Classical prime subhypermodules and related extensions

Document Type : Research Paper

Author

Faculty of Sciences , Department of Mathematics, Imam Khomeini International University, Qazvin, Iran.

10.48308/cgasa.2024.234345.1461

Abstract

In this paper, we extend the notion of prime subhypermodules
to $n$-ary classical prime, $n$-ary weakly classical prime and $n$-ary $\phi$-classical prime subhypermodules of an $(m,n)$-hypermodule over a commutative Krasner $(m,n)$-hyperring. Many properties and characterizations of them are introduced. Moreover, we investigate the behavior of these structures under hypermodule homomorphisms, quotient hypermodules and cartesian product. We think the knowledge gained in this setting provides a significant step in the general investigation of subhypermodules. 

Keywords

Main Subjects


[1] Ameri, R. and Norouzi, M., Prime and primary hyperideals in Krasner (m, n)-hyperrings, European J. Combin. 34 (2013), 379-390.
[2] Ameri, R. and Norouzi, M., On multiplication (m, n)-hypermodules, European J. Combin. 44 (2015), 153-171.
[3] Ameri, R., Norouzi, M., and Leoreanu-Fotea, V., On prime and primary subhypermodules of (m, n)-hypermodules, European J. Combin. 44 (2015), 175-190.
[4] Anvariyeh, S.M. and Mirvakili, S., Canonical (m, n)-hypermodules over Krasner (m, n)-hyperrings, Iranian J. Math. Sci. Inf. 7(2) (2012), 17-34.
[5] Anvariyeh, S.M., Mirvakili, S., and Davvaz, B., Fundamental relations on (m, n)-ary hypermodules over (m, n)-ary hyperrings, Ars Combin. 94 (2010), 273-288.
[6] Behboodi, M. and Koohy, H., Weakly prime submodules, Vietnam J. Math. 32 (2004), 185-195.
[7] Belali, Z., Anvariyeh, S.M., and Mirvakili, S., Free and cyclic canonical (m, n)-ary hypermodules, Tamkang J. Math. 42(1) (2011), 105-118.
[8] Corsini, S., “Prolegomena of Hypergroup Theory”, Second edition, Aviani editor, Italy, 1993.
[9] Corsini, S. and Leoreanu, V., “Applications of Hyperstructure Theory”, Advances in Mathematics, Vol. 5, Kluwer Academic Publishers, 2003.
[10] Darani, A.Y., Ebrahimiyan, S., and Fathiye, S., On classical prime subhypermodules, Trans. Algebra Appl. 1(1) (2015), 33-42.
[11] Davvaz, B. and Vougiouklis, T., n-ary hypergroups, Iran. J. Sci. Technol. 30(A2) (2006), 165-174.
[12] Davvaz, B. and Ulucak, G., and Tekir, U., Weakly (k, n)-absorbing (primary) hyperideals of a Krasner (m, n)-hyperring, Hacet. J. Math. Stat. 52(5) (2023), 1229-1238.
[13] Dorente, W., Untersuchungen ¨uber einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19.
[14] Hila, K., Naka, K., and Davvaz, B., On (k, n)-absorbing hyperideals in Krasner (m, n)-hyperrings, Quart. J. Math. 69 (2018), 1035-1046.
[15] Kasner, E., An extension of the group concept (reported by L.G. Weld), Bull. Amer. Math. Soc. 10 (1904), 290-291.
[16] Krasner, M., A class of hyperrings and hyperfields, International J. Math. and Math. Sci. 6 (1983), 307-312.
[17] Marty, F., Sur une g´en´eralisation de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, (1934), 45-49.
[18] Mirvakili, S. and Davvaz, B., Constructions of (m, n)-hyperrings, Mat. Vesnik 67(1) (2015), 1-16.
[19] Mirvakili, S. and Davvaz, B., Relations on Krasner (m, n)-hyperrings, European J. Combin. 31 (2010), 790-802.
[20] Mirvakili, S. and Davvaz, B., Applications of the α⋆-relation to Krasner hyperrings, J. Algebra 362 (2012), 145-156.
[21] Mittas, J., Hyperstructures canoniques, Math. Balk. 2 (1972), 165-179.
[22] Mittas, J., Hyperstructures et certaines de leurs propri´et´es, C. R. Acad. Sci. Paris, Ser. A-B 269 (1969), A623-A626.
[23] Mostafanasab, H., Tekir, U., and Hakan Oral, K., Weakly classical prime submodules, Kyungpook Math. J. 56 (2016), 1085-1101.
[24] Omid, S. and Davvaz, B., On ordered Krasner hyperrings, Iranian J. Math. Sci. Inform. 12(2) (2017), 35-49.
[25] Omidi, S., Davvaz, B., Contribution to study special kinds of hyperideals in ordered semihyperrings, J. Taibah Univ. Sci. 11(6) (2017), 1083-1094.