[1] Dube, T., “Structures in Frames”, Ph.D. Thesis, University of Durban-Westville, 1992.
[2] Dube, T., Balanced and closed-generated filters in frames, Quaest. Math. 25 (2002), 73-81.
[3] Dube, T., Bounded quotients of frames, Quaest. Math. 28 (2005), 55-72.
[4] Dube, T., An algebraic view of weaker forms of realcompactness, Algebra Universalis 55 (2006), 187-202.
[5] Dube, T., and Matutu, P., Pointfree pseudocompactness revisited, Topology Appl. 154 (2007), 2056-2062.
[6] Dube, T., Katetov revisited: a frame-theoretic excursion, Quaest. Math. 30 (2007), 365-380.
[7] Dube, T., Remote points and the like in pointfree topology, Acta Math. Hungar. 123(3) (2009), 203-222.
[8] Dube, T., Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Universalis 61(1) (2009), 115-138.
[9] Dube, T., A broader view of the almost Lindelof property, Algebra Universalis 65 (2011), 263-276.
[10] Dube, T. and Matlabyana, M., Cozero complemented frames, Topology Appl. 16 (2013), 1345-1352.
[11] Dube, T., Mugochi, M.M., and Naidoo, I., ˇ Cech-completeness in pointfree topology, Quaest. Math. 37(1) (2014), 49-65.
[12] Dube, T., Naidoo, I., and Br¨ummer, G.C.L.B., Guest Editors, In: Topology Appl. (Special Issue: TACT2012), 168 (2014).
[13] Dube, T. and Mugochi, M.M., Localic remote points revisited, Filomat 29(1) (2015), 111-120.
[14] Dube, T. and Naidoo, I., More on uniform paracompactness in pointfree topology, Math. Slovaca 65 (2015), 273-288.
[15] Dube, T. and Ighedo, O., Characterising points which make P-frames, Topology Appl. 200 (2016), 146-159.
[16] Baboolal, D., Perfect compactifications of frames, Czechoslovak Math. J. 61(3) (2011), 845-861.
[17] Ball, R.N. and Walters-Wayland, J., “C- and C∗-quotients in pointfree topology”, Dissertationes Math. 412(412) (2002), 1-62.
[18] Banaschewski, B. and Gilmour, C., Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37(3) (1990), 577-587.
[19] Banaschewski, B. and Gilmour, C., Realcompactness and the cozero part of a frame, Appl. Categ. Structures 9 (2001), 395-417.
[20] Banaschewski, B. and Hong, S.S., Filters and strict extensions of frames, Kyungpook Math. J. 39(1) (1999), 215-230.
[21] Banaschewski, B. and Hong, S.S., Extension by continuity in pointfree topology, Appl. Categ. Structures 8 (2000), 475-486.
[22] Banaschewski, B. and Mulvey, C., Stone- ˇ Cech compactification of locales I, Houston J. Math. 6(3) (1980), 301-312.
[23] Banaschewski, B. and Pultr, A., Samuel compactification and completion of uniform frames, Math. Proc. Cambridge Philos. Soc. 108 (1990), 63-78.
[24] Carlson, N.A. and Porter, J.R., Open ultrafilters and maximal points, Topology Appl. 156 (2009), 2317-2325.
[25] Flachsmeyer, J., Zur theorie derH-abgeschlossen Erweiterungen, Math. Z. 94 (1966), 349-381.
[26] Fomin, S., Extensions of topological spaces, Ann. Math. 44(3) (1943), 471-480.
[27] Gilmour, C.R.A., Realcompact spaces and regular σ-frames, Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79.
[28] Gr¨atzer, G., “Lattice Theory: Foundation”, Birkh¨auser, Springer-Basel AG, 2011.
[29] Hong, S.S., Simple extension of frames, Math. Res. 67 (1992), 156-159.
[30] Hong, S.S., Convergence in frames, Kyungpook Math. J. 35 (1995), 85-93.
[31] Isbell, J., First steps in descriptive theory of locales, Trans. Amer. Math. Soc. 327(1) (1991), 353-371.
[32] Johnstone, P.T., “Stone Spaces”, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982.
[33] Johnstone, P. and Shu-Hao, S., Weak products and Hausdorff locales, In: Borceux, F. (Eds) Categorical Algebra and its Applications, Lect. Notes Math. 1348 (1988), 173-193.
[34] Katˇetov, M., ¨ Uber H-abgeschlossene und bikompakte Ra¨ume, ˇCasopis pro Pˇestov´an´ı Matematiky a Fysiky 69(2) (1940), 36-49.
[35] Katˇetov, M., H-closed extensions of topological spaces, ˇCasopis pro Pˇestov´an´ı Matematiky a Fysiky 72(1) (1947), 17-32.
[36] Madden, J. and Vermeer, H., Lindel¨of locales and realcompactness, Math. Proc. Cambridge Philos. Soc. 99 (1986), 472-480.
[37] Naidoo, I., Strong Cauchy completeness in uniform frames, Acta Math. Hungar. 116(3) (2007), 273-284.
[38] Naidoo, I., An Interview with Themba Andrew Dube (A TAD Interview), Categ. Gen. Algebr. Struct. Appl. 20(1) (2024), 5-32.
[39] Naidoo, I., Celebrating Professor Themba A. Dube (A TAD Celebration I ), Categ. Gen. Algebr. Struct. Appl. 20(1) (2024), 33-103.
[40] Paseka, J. and ˇSmarda, B., On some notions related to compactness for locales, Acta Univ. Caroli. Math. Phys. 29(2) (1988), 51-65.
[41] Paseka, J. and ˇSmarda, B., T2-frames and almost compact frames, Czechoslovak Math. J. 42(3) (1992), 385-402.
[42] Picado, J. and Pultr, A., “Frames and Locales: Topology without Points”, Frontiers in Mathematics, Birkh¨auser/Springer Basel AG, 2012.
[43] Plewe, T., Quotient Maps of Locales, Appl. Categ. Structures 8 (2000), 17-44.
[44] Reynolds, G., Alexandroff Algebras and complete regularity, Proc. Amer. Math. Soc.76 (1979), 322-326.
[45] Rosick´y, J. and ˇSmarda, B., T1-locales, Math. Proc. Cambridge Philos. Soc. 98(1) (1985), 81-86.
[46] Walters, J.L., “Uniform Sigma Frames and the Cozero Part of Uniform Frames”, Masters Dissertation, University of Cape Town, 1990.
[47] Walters, J.L., Compactifications and uniformities on σ-frames, Comment. Math. Univ. Carolin. 32(1) (1991), 189-198.
[48] Zhang, F.L. and Strauss, D., Katˇetov-extension of a Frame, In: Festschrift, Proceedings, Symposium on Categorical Topology, Banaschewski, B., Gilmour, G.R.A., and Herrlich, H. (Eds), University of Cape Town (1999), 261-271.