[1] Ad´amek, J., Herrlich, H., and Strecker, G.E., “Abstract and Concrete Categories: the Joy of Cats”, Repr. Theory Appl. Categ. 17, 1-507, 2006.
[2] Ad´amek, J. and Rosick´y, J., “Locally Presentable and Accessible Categories”, Lond. Math. Soc. Lect. Note Ser. 189, Cambridge University Press, 1994.
[3] Ad´amek, J., Rosick´y, J., and Vitale, E.M., “Algebraic Theories: A Categorical Introduction to General Algebra with a foreword by F.W. Lawvere”, Camb. Tracts Math. 184, Cambridge University Press, 2011.
[4] Bastiani, A. and Ehresmann, C., Categories of sketched structures, Cah. Topologie G´eom. Diff´er. Cat´egoriques 13 (1972), 105-214.
[5] B´enabou, J., Structures alg´ebriques dans les cat´egories, Cah. Topologie G´eom. Diff´er. Cat´egoriques 10 (1968), 1-126.
[6] Birkhoff, G., On the structure of abstract algebras, Proc. Camb. Philos. Soc. 31 (1935), 433-454.
[7] Birkhoff, G. and Lipson, J.D., Heterogeneous algebras, J. Comb. Theory 8 (1970), 115-133.
[8] Borceux, F., “Handbook of Categorical Algebra, Volume 1: Basic Category Theory”, Encycl. Math. Appl. 50, Cambridge University Press, 2008.
[9] Borceux, F. and Bourn, D., “Mal’cev, Protomodular, Homological and Semi-Abelian Categories”, Mathematics and its Applications 566, Springer, 2004.
[10] Borceux, F., and Clementino, M.M., Topological semi-abelian algebras, Adv. Math. 190(2) (2005), 425-453.
[11] Borceux, F., and Clementino, M.M., Topological protomodular algebras, Topology Appl. 153(16) (2006), 3085-3100.
[12] Bourn, D., and Janelidze, G., Characterization of protomodular varieties of universal algebras, Theory Appl. Categ. 11 (2003), 143-147.
[13] Carboni, A., Janelidze, G., Kelly, G.M., and Par´e, R., On localization and stabilization for factorization systems, Appl. Categ. Struct. 5(1) (1997), 1-58.
[14] Clementino, M.M., “An Invitation to Topological Semi-Abelian Algebras”, in: New Perspectives in Algebra, Topology and Categories, Coimbra Mathematical Texts 1, Springer, 2021.
[15] Ehresmann, C., Sur les structures alg´ebriques, C.R. Acad. Sci., Paris, S´er. A 264 (1967), 840-843.
[16] Freyd, P.J. and Kelly, G.M., Categories of continuous functors. I, J. Pure Appl. Algebra 2 (1972), 169-191.
[17] Ghosh, P.P., Internal neighbourhood structures, Algebra Univers. 81(12) (2020), https://doi.org/10.1007/s00012-020-0640-2.
[18] Ghosh, P.P., Internal neighbourhood structures. II: Closure and closed morphisms, Categ. Gen. Algebr. Struct. Appl. 18(1) (2023), 155-223.
[19] Higgins, Ph.J., Algebras with a scheme of operators, Math. Nachr. 27 (1963), 115-132.
[20] Isbell, J., Kˇr´ıˇz, I., Pultr, A., and Rosick´y, J., Remarks on localic groups, in: Categorical Algebra and its Applications, Proc. 1st Conf., Louvain-la-Neuve/Belg. 1987, Lect. Notes Math. 1348 (1988), 154-172.
[21] Isbell, J.R., “Subobjects, Adequacy, Completeness and Categories of Algebras”, Diss. Math. 36, Instytut Matematyczny Polskiej Akademi Nauk, 1964.
[22] Lawvere, F.W., Functorial semantics of algebraic theories, Proc. Natl. Acad. Sci. USA 50 (1963), 869-872.
[23] Mac Lane, S., “Categories for the Working Mathematician”, Grad. Texts Math. 5, Springer, 1998.
[24] Monk, J.D., “Introduction to Set Theory”, McGraw-Hill Book Co., 1969.
[25] Picado, J. and Pultr, A., “Frames and Locales: Topology without Points”, Front. Math., Springer, 2012.