Clustering in Celebrating Professor Themba A. Dube (A TAD Celebration II)

Document Type : Research Paper

Author

Department of Mathematical Sciences, University of South Africa, P.O.Box 392, Tshwane, UNISA 0003, South Africa. National Institute for Theoretical and Computational Sciences (NITheCS), Johannesburg, South Africa.

10.48308/cgasa.2025.105284

Abstract

This paper is the second in the series celebrating the mathematical works of Professor Themba Dube. In this sequel, we give prominence to Dube's pivotal contributions on pointfree convergence at the unstructured frame level, in the category of locales, and on his noteworthy conceptions on extensions and frame quotients. We distill and draw attention to particular studies of Dube on filters and his novel characterizations of certain conservative pointfree properties by filter and ultrafilter convergence, notably normality, almost realcompactness, and pseudocompactness. We also feature Dube's joint work on convergence and clustering of filters in Loc and coconvergence and coclustering of ideals in the category Frm.

Keywords


[1] Dube, T., “Structures in Frames”, Ph.D. Thesis, University of Durban-Westville, 1992.
[2] Dube, T., Balanced and closed-generated filters in frames, Quaest. Math. 25 (2002), 73-81.
[3] Dube, T., Bounded quotients of frames, Quaest. Math. 28 (2005), 55-72.
[4] Dube, T., An algebraic view of weaker forms of realcompactness, Algebra Universalis 55 (2006), 187-202.
[5] Dube, T., and Matutu, P., Pointfree pseudocompactness revisited, Topology Appl. 154 (2007), 2056-2062.
[6] Dube, T., Katetov revisited: a frame-theoretic excursion, Quaest. Math. 30 (2007), 365-380.
[7] Dube, T., Remote points and the like in pointfree topology, Acta Math. Hungar. 123(3) (2009), 203-222.
[8] Dube, T., Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Universalis 61(1) (2009), 115-138.
[9] Dube, T., A broader view of the almost Lindelof property, Algebra Universalis 65 (2011), 263-276.
[10] Dube, T. and Matlabyana, M., Cozero complemented frames, Topology Appl. 16 (2013), 1345-1352.
[11] Dube, T., Mugochi, M.M., and Naidoo, I., ˇ Cech-completeness in pointfree topology, Quaest. Math. 37(1) (2014), 49-65.
[12] Dube, T., Naidoo, I., and Br¨ummer, G.C.L.B., Guest Editors, In: Topology Appl. (Special Issue: TACT2012), 168 (2014).
[13] Dube, T. and Mugochi, M.M., Localic remote points revisited, Filomat 29(1) (2015), 111-120.
[14] Dube, T. and Naidoo, I., More on uniform paracompactness in pointfree topology, Math. Slovaca 65 (2015), 273-288.
[15] Dube, T. and Ighedo, O., Characterising points which make P-frames, Topology Appl. 200 (2016), 146-159.
[16] Baboolal, D., Perfect compactifications of frames, Czechoslovak Math. J. 61(3) (2011), 845-861.
[17] Ball, R.N. and Walters-Wayland, J., “C- and C∗-quotients in pointfree topology”, Dissertationes Math. 412(412) (2002), 1-62.
[18] Banaschewski, B. and Gilmour, C., Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37(3) (1990), 577-587.
[19] Banaschewski, B. and Gilmour, C., Realcompactness and the cozero part of a frame, Appl. Categ. Structures 9 (2001), 395-417.
[20] Banaschewski, B. and Hong, S.S., Filters and strict extensions of frames, Kyungpook Math. J. 39(1) (1999), 215-230.
[21] Banaschewski, B. and Hong, S.S., Extension by continuity in pointfree topology, Appl. Categ. Structures 8 (2000), 475-486.
[22] Banaschewski, B. and Mulvey, C., Stone- ˇ Cech compactification of locales I, Houston J. Math. 6(3) (1980), 301-312.
[23] Banaschewski, B. and Pultr, A., Samuel compactification and completion of uniform frames, Math. Proc. Cambridge Philos. Soc. 108 (1990), 63-78.
[24] Carlson, N.A. and Porter, J.R., Open ultrafilters and maximal points, Topology Appl. 156 (2009), 2317-2325.
[25] Flachsmeyer, J., Zur theorie derH-abgeschlossen Erweiterungen, Math. Z. 94 (1966), 349-381.
[26] Fomin, S., Extensions of topological spaces, Ann. Math. 44(3) (1943), 471-480.
[27] Gilmour, C.R.A., Realcompact spaces and regular σ-frames, Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79.
[28] Gr¨atzer, G., “Lattice Theory: Foundation”, Birkh¨auser, Springer-Basel AG, 2011.
[29] Hong, S.S., Simple extension of frames, Math. Res. 67 (1992), 156-159.
[30] Hong, S.S., Convergence in frames, Kyungpook Math. J. 35 (1995), 85-93.
[31] Isbell, J., First steps in descriptive theory of locales, Trans. Amer. Math. Soc. 327(1) (1991), 353-371.
[32] Johnstone, P.T., “Stone Spaces”, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982.
[33] Johnstone, P. and Shu-Hao, S., Weak products and Hausdorff locales, In: Borceux, F. (Eds) Categorical Algebra and its Applications, Lect. Notes Math. 1348 (1988), 173-193.
[34] Katˇetov, M., ¨ Uber H-abgeschlossene und bikompakte Ra¨ume, ˇCasopis pro Pˇestov´an´ı Matematiky a Fysiky 69(2) (1940), 36-49.
[35] Katˇetov, M., H-closed extensions of topological spaces, ˇCasopis pro Pˇestov´an´ı Matematiky a Fysiky 72(1) (1947), 17-32.
[36] Madden, J. and Vermeer, H., Lindel¨of locales and realcompactness, Math. Proc. Cambridge Philos. Soc. 99 (1986), 472-480.
[37] Naidoo, I., Strong Cauchy completeness in uniform frames, Acta Math. Hungar. 116(3) (2007), 273-284.
[38] Naidoo, I., An Interview with Themba Andrew Dube (A TAD Interview), Categ. Gen. Algebr. Struct. Appl. 20(1) (2024), 5-32.
[39] Naidoo, I., Celebrating Professor Themba A. Dube (A TAD Celebration I ), Categ. Gen. Algebr. Struct. Appl. 20(1) (2024), 33-103.
[40] Paseka, J. and ˇSmarda, B., On some notions related to compactness for locales, Acta Univ. Caroli. Math. Phys. 29(2) (1988), 51-65.
[41] Paseka, J. and ˇSmarda, B., T2-frames and almost compact frames, Czechoslovak Math. J. 42(3) (1992), 385-402.
[42] Picado, J. and Pultr, A., “Frames and Locales: Topology without Points”, Frontiers in Mathematics, Birkh¨auser/Springer Basel AG, 2012.
[43] Plewe, T., Quotient Maps of Locales, Appl. Categ. Structures 8 (2000), 17-44.
[44] Reynolds, G., Alexandroff Algebras and complete regularity, Proc. Amer. Math. Soc.76 (1979), 322-326.
[45] Rosick´y, J. and ˇSmarda, B., T1-locales, Math. Proc. Cambridge Philos. Soc. 98(1) (1985), 81-86.
[46] Walters, J.L., “Uniform Sigma Frames and the Cozero Part of Uniform Frames”, Masters Dissertation, University of Cape Town, 1990.
[47] Walters, J.L., Compactifications and uniformities on σ-frames, Comment. Math. Univ. Carolin. 32(1) (1991), 189-198.
[48] Zhang, F.L. and Strauss, D., Katˇetov-extension of a Frame, In: Festschrift, Proceedings, Symposium on Categorical Topology, Banaschewski, B., Gilmour, G.R.A., and Herrlich, H. (Eds), University of Cape Town (1999), 261-271.