[1] Baboolal, D., Perfect compactifications of frames, Czech. Math. J. 61 (2011), 845-861.
[2] Baboolal, D., Conditions under which the least compactification of a regular continuous frame is perfect, Czech. Math. J. 62(137) (2012), 505-515.
[3] Banaschewski, B., “Lectures on Frames”, University of Cape Town, Cape Town, 1987.
[4] Banaschewski, B., Compactification of frames, Math. Nachr. 149 (1990), 105-115.
[5] Ferreira, M.J., Picado, J., and Pinto, S.M., Remainders in pointfree topology, Topology Appl. 245 (2018), 21-45.
[6] Isbell, J.R., First steps in descriptive theory of locales, Trans. Amer. Math. Soc. 327 (1991), 353-371; Corrections. 341 (1994), 467-468.
[7] Johnstone, P.T., “Stone Spaces”, Cambridge University Press, 1982.
[8] Michael, E., J-spaces, Topology Appl. 102 (2000), 315-339.
[9] Mthethwa, S.S., Perfectness of 2-star compactifications of frames, Topology Appl. 297 (2021), 107701.
[10] Mthethwa, S.S., Characterising certain compactifications of frames with special attention to Freudenthal, Algebra Univers. 82 (2021), article number 14.
[11] Mthethwa, S.S., On J-frames, Topology Appl. 342 (2024), 108772.
[12] Mthethwa, S.S. and Taherifar, A., J-spaces and C-normal Spaces: An Algebraic Perspective, Filomat. 38 (2024), 1009-1021.
[13] Mthethwa, S.S. and Taherifar, A., A note on J-spaces and relatively connected subsets, Quaest. Math. 46 (2023), 2453- 2464.
[14] Picado, J. and Pultr, A., “Frames and Locales: Topology without Points”, Frontiers in Mathematics, Springer, Basel, 2012.
[15] Plewe, T., Quotient maps of locales, Appl. Categ. Structures 8 (2000), 17-44.