Picard group of dual categories

Document Type : Research Paper

Author

Department of Mathematics and Statistics, Universidad del Norte, Barranquilla, Colombia.

10.48308/cgasa.2024.234639.1470

Abstract

    We provide an explicit description of the Picard group (the group of isomorphism classes of invertible objects, those that have an inverse under the tensor product) of the dual category of the category of comodules over a supergroup algebra, by using the description of this group for group-theoretical categories. In fact we prove that there is a subgroup relation between these groups. As an interest application of this group in a modular context, it can be used to construct examples of symmetric special Frobenius algebras.  They also plays an important role in the theory of braided tensorcategories for the classification of group extensions of fusion categories.

Keywords

Main Subjects


[1] Andruskiewitsch N., Etingof P., and Gelaki, S., Triangular Hopf algebras with the Chevalley property, Michigan Math. J. 49(2) (2001), 277-298.
[2] Davydov A. and Nikshych D., The Picard crossed module of a braided tensor category, Algebra and Number Theory 7(6) (2013), 1365-1403.
[3] Davydov A. and Nikshych D., Braided Picard groups and graded extensions of braided tensor categories, Selecta Math. 27(4) (2021), article no 65.
[4] Etingof P., Nikshych D., and Ostrik V., Fusion categories and homotopy theory, Quantum Topol. 1(3) (2010), 209-273.
[5] Frohlich J., Fuchs J., Runkel I., and Schweigert C., Picard groups in rational conformal field theory, Contemp. Math. 391 (2005), 1-16.
[6] Fausk H., Picard groups of derived categories, J. Pure Appl. Algebra 180(3) (2003), 251-261.
[7] Fuchs L. and V´amos P., Picard groups of some module categories, J. Commut. Algebra 11(4) (2019), 547-572.
[8] Garc´ıa Iglesias A. and Mombelli M., Representations of the category of modules over pointed Hopf algebras over S3 and S4, Pacific J. Math. 252(2) (2011), 343-378.
[9] Gelaki S. and Naidu N., Some properties of group-theoretical categories, J. Algebra 322(8) (2009), 2631-2641.
[10] Mejia Casta˜no A., Morita equivalence of certain crossed product, Categ. Gen. Algebr. Struct. Appl. 19(1) (2023), 103-125.
[11] Mombelli M., Module categories over pointed Hopf algebras, Math. Z. 266(2) (2010), 319-344.
[12] Mombelli M., Representations of tensor categories coming from quantum linear spaces, J. London Math. Soc. 2(83) (2011), 19-35.
[13] Ostrik V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), 177-206.
[14] Rodr´ıguez J., “On the Picard Group of the Stable Module Category for Infinite Groups”, Ph.D. Thesis, Centro de Investigaci´on en Matem´aticas, 2023.