[1] Andruskiewitsch N., Etingof P., and Gelaki, S., Triangular Hopf algebras with the Chevalley property, Michigan Math. J. 49(2) (2001), 277-298.
[2] Davydov A. and Nikshych D., The Picard crossed module of a braided tensor category, Algebra and Number Theory 7(6) (2013), 1365-1403.
[3] Davydov A. and Nikshych D., Braided Picard groups and graded extensions of braided tensor categories, Selecta Math. 27(4) (2021), article no 65.
[4] Etingof P., Nikshych D., and Ostrik V., Fusion categories and homotopy theory, Quantum Topol. 1(3) (2010), 209-273.
[5] Frohlich J., Fuchs J., Runkel I., and Schweigert C., Picard groups in rational conformal field theory, Contemp. Math. 391 (2005), 1-16.
[6] Fausk H., Picard groups of derived categories, J. Pure Appl. Algebra 180(3) (2003), 251-261.
[7] Fuchs L. and V´amos P., Picard groups of some module categories, J. Commut. Algebra 11(4) (2019), 547-572.
[8] Garc´ıa Iglesias A. and Mombelli M., Representations of the category of modules over pointed Hopf algebras over S3 and S4, Pacific J. Math. 252(2) (2011), 343-378.
[9] Gelaki S. and Naidu N., Some properties of group-theoretical categories, J. Algebra 322(8) (2009), 2631-2641.
[10] Mejia Casta˜no A., Morita equivalence of certain crossed product, Categ. Gen. Algebr. Struct. Appl. 19(1) (2023), 103-125.
[11] Mombelli M., Module categories over pointed Hopf algebras, Math. Z. 266(2) (2010), 319-344.
[12] Mombelli M., Representations of tensor categories coming from quantum linear spaces, J. London Math. Soc. 2(83) (2011), 19-35.
[13] Ostrik V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), 177-206.
[14] Rodr´ıguez J., “On the Picard Group of the Stable Module Category for Infinite Groups”, Ph.D. Thesis, Centro de Investigaci´on en Matem´aticas, 2023.