[1] Arndt, P. and Mariano, H.L., The von Neumann-regular hull of (preordered) rings
and quadratic forms, South Amer. J. Log. 2(2) (2016), 201-244.
[2] Berni, J.C. and Mariano, H.L., Separation theorems in the commutative algebra of
$\mathcal{C}^{\infty}$-rings and applications, Comm. Algebra 51(5) (2023), 2014-2044.
[3] Berni, J.C, “Some Algebraic and Logical Aspects of $\mathcal{C}^{\infty}$-Rings”, Ph.D Thesis, Universidade
de S˜ao Paulo, 2018.
[4] Berni,J.C, Figueiredo, R., and Mariano, H.L., On the order theory of $\mathcal{C}^{\infty}$-reduced
$\mathcal{C}^{\infty}$-rings, J. Appl. Logics 9(1) (2022), 93-134.
[5] Berni, J.C. and Mariano, H.L., Classifying toposes for some theories of $\mathcal{C}^{\infty}$-rings,
South Amer. J. Log. 4(2) (2018), 313-350.
[6] Berni, J.C. and Mariano, H.L., Topics on smooth commutative algebra, arXiv
preprint: arXiv:1904.02725, 2019.
[7] Berni, J.C. and Mariano, H.L., $\mathcal{C}^{\infty}$-rings: an interplay between geometry and logics,
Bol. Mat. 27(2) (2020), 85-112.
[8] Berni, J.C. and Mariano, H.L., A geometria diferencial sint´etica e os mundos onde
podemos interpret´a-la: um convite ao estudo dos an´eis C∞, Rev. Mat. Univ. 1 (2020),
5-30.
[9] Berni, J.C. and Mariano, H.L., A universal algebraic survey of $\mathcal{C}^{\infty}$-rings, Lat. Amer.
J. Math. 1(1) (2022), 8-39.
[10] Berni, J.C. and Mariano, H.L., Von Neumann regular $\mathcal{C}^{\infty}$- rings and applications,
arXiv e-prints, arXiv:1905.09617, 2019.
[11] Dugundji. J., “Topology”, Allyn and Bacon Series in Advanced Mathematics, Allyn
and Bacon, 1966.
[12] Joyce, D., “Algebraic Geometry over C∞-Rings”, American Mathematical Society,
2019.
[13] Kennison, J.F., Integral domain type representations in sheaves and other topoi,
Math. Z. 151 (1976), 35-56.
[14] Moerdijk, I., Van Quˆe, N., and Reyes, G.E., Rings of smooth functions and their localizations
II, a chapter in: “Mathematical Logic and Theoretical Computer Science,
CRC Press, (1986), 277-300.
[15] Moerdijk, I. and Reyes, G.E., “Models for Smooth Infinitesimal Analysis”, Springer
Science \& Business Media, 2013.
[16] Scholze, P., “Condensed Mathematics”, Lecture notes based on joint work with D.
Clausen, Available at Scholze’s Webpage, 2019.