduct in this way if and only if for all s ∈ Q there is a unique
e ∈ D(Q) such that s · e exists, and then R(s) = e when Q is viewed as a
category.
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We emphasis that by very definition a constellation Q is a (partial)
algebra. However, as for inverse and left restriction semigroups, from an
algebraic structure we obtain an ordered structure. Specifically, we define
the relation s ≤ t for s, t ∈ Q whenever s = e · t for some e ∈ D(Q)
(equivalently, s = D(s) · t). The restriction to D(Q), also denoted by ≤, is
then given by e ≤ f if and only if e · f(= e) exists. A constellation Q is
normal if for all e, f ∈ D(Q), if e · f and f · e exist, then e = f . This is a
property reminiscent of idempotents in a semigroup commuting, and relates
to whether the given relations on Q are partial orders.

Result 2.3. Let Q be a constellation. Then the relation ≤ on Q is a
quasiorder which we call the natural quasiorder; its restriction to D(Q)
is called the standard quasiorder. In both these cases, the quasiorder is a
partial order if and only if Q is normal, and then we use “order” rather
than “quasiorder”.

Certainly not all constellations are normal. Indeed, any quasi-ordered
set (P,≤) carries the structure of a constellation P = (P, ·), where x · y is
defined if and only if x ≤ y and then x · y = x [1]; this constellation is
normal if and only if (P,≤) is a poset. An important example of a small
normal constellation, introduced in [1], is CX , with underlying set consisting
of the partial functions on the set X, in which s · t is the usual composite
of s followed by t provided Im(s) ⊆ Dom(t), and undefined otherwise, and
D(s) is the restriction of the identity map on X to Dom(s).

A subconstellation P of a constellation Q is a subset of Q that is closed
under the constellation product wherever it is defined, and closed under D;
then P is a constellation in its own right as is easily seen [3]. An important
subconstellation of CX consists of the elements which are one-one as (partial)
maps; this yields the constellation IX , which has the same underlying set
IX as IX , but a restricted set of products.

For constellations, the notion of morphism is as follows. If Q1,Q2 are
constellations, a radiant from Q1 to Q2 is a function ρ : Q1 → Q2 such
that for all s, t ∈ Q1 for which s · t exists, then so does (sρ) · (tρ) and
(s·t)ρ = (sρ)·(tρ), andD(sρ) = D(s)ρ. As observed in [1], in a standard way
we have a (large) category with objects constellations and the morphisms
being radiants.

A strong radiant ρ from Q1 to Q2 is a radiant for which, for all s, t ∈ Q1,
s·t exists if and only if sρ·tρ does. We say ρ fromQ1 toQ2 is an isomorphism
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if ρ is a strong bijective radiant, and an embedding if it is a strong injective
radiant. Note that an isomorphism is precisely a radiant with a radiant
inverse. If ρ from Q1 to Q2 is an embedding then the image of ρ is a
subconstellation of Q2 that is isomorphic to Q1.

We say a constellation Q1 embeds in the constellation Q2 if there is an
embedding ρ from Q1 to Q2. It was shown in [3] that every small normal
constellation embeds as a subconstellation in the (normal) constellation CX
for some choice of X.

3 D-regular and D-inverse constellations

In this section we introduce the central new notion of this article, namely
that of a D-inverse constellation.

3.1 D-regularity Recall that a semigroup S is regular if for all a ∈ S
there exists b ∈ S such that a = aba; the element ab is then an idempotent
and a left identity for a. If a regular semigroup is inverse then clearly it is
regular and we have pointed out that its idempotents commute; in fact the
converse is also true [9]. We here consider a suitable variant of this notion
for constellations.

Definition 3.1. The constellationQ = (Q, · , D) is D-regular if for all a ∈ Q
there is b ∈ Q for which a · b = D(a).

In general, for a constellation P, the sets RI(P) and E(P) can be dif-
ferent, as may easily be seen by considering CX , although we always have
D(Q) = RI(P) ⊆ E(P).

Proposition 3.2. In a D-regular constellation P, we have that E(P) ⊆
RI(P) and so the two sets are equal (and hence both equal D(P)).

Proof. Pick e ∈ E(P ), and suppose that e′ is such that e · e′ = D(e). Then
D(e) = e · e′ = (e · e) · e′ = e · (e · e′) = e ·D(e) = e, so e ∈ D(P ).

A property related to D-regularity is the following. At first sight the
connection seems suprising, but the reader should recall that in a constella-
tion we have only a partial binary operation, the domain of which is tightly
controlled by the projections.
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Definition 3.3. The constellation P is right cancellative if a·c = b·c implies
that a = b, for any a, b, c ∈ P .

This definition agrees with the category definition if P is a category, and
is relevant here because of the following.

Proposition 3.4. Every D-regular constellation is right cancellative.

Proof. Suppose thatQ = (Q, · , D) is a D-regular constellation. If a, b, c ∈ Q
and a · c = b · c then since there exists d ∈ Q for which c · d = D(c), both
a · (c · d) and b · (c · d) exist. Then a · (c · d) = (a · c) · d = (b · c) · d = b · (c · d),
so a ·D(c) = b ·D(c), giving that a = b.

Let X be a set. The subconstellation of one-to-one partial functions
IX = (IX , · , D) of CX is right cancellative and normal (recalling that s · t
is interpreted as “first s then t”). Conversely, there is a “Cayley theorem”
for right cancellative constellations, as follows.

Proposition 3.5. A small constellation P = (P, · , D) is normal and right
cancellative if and only if it embeds in IP = (IP , · , D).

Proof. One direction is clear, since the properties of being normal and of
being right cancellative are inherited by subconstellations.

For the converse, suppose that P is normal and right cancellative. It
was shown in [3] that the radiant ρ : P → CP taking s ∈ P to ρs ∈ CP given
by xρs := x · s for all x ∈ P for which the latter is defined, is an embedding
of P in CP as a constellation. It is easy to see that each ρs is injective if (and
only if) P is right cancellative, and so the image of ρ lies within IP .

Proposition 3.6. Suppose that P,Q are constellations and P is D-regular,
and that ρ : P → Q is a surjective radiant. Then Q is D-regular.

Proof. Suppose that s · t = D(s), where s, t ∈ P . Then D(sρ) = D(s)ρ =
(s · t)ρ = sρ · tρ, so, since ρ is surjective, we deduce that Q is D-regular.

3.2 D-inverses

Definition 3.7. If Q is a constellation, we say the element s ∈ Q has
D-inverse t ∈ Q if s · t = D(s) and t · s = D(t).
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If t is a D-inverse for s in a constellation, then obviously s is a D-inverse
for t also.

We have the following generalisation of a familiar fact about inverses in
categories (which are normal when viewed as constellations).

Proposition 3.8. In a constellation Q, every e ∈ D(Q) is a D-inverse for
itself, and each element of Q has at most one D-inverse if and only if Q is
normal.

Proof. For e ∈ D(Q), e · e = e = D(e) so e is a D-inverse of itself.

Suppose that Q is normal and s1 and s2 are both D-inverses of s ∈ Q.
Then s1 · s and s · s1 exist, whence so does s1 · (s · s1) = s1 ·D(s) = s1 by
(Const2). By (Const1),

s1 = s1 ·D(s) = s1 · (s · s2) = (s1 · s) · s2 = D(s1) · s2,

so s1 ≤ s2 under the natural order on Q. Similarly, s2 ≤ s1, and so s1 = s2
by Result 2.3.

Conversely, if D-inverses are unique, suppose that e · f and f · e both
exist where e, f ∈ D(Q). Then e · f = e = D(e) and f · e = f = D(f),
and so f is a D-inverse of e, whence f = e by uniqueness. This establishes
normality.

Definition 3.9. We say the constellation Q is a D-inverse constellation if
every element of Q has a unique D-inverse. We use s′ to denote the unique
D-inverse of s.

From Proposition 3.8, we obtain the following.

Corollary 3.10. The constellation Q is D-inverse if and only if every ele-
ment of Q has a D-inverse and Q is normal.

It is clear from the definitions that if P and Q are D-inverse constella-
tions with ρ : P → Q a radiant, then (sρ)′ = s′ρ. We can say something
more.

Proposition 3.11. Suppose that P,Q are constellations, with P being D-
inverse and Q normal, and suppose that ρ : P → Q is a surjective radiant.
Then Q is D-inverse, and (sρ)′ = s′ρ.
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Proof. From the proof of Proposition 3.6, we see that s′ρ is a D-inverse of
sρ. Since ρ is surjective we deduce from Corollary 3.10 that Q is D-inverse,
with (sρ)′ = s′ρ.

A monoid is a D-inverse constellation if and only if it is a group. Every
poset P gives a D-inverse constellation if we define e · f = e if and only if
e ≤ f ; this is a constellation in which D(e) = e for all e ∈ P , as noted first
in [1], and normal as noted in [3]. Since e · e = e = D(e) for all e ∈ P , we
have that e is a D-inverse of itself.

A further significant example of a D-inverse constellation is the constel-
lation IX of one-to-one partial functions on the set X. The constellation
IX comes equipped with the additional operation of inversion: this is be-
cause for all f ∈ IX , if f ′ is the inverse of f in the usual partial function
sense, then f · f ′ = D(f) and f ′ · f = D(f ′), so f ′ is the D-inverse of f in
the constellation sense also. The inverse semigroup IX and the D-inverse
constellation IX have the same underlying set, but f · g exists in IX if and
only if fD(g) = fgg′ = f in IX . In fact this generalises as follows, courtesy
of the Vagner-Preston representation theorem, which says that any inverse
semigroup embeds as a subsemigroup of some IX , (although a direct proof
is straightforward).

Proposition 3.12. If S is an inverse semigroup, then defining s · t = st
exactly when stt′ = s makes S into a D-inverse constellation.

We finish this section with a representation theorem for D-inverse con-
stellations. We say that a subconstellation of a D-inverse constellation is an
inverse subconstellation if it is closed under taking of inverses. Clearly such
a subconstellation is itself a D-inverse constellation.

Theorem 3.13. Let Q = (Q, · , D) be a small constellation. Then Q is
D-inverse if and only if it is an inverse subconstellation of some IX .

Proof. One direction follows from comments above. Suppose now that Q is
D-inverse, and consider the radiant ρ : Q → CX as in the proof of Proposi-
tion 3.5. By that result, ρ embeds the constellation Q into the consellation
IX . It remains to show that for s ∈ Q we have s′ρ = (sρ)′. Now for
x ∈ Dom(sρ), we have that xρs = x · s, and of course s · s′ exists. It follows
that we have that x · (s · s′) = (x · s) · s′ exists, so that x · s ∈ Dom(s′ρ) and
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then that Dom(D(sρ)) = Dom(sρ s′ρ). Further,

(x · s) · s′ = x · (s · s′) = x ·D(s) = x,

so that ρs ·ρs′ = ρD(s) = D(sρ). Similarly, ρs′ ·ρs = D(s′ρ). Together, these
statements show that s′ρ = ρs′ = (ρs)

′ = (sρ)′, as required.

From (Const2), in a D-inverse constellation Q we have s · (s′ · s) =
(s · s′) · s = s for all s ∈ Q. Other familiar facts of inverse semigroup theory
such as (st)′ = t′s′ do not carry over since the existence of s · t does not
ensure that t′ · s′ exists (even if both s, t have D-inverses). For example, let
X = {x, y}, with s, t ∈ IX defined as follows: s = {(x, x)} and t = 1 (the
identity function on X). Then in IX , s′ = s, t′ = t, s · t = s yet t′ · s′ = t · s
does not exist. However, we do have the following.

Proposition 3.14. If Q is a D-inverse constellation and s, t ∈ Q are such
that both s · t and t′ · s′ exist, then (s · t)′ = t′ · s′.

Proof. Since s·t, t·t′ and t′ ·s′ all exist, so does t·(t′ ·s′) = (t·t′)·s′ and hence
s ·(t ·(t′ ·s′)) = (s · t) ·(t′ ·s′) which also equals s ·((t · t′) ·s′) = (s ·(t · t′)) ·s′ =
(s ·D(t)) · s′ = s · s′ = D(s) = D(s · t). So (s · t) · (t′ · s′) = D(s · t). Similarly,
on interchanging the role of s, t′ and s′, t, we have (t′ · s′) · (s · t) = D(t′ · s′).
We deduce that (s · t)′ = t′ · s′.

In the small case, the above result also follows from the embeddabity of
Q in IX as in Theorem 3.13.

4 D-inverse constellations are exactly ordered groupoids

In the examples of constellations considered in [3], most had a notion of
range, satisfying some natural properties. In [4], it was shown that they are
nothing but ordered categories with restriction, a class containing all ordered
groupoids. In this section we show that every D-inverse constellation is a
constellation with range, and that when viewed as an ordered category with
restriction, it is nothing but an ordered groupoid.
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4.1 Constellations with range and ordered categories with
restrictions Let Q be a constellation. For all s ∈ Q, we define

sD = {e ∈ D(Q) | s · e exists, and for f ∈ D(Q), if s · f exists then e ≤ f}.

Definition 4.1. A constellation with range Q = (Q, · , D,R) is a constella-
tion Q in which for all s ∈ Q the set sD has a single element, namely R(s),
and, in addition, for all s, t ∈ Q, if s · t exists then R(s · t) = R(R(s) · t).

The final part of Definition 4.1 is referred to as the congruence condition.
Without this condition, Q would be a constellation with pre-range. Further,
in this condition, if s · t exists, then so must R(s) · t, in view of the following.

Result 4.2. [3] Suppose that Q = (Q, · , D,R) is a constellation with
pre-range. Let s, t ∈ Q. Then the following are equivalent: s · t exists;
s ·D(t) exists; R(s) ·D(t) exists; R(s) · t exists. Further, if s · t exists, then
R(s · t) ≤ R(t).

The fact that sD is a singleton for every s ∈ Q easily gives the following.

Result 4.3. [3] A constellation with pre-range is normal.

The constellation CX is a constellation with range in which R(s) is the
restriction of the identity map on X to Im(s). Every category is a constel-
lation with range.

Morphisms between constellations with range are required to respect R.

Definition 4.4. A range radiant is a radiant ρ : Q1 → Q2 between con-
stellations with range that satisfies R(sρ) = R(s)ρ for all s ∈ Q1. The
definitions of strong radiants, isomorphisms and embeddings extend in the
obvious ways to range radiants.

Definition 4.5. An element a of a constellation with range Q is left can-
cellative if whenever a · b = a · c, we have R(a) · b = R(a) · c. Moreover Q is
left cancellative if every element is left cancellative.

The above definition coincides with the usual definition of “epimor-
phism” if Q arises from a category. It is also reminiscent of the condition
that an element a of a semigroup S be L∗-related to an idempotent R(a).
Here L∗ is the relation given by aL∗ b if for any x, y ∈ S1, we have ax = ay
if and only if bx = by. The constellation with range CX is left cancellative.

The following results may be found in [4].
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Result 4.6. If Q = (Q, · , D,R) is a (left cancellative) constellation with
range, then the derived category (Q, ◦ , D,R), where s ◦ t := s · t is defined
if and only if R(s) = D(t), is an ordered (left cancellative) category with
restrictions in which ≤ is the natural order on Q as a normal constellation,
and for e ≤ D(s), we have that e|s = e · s.

Conversely, if C = (C, ◦ , D,R,≤) is a (left cancellative) ordered cat-
egory with restrictions, then setting s · t equal to s ◦ (R(s)|t) whenever
R(s) ≤ D(t) makes (C, · , D,R) into a (left cancellative) constellation with
range, and the given partial order is nothing but the natural order on the
constellation.

If we have that Q = (Q, · , D,R) is a constellation with range and C =
(C, ◦, D,R,≤) is an ordered category with restrictions, then denote byC(Q)
the ordered category with restrictions (Q, ◦, D,R,≤) obtained as in Result
4.6 from Q, and denote by Q(C) the constellation with range (C, ◦, D,R)
obtained as in that result from the ordered category with restrictions C.
These two constructions are mutually inverse.

Result 4.7. Let C be an ordered category with restrictions and Q a constel-
lation with range. Then C(Q(C)) = C and Q(C(Q)) = Q.

The class of constellations with range is a category if arrows are taken
to be range radiants, and the class of ordered categories with restrictions is
itself a category in which the arrows are functors ρ that are order-preserving,
which means that s ≤ t implies sρ ≤ tρ.

Result 4.8. The category with objects ordered categories with restrictions
and arrows being order preserving radiants is isomorphic to the category
with objects constellations with range and arrows being range radiants.

4.2 The D-inverse constellation case

Proposition 4.9. Every D-inverse constellation Q is a constellation with
range in which R(s) = s′ ·s = D(s′) for all s ∈ Q, which is right cancellative,
and left cancellative as a constellation with range.

Proof. Let Q be a D-inverse constellation and define R(s) as in the state-
ment of the proposition, for each s ∈ Q. Now R(s) = s′ · s = D(s′) ∈ D(Q)
and s · R(s) = s · (s′ · s) = (s · s′) · s = D(s) · s = s. Suppose that s · e
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exists for some e ∈ D(S). Then s′ · (s · e) = (s′ · s) · e = R(s) · e exists,
and so R(s) ≤ e. Since Q is normal, ≤ is a partial order, and so Q is a
constellation with pre-range.

If s·t (equivalently, by Result 4.2, R(s)·t) exists, then s′ ·(s·t) = (s′ ·s)·t
exists. Hence by Result 4.2,

R(s · t) = R((s ·R(s)) · t) = R(s · (R(s) · t)) ≤ R(R(s) · t)

= R((s′ · s) · t) = R(s′ · (s · t)) ≤ R(s · t).
By normality, all are equal and so in particular R(s · t) = R(R(s) · t). Hence
Q satisfies the congruence condition and so is a constellation with range.

From Proposition 3.4, Q is right cancellative. If a, b, c ∈ Q and a·b = a·c
then since a′ · a = R(a) where a′ is the D-inverse of a, we have that

R(a) · b = (a′ · a) · b = a′ · (a · b) = a′ · (a · c) = (a′ · a) · c = R(a) · c

where all products exist by (Const2). So Q is left cancellative as a constel-
lation with range.

A D-inverse constellation that is a category is nothing but a groupoid,
as is easily seen.

Definition 4.10. If P = (P, · , D,R) is a constellation with range, we say
it is strongly right cancellative if (P, · ) is right cancellative and satisfies the
condition that for all e, f ∈ D(P ) and s ∈ P , if R(e · s) = R(f · s), then
e = f .

Proposition 4.11. When viewed as a constellation with range as in Propo-
sition 4.9, the D-inverse constellation Q is strongly right cancellative.

Proof. Suppose that s ∈ Q and e, f ∈ D(Q) are such that R(e ·s) = R(f ·s).
Then (e · s)′ · (e · s) = (f · s)′ · (f · s). But s · s′ = D(s) exists, and
so (e · s) · s′ = e · (s · s′) = e · D(s) = e; similarly, (f · s) · s′ = f . Hence
(e·s)′ ·((e·s)·s′) = (e·s)′ ·e = (e·s)′ and similarly (f ·s)′ ·((f ·s)·s′) = (f ·s)′.
So

(e · s)′ = (e · s)′ · ((e · s) · s′)
= ((e · s)′ · (e · s)) · s′
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= ((f · s)′ · (f · s)) · s′
= (f · s)′ · ((f · s) · s′)
= (f · s)′.

It follows that e · s = f · s and, by the right cancellative property, e = f . So
Q is strongly right cancellative as a constellation with range.

Example 4.12. Let X = {x, y, z} and P = {f, i, g, a, b} ⊆ CX , with
f = {(x, x)}, i = {(x, x), (y, y)}, g = {(z, z)}, a = {(x, z)} and b =
{(x, z), (y, z)}. It is easy to see that P = (P, ·, D,R) is a subconstella-
tion of CX = (CX , · , D,R) that is also closed under range and hence is a
constellation with range itself, moreover one that satisfies the congruence
condition since CX does. Moreover if s · u = t · u for any s, t, u ∈ P , if
u ∈ D(P ) then obviously s = t, but if not then u ∈ {a, b} and s, t ∈ D(P )
and so s = D(s) = D(s · u) = D(t · u) = D(t) = t. However, R(f · b) =
R(a) = g = R(b) = R(i · b), yet f ̸= i. So even for constellations with
range satisfying the congruence condition, the second part of the definition
of being strongly right cancellative is independent of the right cancellative
law.

Every D-inverse constellation is D-regular as a constellation, as well as
being a constellation with range. Conversely, we have the following.

Theorem 4.13. Let Q be a D-regular constellation with range. Then Q is
a D-inverse constellation, and R(s) = D(s′) for all s ∈ Q.

Proof. For s ∈ Q, let t ∈ Q be such that s · t = D(s), and let t′ = R(s) · t,
which exists by Result 4.2. Let u be such that t · u = D(t). Then there
exists s · (t · u) = s · D(t) = s, and we also have s = (s · t) · u = D(s) · u.
Since D(s) · s exists, (s · t) · s exists, hence so too does R(s · t) · s by Result
4.2. By the congruence condition, R(t′) = R(R(s) · t) = R(s · t), so R(t′) · s
and hence t′ · s exists, again by Result 4.2. Then

t′ · s = (R(s) · t) · (D(s) · u)
= ((R(s) · t) ·D(s)) · u
= (R(s) · t) · u
= R(s) · (t · u) since t · u exists
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= R(s) ·D(t)

= R(s).

We have that s · t′ = s · (R(s) · t) = (s ·R(s)) · t = s · t = D(s) and, as just
shown, t′ · s = R(s), so D(t′) = D(t′ · s) = R(s). Hence t′ is a D-inverse
of s, so Q is D-regular. Moreover, Q is normal by Result 4.3, and so by
Corollary 3.10, Q is D-inverse.

We have that CX is a constellation with range, but it is not D-regular
(since it is not even right cancellative as a constellation, as easy examples
show). However, it is not hard to check that for all a ∈ CX there exists
b ∈ CX for which b · a = R(a).

Because they are constellations with range, D-inverse constellations will
correspond to some types of ordered categories with restrictions by Re-
sult 4.7. First we need to clarify the notion of radiant specific to D-inverse
constellations; in fact from the discussion in Subsection 3.2 we may sim-
ply take it to be a radiant. (An analogous result is familiar for inverse
semigroups.)

Theorem 4.14. The category with objects D-inverse constellations and ra-
diants as arrows is isomorphic to the category with objects ordered groupoids
and order-preserving functors as arrows, via the restriction of the functors
as in Result 4.8.

Proof. Suppose that Q is a D-inverse constellation. Then viewing it as
a constellation with range, C(Q) is an ordered category with restrictions.
Now D(s) = s ·s′ and D(s′) = s′ ·s in Q, where s′ is the D-inverse of s in Q.
But R(s) = D(s′) and R(s′) = D(s′′) = D(s) by uniqueness, so s · s′ = s ◦ s′
and s′ · s = s′ ◦ s in C(Q).

It remains to show that (OG1) holds. Suppose that s, t ∈ C(Q), with
s′, t′ being the D-inverses of s, t in Q. Suppose that s ≤ t. Then s = D(s)|t
with D(s) ≤ D(t), so s = D(s) · t = (s · s′) · t in Q. As D(s) ≤ D(t), so
(s · s′) · (t · t′) exists and equals s · s′. Then

s · s′ = (s · s′) · (t · t′) = ((s · s′) · t) · t′ = s · t′,

which therefore exists. So R(s) · t′ = D(s′) · t′ exists and equals

(s′ · s) · t′ = s′ · (s · t′) = s′ · (s · s′) = (s′ · s) · s′ = D(s′) · s′ = s′,
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so s′ ≤ t′. We conclude that C(Q) is an ordered groupoid.
For the converse, suppose that C is an ordered groupoid. Then it is

an ordered category with restrictions, so that Q(C) is a constellation with
range. Moreover for s ∈ Q(C), if s′ is its inverse in C, then D(s) = R(s′),
so in C and hence in Q(C), s · s′ = s ◦ s′ = D(s) and s′ · s = s′ ◦ s = R(s) =
D(s′), and so s′ is a D-inverse of s in Q(C), which is unique by normality
(Proposition 3.8). Hence Q(C) is a D-inverse constellation.

The remainder of the details of the correspondence now follow from
Result 4.8, also using the comment before Proposition 3.11.

In light of this result, Theorem 3.13 follows from the analogous fact for
ordered groupoids; see Theorem 9 in Section 4.1 of [9] for example. Our
proof is rather shorter than that of the corresponding result in [9].

Since inductive groupoids are precisely ordered groupoids in which the
projections form a semilattice, the ESN theorem yields the following imme-
diate consequence of Theorem 4.14.

Corollary 4.15. The category of D-inverse constellations in which D(Q)
is a meet-semilattice under its natural order is isomorphic to the category
of inverse semigroups.

Starting with an inverse semigroup S, we may view it as a D-inverse
constellation by settingD(s) = ss′ and s·t = st but only when stt′ = s, as in
Proposition 3.12, and then this may be viewed as an ordered groupoid as in
Theorem 4.14 by retainingD(s), settingR(s) = D(s′) = s′s, setting s◦t = st
whenever R(s) = D(t), which is to say that s′s = tt′, and the order is given
by the natural order, namely s ≤ t if and only if s = D(s)t = ss′t. On the
other hand, beginning with the same inverse semigroup S, the usual way
to view it as an inductive (hence ordered) groupoid is to define D(s) = ss′,
R(s) = s′s, s ◦ t = st when s′s = R(s) = D(t) = tt′, and the order given by
s ≤ t if s = ss′t. Clearly, these two viewpoints coincide.

5 Generalising constructions of Nambooripad and Lawson

There are likely to be many settings in which established results obtained us-
ing ordered groupoids may be more elegantly obtained using D-inverse con-
stellations. It is therefore possible that D-inverse constellations will prove a
useful tool in the study of both ordered groupoids and inverse semigroups.
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They also provide a perspective through which results for ordered groupoids
may be able to be generalised to constellations.

The ESN Theorem itself was generalised significantly (although with
category isomorphism replaced by category equivalence) when Nambooripad
showed in [10] that the category of regular semigroups is equivalent to the
category of ordered groupoids in which D(Q) is a regular biordered set
in a way compatible with its structure as an ordered groupoid. In light
of Theorem 4.14, this fact could instead be stated in terms of D-inverse
constellations rather than ordered groupoids.

Suppose that S is a regular semigroup. As usual, let V (a) ⊆ S denote
the set of inverses of a ∈ S. As part of his “ESN theorem” for regular
semigroups, Nambooripad showed that P = {(s, s′) | s ∈ S, s′ ∈ V (s)}
is an ordered groupoid, with D((s, s′)) = (ss′, ss′), R((s, s′)) = (s′s, s′s),
and (s, s′) ◦ (t, t′) defined if and only if s′s = tt′ and equal to (st, t′s′), and
(s, s′) ≤ (t, t′) means s = ss′t, s′ = t′ss′ and ss′ = ss′tt′ = tt′ss′.

Consider an involuted semigroup S, meaning a semigroup equipped with
an involution, that is, a unary operation ∗ satisfying (st)∗ = t∗s∗ and s∗∗ = s
for all s, t ∈ S. Let E∗(S) = {e ∈ S | e∗ = e = e2}, the set of projections
in S. Define I∗(S) = {s ∈ S | ss∗s = s}, the set of partial isometries of S.
In Section 4.2 of [9], Lawson shows that I∗(S) forms an ordered groupoid
in which the identities are the projections, D(s) = ss∗, R(s) = s∗s and
s ◦ t = st is defined if and only if R(s) = D(t). Further, s ≤ t means
s = D(s)t with D(s) ≤ D(t) under the usual ordering of idempotents in
E∗(S) = {ss∗ | s ∈ I∗(S)} given by e ≤ f whenever e = ef(= fe). For
e ∈ E∗(S) and s ∈ I∗(S) with e ≤ D(s) we define the restriction e|s = es,
and dually for corestrictions.

In what follows, we give a common generalisation of these facts, but us-
ing D-inverse constellations rather than ordered groupoids. The advantage
of such an approach is that the order and restriction (and even range oper-
ation) need not be considered, only the constellation and domain (partial)
operations.

Let S be a semigroup with E a non-empty subset of E(S) = {e ∈ S |
e2 = e}. In [2], an element s ∈ S was said to be E-regular if there exists
t ∈ S for which sts = s with st, ts ∈ E; if s is E-regular, it follows that
there is u ∈ S such that sus = s and usu = u, with su, us ∈ E (simply
let u = tst). Call such u an E-inverse of s. (Semigroups in which every
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element has an E-inverse for some E ⊆ E(S) were studied in [11].) In the
case of an involuted semigroup S, if s ∈ I∗(S), then s∗ is an E∗(S)-inverse
of s (since from ss∗s = s, it follows that s∗ss∗ = s∗, and ss∗, s∗s ∈ E∗(S)).

Let RE(S) be the set of E-regular elements of S, suppose that T ⊆
RE(S) with E ⊆ T , and let

IE(T ) = {(s, s′) | s, s′ ∈ T, s′ is an E-inverse of s}.

We define a partial binary operation and two unary operations on IE(T ) as
follows:

• (s, s′) ·(t, t′) = (st, t′s′) providing s = stt′ and tt′s′ = s′, and undefined
otherwise;

• D((s, s′)) = (ss′, ss′), R((s, s′)) = (s′s, s′s);

• (s, s′)′ = (s′, s).

We say E is T -normal if it is such that, for all e ∈ E, s ∈ T and s′ ∈ T
an E-inverse of s, if e = ess′ = ss′e then s′es ∈ E.

For example, let T = S be a semigroup in which E(S) ̸= ∅, and then
E = E(S) is trivially T -normal since s′es ∈ E(S) if s′ is an inverse of s
and e is an idempotent for which ess′ = e. This recovers Nambooripad’s
construction. Lawson’s example is the special case in which S is an involuted
semigroup, E = E∗(S), and T = I∗(S), the partial isometries of S: since
ss∗ and s∗s are projections, every partial isometry s is E∗(S)-regular with
inverse s∗. A set of idempotents E ⊆ E(S) for a semigroup S is reduced if
for any e, f ∈ E we have ef = f if and only if fe = f . It is easy to see that
if E is reduced, then E-inverses, if they exist, are unique. In the case at
hand, E∗(S) is reduced. To see this, notice that for e, f ∈ E∗(S), we have
that ef = f if and only if fe = f∗e∗ = (ef)∗ = f∗ = f . Hence s∗ is the
unique E∗(S)-inverse of S. The set E∗(S) is also T -normal, since if s ∈ T
and e ∈ E∗(S) with e = es∗s, then s∗es ∈ E∗(S), as is easily seen.

Theorem 5.1. Suppose that S is a semigroup containing non-empty E ⊆
E(S), with E ⊆ T ⊆ RE(S). Then IE(T ) = (IE(T ), ·, D) is a D-inverse
constellation with (s′, s) the D-inverse of (s, s′) for all (s, s′) ∈ IE(S), if and
only if E is T -normal.
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Proof. Suppose first that E is T -normal. Pick (s, s′) ∈ IE(T ). Since
ss′, s′s ∈ E, (s, s′)′ = (s′, s) ∈ IE(T ) also, and (e, e) ∈ IE(T ) for all e ∈ E
since e is an E-inverse of itself, so in particular, D((s, s′)) ∈ IE(T ).

Suppose that (s, s′) ∈ IE(T ) is a right identity element. Certainly
(s′, s) ∈ IE(T ) and the product (s′, s) · (s, s′) exists. It follows that (s′, s) =
(s′s, s′s), so that s = s′s ∈ E.

Conversely, if e ∈ E then (e, e) ∈ IE(T ), and if (x, x′) · (e, e) = (xe, ex′)
exists for some (x, x′) ∈ IE(T ), then x = xee = xe and x′ = eex′ = ex′, so
(x, x′) · (e, e) = (xe, ex′) = (x, x′). Hence (e, e) is a right identity. It follows
that the set of right identities of IE(T ) is given by

RI(IE(T )) = {(e, e) | e ∈ E} = {D((s, s′)) | (s, s′) ∈ IE(T )}.

Choose (s, s′) ∈ IE(T ). Then ss′ ∈ E ⊆ IE(T ), (ss
′, ss′) ∈ IE(T ), and

D((s, s′)) · (s, s′) exists (since (ss′)(ss′) = ss′ in S) and equals (s, s′). If
(s, s′) = (e, e) · (s, s′) = (es, s′e) for some right identity (e, e), then ess′ = e,
ss′e = e, es = s and s′e = s′. Hence ss′ = (es)(s′e) = (ess′)e = ee = e,
showing uniqueness.

Now pick (s, s′), (t, t′) ∈ IE(T ) for which (s, s′) · (t, t′) exists, so that
s = stt′ and tt′s′ = s′. Then (s, s′) · (t, t′) = (st, t′s′) and we must show that
(st, t′s′) ∈ IE(T ). We have that

(st)(t′s′)(st) = (stt′)(s′st) = s(s′st) = st

and

(t′s′)(st)(t′s′) = t′s′(stt′)s′ = t′s′ss′ = t′s′,

with (st)(t′s′) = ss′ ∈ E. But also, (t′s′)(st) = t′(s′s)t ∈ E by the T -
normality of E. Hence (s, s′) · (t, t′) = (ss′, t′t) ∈ IE(T ), so this partial
operation is well-defined, and moreover D((s, s′) · (t, t′)) = (stt′s′, stt′s′) =
(ss′, ss′) = D((s, s′)) from above.

If (s, s′), (t, t′), (u, u′) ∈ IE(T ) with (s, s′) · (t, t′) = (st, t′s′) and (t, t′) ·
(u, u′) = (tu, u′t′) both existing, then s = stt′, tt′s′ = s′, tuu′ = t and
uu′t′ = t′, so s(tuu′t′) = stt′ = s and (tuu′t′)s′ = tt′s′ = s′, giving that
(s, s′) · ((t, t′) · (u, u′)) exists.

If (s, s′)·((t, t′)·(u, u′)) exists then it equals (s, s′)·(tu, u′t′) = (stu, u′t′s′)
and we have t = tuu′, uu′t′ = t′, s = s(tu)(u′t′) = stt′, and s′ = (tu)(u′t′)s′ =
tt′s′, so (s, s′) · (t, t′) = (st, t′s) exists. Further, (st)uu′ = st and uu′t′s′ =
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t′s′, and so ((s, s′) · (t, t′)) · (u, u′)) = (st, t′s′) · (u, u′) exists and is equal to
(stu, u′t′s′) = (s, s′) · ((t, t′) · (u, u′)).

Hence, (IE(T ), ·, D) is a constellation, and

D(IE(T )) = {(e, e) | e ∈ E}.

It is easy to check normality. Finally, for all s ∈ IE(T ), we have (s, s′) ·
(s′, s) exists (since ss′s = s and s′ss′ = s′ in S) and equals (ss′, ss′) =
D((s, s′)), and similarly (s′, s) · (s, s′) exists and equals D((s′, s)). We have
completed the verification that IE(T ) is a D-inverse constellation.

Conversely, suppose that IE(T ) is a D-inverse constellation as in the
statement of the theorem. Let e ∈ E and suppose that s′ is an E-inverse of
s for which e = ess′ = ss′e. It follows that (e, e) · (s, s′) exists and equals
(es, s′e), so s′e is an E-inverse of es. In particular, s′es = s′e(es) ∈ E.
Hence E is T -normal.

As noted earlier, any semigroup S is such that E(S) is S-normal. Con-
sequently, we obtain the following.

Corollary 5.2. Suppose that S is a semigroup and let RE(S)(S) = Reg(S),
the set of regular elements of S. Then (IE(S)(Reg(S)), · , D) is a D-inverse
constellation.

Consider the case in which S is regular, that is, Reg(S) = S. Upon
translation into the language of ordered groupoids, we recover Namboori-
pad’s construction of an ordered groupoid based on ordered pairs (s, s′)
from a regular semigroup as in [10]. In fact the construction can take place
within any semigroup, but only involves its regular elements.

As shown in [11], E-inverses in the semigroup S are unique when they
exist if and only if E is pre-reduced, meaning that for all e, f ∈ E, ef = f
and fe = e imply e = f , and ef = e and fe = f imply e = f .

Corollary 5.3. Suppose that S is a semigroup with E ⊆ E(S), T ⊆ RE(S)
with E ⊆ T . If E is pre-reduced and T -normal, then T is a D-inverse
constellation, where we define s · t = st if and only if stt′ = s and tt′s′ = s′,
where t′ is the unique E-inverse of t and similarly for s, and the D-inverse
of s is its E-inverse s′.
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Proof. The conditions on S and T ensure that any s ∈ T has a unique
E-inverse s′ ∈ T . Then, (T, ·) ∼= (IE(T ), ·) as partial algebras, via the
isomorphism s ↔ (s, s′), where s′ is the unique E-inverse of s ∈ S, as is
easily seen. That T is a D-inverse constellation now follows from Theorem
5.1.

If S is an involuted semigroup, recall that I∗(S) is the set of partial
isometries T in S. As noted in the discussion prior to Theorem 5.1, E∗(S)
is reduced, hence pre-reduced, and is I∗(S)-normal. We can now apply
Corollary 5.3 to recover Theorem 3 in Section 4.2 in [9]: I∗(S) is a D-
inverse constellation, where we define s · t = st if and only if stt∗ = s, hence
it is an ordered groupoid in the way described in [9].

Note that in the situation of Corollary 5.3, if s ·t exists for some s, t ∈ T ,
then st ∈ T has E-inverse t′s′ ∈ T ; however, t′ · s′ may not be defined in
the constellation T , so the law (s · t)′ = t′ · s′ fails in general (since the right
hand side may not exist).

6 Inverse constellations via pre-constellations

The definition of inverse semigroups does not involve domain or range oper-
ations. We conclude by giving a formulation of the D-inverse constellation
concept that does not presuppose the existence of a domain operation.

The following definition first appeared in [5], in a relation algebra setting.

Definition 6.1. We say that P = (P, ·) is a pre-constellation if · is a partial
binary operation that satisfies (Const1) and (Const2) in the definition of a
constellation.

Every semigroup is nothing but a pre-constellation in which all products
are defined.

In a constellation, RI(P) = D(P) ⊆ E(P) as seen in Section 2. It
follows that D(P) is determined by the structure of P as a pre-constellation.
Hence, a pre-constellation is a constellation in at most one way. In general,
D(P) and E(P) can be different, as may be easily seen by considering CX .
However, by Proposition 3.2, if P is inverse then RI(P) = D(P) = E(P).

We wish to define a notion of regularity in a pre-constellation. Recall
from Section 3 that a semigroup is regular if for all a ∈ S there exists a
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b ∈ S such that a = aba; in this case, by setting c = bab (where a = aba), it
follows that a = aca and c = cac.

In the case of pre-constellations, there is ambiguity in the definition of
x · y · x, so we must take a little care.

Definition 6.2. The pre-constellation P is regular if for all x ∈ P there is
y ∈ P such that x = x · (y · x).

In Definition 6.2, given x = x · (y · x), we also have x = (x · y) · x. We
then obtain a result generalising the one for semigroups.

Proposition 6.3. The pre-constellation P is regular if and only if for all
x ∈ P there is z ∈ P such that x = x · (z · x) and z = z · (x · z).

Proof. This is a matter of patient calculation. For convenience, we provide
the details. Suppose that P is regular. For x ∈ P , choose y ∈ P such that
x = x ·(y ·x) = (x ·y) ·x, so x ·y, y ·x both exist. Hence so does z = y ·(x ·y).
Moreover,

x · (z · x) = x · ((y · (x · y)) · x)
= x · ((y · ((x · y) · x))
= x · (y · x)
= x,

and, continuing to make use of (Const1) and (Const2),

z · (x · z) = (y · (x · y)) · (x · (y · (x · y)))
= (y · (x · y)) · ((x · y) · (x · y))
= (y · (x · y)) · (((x · y) · x) · y)
= (y · (x · y)) · (x · y)
= y · ((x · y) · (x · y))
= y · (x · y)
= z.

The converse is immediate.

Next, we make the obvious definitions.
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Definition 6.4. If P is a pre-constellation, we say that t ∈ P is an inverse
of s ∈ P if s ·(t ·s) = s and t = t ·(s · t), and P is an inverse pre-constellation
if every element of P has a unique inverse.

So a pre-constellation P is regular if and only if every element has an
inverse, and inverse if every element has a unique inverse. These definitions
specialise back to give the usual semigroup definitions if P is a semigroup.

Proposition 6.5. Suppose that P is a regular pre-constellation. Then it is
inverse if and only if for all e, f ∈ E(P), if e = e · (f · e) and f = f · (e · f),
then e = f .

Proof. If P is inverse, then the given condition on idempotents follows be-
cause e is the unique inverse for itself.

Conversely, suppose that P is regular and the stated condition on idem-
potents holds. Suppose that s ∈ P has both t, u ∈ P as inverses. So
s = s · (t · s), t = t · (s · t), s = s · (u · s) and u = u · (s · u). It follows
that s · t, s · u, t · s and u · s are all idempotent. One can then calculate in a
standard way that

s · u = (s · u) · ((s · t) · (s · u)) and s · t = (s · t) · ((s · u) · (s · t)),

so that we deduce s · t = s · u. Similarly, one obtains that u · s = t · s. We
then have

u = u · (s · u) = (u · s) · u = (t · s) · u = t · (s · u) = t · (s · t) = t,

giving that P is inverse.

If P is a semigroup, the last result asserts that if P is regular then it is
inverse if and only if whenever e = efe and f = fef for two idempotents
e, f , it must be that e = f , a condition which is therefore equivalent to the
more familiar commuting idempotents characterisation.

We now turn to the relationship between D-inverse constellations and
inverse pre-constellations. They are not the same thing, since inverse semi-
groups are examples of D-inverse constellations, but two idempotents e, f
in an inverse semigroup can be such that ef ̸= e.

Proposition 6.6. Every D-inverse constellation P = (P, · , D) has an in-
verse pre-constellation reduct (P, ·) in which the inverses of elements are
their D-inverses, satisfying the following:
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• for all e, f ∈ E(P), if e · f and f · e exist, then they are equal;

• if s · e exists for some s ∈ P and e ∈ E(P), then s · e = s.

Proof. Suppose that P is a D-inverse constellation. For all s ∈ P we have
s · (s′ · s) = s ·R(s) = s, and similarly s′ · (s · s′) = s′, so that P is regular.

For e, f ∈ E(P), from Proposition 3.2 we have that e, f ∈ D(P), so if
e · f and f · e exist, they are e, f respectively, and hence equal since P is
normal. Hence for all e, f ∈ E(P), if e = e · (f · e) and f = f · (e · f), then in
particular e · f and f · e exist, so that e = f . It follows that P is inverse by
Proposition 6.5, and so s′ must be the unique inverse of s for each s ∈ P .
The final point is clear from the definition of a constellation.

Note that any inverse semigroup is an inverse pre-constellation sat-
isfying the first condition but not the second, showing that inverse pre-
constellations are more general than D-inverse constellations.

Next we show that the two conditions in Proposition 6.6 in fact charac-
terise (reducts of) D-inverse constellations amongst inverse pre-constellations.

Theorem 6.7. If P is a pre-constellation that is inverse and satisfies the
two conditions in Proposition 6.6, then it is a D-inverse constellation in
which the inverse s′ of s ∈ P is its D-inverse (and hence D(s) = s · s′ for
all s ∈ P ).

Proof. Let P be an inverse pre-constellation. Define D(s) = s · s′ for all
s ∈ P . Let E = {s · s′ | s ∈ P}. We have remarked that E ⊆ E(P). Since
e′ = e for all e ∈ E(P), we see that E = E(P). But D(s) · s = (s · s′) · s = s,
and if e·s = s for some e ∈ E(P ), then (e·s)·s′ = s·s′, so e = e·D(s) = D(s).
So D(s) is the unique f ∈ E(P) = D(P) such that f · s = s. We are given
that E(P) ⊆ RI(P). If s ∈ RI(P) then as s = D(s) · s, we have that
s = D(s) so that E(P) = D(P) = RI(P). Consequently, (P, · , D) is a
constellation. Moreover, it is D-inverse since D(s) = s · s′ for all s ∈ P ,
hence also D(s′) = s′ · s for all s ∈ P , since s′′ = s.
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