Categories and General Algebraic Structures with Applications Volume 21, Number 1, July 2024, 211-239.

https://doi.org/10.48308/cgasa.21.1.211

Classification of Boolean algebras through von Neumann regular \mathcal{C}^{∞} -rings

Jean Cerqueira Berni and Hugo Luiz Mariano

Abstract. In this paper, we introduce the concept of a "von Neumann regular \mathcal{C}^{∞} -ring", which is a model for a specific equational theory. We delve into the characteristics of these rings and demonstrate that each Boolean space can be effectively represented as the image of a von Neumann regular \mathcal{C}^{∞} -ring through a specific functor. Additionally, we establish that every homomorphism between Boolean algebras can be expressed through a \mathcal{C}^{∞} -ring homomorphism between von Neumann regular \mathcal{C}^{∞} -rings.

1 Introduction

As per I. Moerdijk and G. Reyes, \mathcal{C}^{∞} -rings were primarily introduced for their applications in Singularity Theory, as Weil algebras and jet spaces, and for constructing topos-models for Synthetic Differential Geometry. A remarkable topos is the one of sheaves over the small site comprising the category of all germ-determined \mathcal{C}^{∞} -rings, along with an appropriate Grothendieck topology (for detailed information, refer to [15]).

 $Keywords: \mathcal{C}^{\infty}$ -Rings, Von Neumann Regular Rings, Stone duality, Boolean algebras. $Mathematics\ Subject\ Classification\ [2020]:\ 13B30,\ 20A05,\ 16S99,\ 16B50,\ 06E99.$

Received: 22 December 2023, Accepted: 7 April 2024.

ISSN: Print 2345-5853 Online 2345-5861.

© Shahid Beheshti University

^{*} Corresponding author

In recent years, the authors have been focused on exploring \mathcal{C}^{∞} -rings and their applications, cf. [3], [5], [6], [10], [7], [8], [9], [4] and [2]. In this study, we present a valuable concept of a von Neumann regular \mathcal{C}^{∞} -ring, showcasing pertinent results and detailing both their properties and those of the category they form.

As an application, we establish that every Boolean algebra can be canonically represented through a von Neumann regular \mathcal{C}^{∞} -ring. Additionally, we demonstrate that each homomorphism between Boolean algebras can be depicted by a specific \mathcal{C}^{∞} -ring homomorphism between von Neumann regular \mathcal{C}^{∞} -rings. Specifically, the investigation of von Neumann regular \mathcal{C}^{∞} -rings extends to the classification of Boolean spaces (and/or Boolean algebras) and their morphisms. A critical tool in developing these findings is the alignment between the concepts of Boolean spaces and "profinite spaces". Profinite spaces, along with their morphisms, constitute a category denoted as **Profinite**, forming the basis for the notion of a "condensed set." A condensed set is characterized as a functor (a specific sheaf) denoted by $C: \mathbf{Profinite}^{\mathrm{op}} \to \mathbf{Set}$. These condensed sets, in turn, represent a fundamental concept that plays a pivotal role in the recent theory of "Condensed Mathematics" developed by Dustin Clausen and Peter Scholze.

Overview of the Paper: In Section 2, we outline the fundamental preliminary concepts of C^{∞} -rings, delving into their universal algebra and their 'smooth commutative algebra.'

Moving on to **Section 3**, we introduce the concept of a von Neumann regular \mathcal{C}^{∞} -ring, essentially a \mathcal{C}^{∞} -ring with an underlying commutative unital ring being a von Neumann regular ring. We then investigate the main properties and characterizations associated with this concept.

In **Section 4**, we explore their practical applications. Firstly, we establish that each continuous map between profinite spaces can be accurately portrayed by a continuous map between boolean spaces, which are canonically associated with a \mathcal{C}^{∞} -ring homomorphism between von Neumann regular \mathcal{C}^{∞} -rings (see **Theorem 4.6**). Subsequently, we deduce that every homomorphism between Boolean algebras can be distinctly represented through a \mathcal{C}^{∞} -ring homomorphism between von Neumann regular \mathcal{C}^{∞} -rings (refer to **Theorem 4.7**).

2 Preliminaries on C^{∞} -rings

In this section we provide the main preliminary notions on C^{∞} -rings, with respect to their universal algebra (cf. [9]) and to their "smooth commutative algebra" (cf. [10]).

In order to formulate and study the concept of \mathcal{C}^{∞} -ring, we use a first order language, \mathcal{L} , with a denumerable set of variables $(\operatorname{Var}(\mathcal{L}) = \{x_1, x_2, \cdots, x_n, \cdots\})$, whose nonlogical symbols are the symbols of \mathcal{C}^{∞} -functions from \mathbb{R}^m to \mathbb{R}^n , with $m, n \in \mathbb{N}$, i.e., the non-logical symbols consist only of function symbols: for each $n \in \mathbb{N}$, the n-ary function symbols of the set $\mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$, i.e., $\mathcal{F}_{(n)} = \{f^{(n)} \mid f \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})\}$. Thus, the set of function symbols of our language is given by:

$$\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_{(n)} = \bigcup_{n \in \mathbb{N}} \mathcal{C}^{\infty}(\mathbb{R}^n).$$

Note that our set of constants is identified with the set of all 0-ary function symbols, *i.e.*, $C = \mathcal{F}_{(0)} = C^{\infty}(\mathbb{R}^0) \cong C^{\infty}(\{*\})$.

The terms of this language are defined, in the usual way, as the smallest set which comprises the individual variables, constant symbols and n-ary function symbols followed by n terms $(n \in \mathbb{N})$.

Functorially, a (set-theoretic) \mathcal{C}^{∞} -ring is a finite product preserving functor from the category \mathcal{C}^{∞} , whose objects are of the form \mathbb{R}^n , $n \in \mathbb{N}$, and whose morphisms are the smooth functions between them, *i.e.*, a finite product preserving functor:

$$A:\mathcal{C}^{\infty}\to\mathbf{Set}$$

Apart from the functorial definition and the "first-order language" definition we just gave, there are many equivalent descriptions. We focus, first, on the universal-algebraic description of a \mathcal{C}^{∞} -ring in **Set**, given in the following:

Definition 2.1. A C^{∞} -structure is a pair $\mathfrak{A} = (A, \Phi)$, in which A is a non-empty set and:

$$\Phi: \bigcup_{n\in\mathbb{N}} C^{\infty}(\mathbb{R}^n, \mathbb{R}) \to \bigcup_{n\in\mathbb{N}} \operatorname{Func}(A^n; A) (f: \mathbb{R}^n \stackrel{C^{\infty}}{\to} \mathbb{R}) \mapsto \Phi(f) := (f^A : A^n \to A) ,$$

is a function, that is, Φ interprets the **symbols**¹ of all smooth real functions of n variables as n-ary function symbols on A.

We call a C^{∞} -struture, $\mathfrak{A} = (A, \Phi)$, a C^{∞} -ring, whenever it preserves projections and all equations between smooth functions. More precisely, we have the following:

Definition 2.2. Let $\mathfrak{A} = (A, \Phi)$ be a \mathcal{C}^{∞} -structure. We say that \mathfrak{A} (or, when there is no danger of confusion, A) is a \mathcal{C}^{∞} -ring if the following is true:

• Given any $n, k \in \mathbb{N}$ and any projection $\pi_k : \mathbb{R}^n \to \mathbb{R}$, we have:

$$(\forall x_1)\cdots(\forall x_n)(\Phi(\pi_k)(x_1,\cdots,x_n)=x_k).$$

• For every $f, g_1, \dots g_n \in \mathcal{C}^{\infty}(\mathbb{R}^m, \mathbb{R})$ with $m, n \in \mathbb{N}$, and every $h \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$ such that $f = h \circ (g_1, \dots, g_n)$, one has:

$$\Phi(f)(\vec{x}) = \Phi(h)(\Phi(g_1)(\vec{x}), \cdots, \Phi(g_n)(\vec{x}))$$

Definition 2.3. Let (A, Φ) and (B, Ψ) be two \mathcal{C}^{∞} -rings. A function $\varphi : A \to B$ is called a **morphism of** \mathcal{C}^{∞} -**rings** or \mathcal{C}^{∞} -**homomorphism** if for any $n \in \mathbb{N}$ and any $f : \mathbb{R}^n \stackrel{\mathcal{C}^{\infty}}{\to} \mathbb{R}$, one has $\Psi(f) \circ \varphi^{(n)} = \varphi \circ \Phi(f)$, where $\varphi^{(n)} = (\varphi, \dots, \varphi) : A^n \to B^n$.

Remark 2.4. (on universal algebraic constructions) It is not difficult to see that \mathcal{C}^{∞} -structures, together with their morphisms (which we call \mathcal{C}^{∞} -morphisms) compose a category, that we denote by \mathcal{C}^{∞} Str, and that \mathcal{C}^{∞} -rings, together with all the \mathcal{C}^{∞} -morphisms between \mathcal{C}^{∞} -rings (which we call \mathcal{C}^{∞} -homomorphisms) compose a full subcategory, \mathcal{C}^{∞} Ring. In particular, since \mathcal{C}^{∞} Ring is a "variety of algebras", *i.e.* it is a class of \mathcal{C}^{∞} -structures which satisfies a given set of equations, (or equivalently, by Birkhoff's HSP Theorem) it is closed under substructures, homomorphic images and products. Moreover:

• \mathcal{C}^{∞} Ring is a concrete category and the forgetful functor, $U : \mathcal{C}^{\infty}$ Ring \rightarrow Set, creates directed inductive colimits;

¹here considered simply as syntactic symbols rather than functions.

- Each set X freely generates a \mathcal{C}^{∞} -ring, $\mathcal{C}^{\infty}(\mathbb{R}^{X})$. In particular, the free \mathcal{C}^{∞} -ring on n generators is (isomorphic to) $\mathcal{C}^{\infty}(\mathbb{R}^{n})$, $n \in \mathbb{N}$. Moreover, $\mathcal{C}^{\infty}(\mathbb{R}^{X}) \cong \varinjlim_{X' \subset_{\operatorname{fin}} X} \mathcal{C}^{\infty}(\mathbb{R}^{X'})$;
- Every \mathcal{C}^{∞} -ring is the homomorphic image of some free \mathcal{C}^{∞} -ring determined by some set, being isomorphic to the quotient of a free \mathcal{C}^{∞} -ring by some congruence;
- The congruences of \mathcal{C}^{∞} -rings are classified by their "ring-theoretical" ideals which are the ideals of a \mathcal{C}^{∞} -ring, or the " \mathcal{C}^{∞} -ideals";
- In C^{∞} Ring one defines "the C^{∞} -coproduct" between two C^{∞} -rings $\mathfrak{A} = (A, \Phi)$ and $\mathfrak{B} = (B, \Psi)$, denoted by $A \otimes_{\infty} B$;
- Using free \mathcal{C}^{∞} -rings and the \mathcal{C}^{∞} -coproduct, one gets the " \mathcal{C}^{∞} -ring of polynomials" on any set S of variables with coefficients in A, given by $A\{x_s \mid s \in S\} = A \otimes_{\infty} \mathcal{C}^{\infty}(\mathbb{R}^S)$.
- Remark 2.5. (on smooth commutative algebra). Every \mathcal{C}^{∞} -ring has an underlying commutative unital ring, so there is a naturally defined forgetful functor $\widetilde{U}: \mathcal{C}^{\infty}\mathbf{Ring} \to \mathbf{CRing}$. Using such forgetful functor, one defines a \mathcal{C}^{∞} -field (resp. \mathcal{C}^{∞} -domain, local \mathcal{C}^{∞} -ring) as a \mathcal{C}^{∞} -ring $\mathfrak{A} = (A, \Phi)$ such that $\widetilde{U}(\mathfrak{A})$ is a field (resp. domain, local ring), when regarded as a commutative unital ring;
- In C^{∞} Ring one has the C^{∞} -ring of fractions of a C^{∞} -ring A with respect to any subset S of A, denoted by $A \stackrel{\eta_S}{\to} A\{S^{-1}\}$, in the same sense one has the ring of fractions with respect to a subset of a commutative unital ring, defined by the following two properties: (i) given any $a \in S$, $\eta_S(a) \in A^{\times}$ and (ii) given any C^{∞} -ring B and any C^{∞} -homomorphism $f: A \to B$ such that $(\forall a \in S)(f(a) \in B^{\times})$ there is a unique C^{∞} -homomorphism $f: A\{S^{-1}\} \to B$ such that $f \circ \eta_S = f$.
- The C^{∞} -ring of fractions can be constructed using universal algebraic tools, and it is given by the quotient

$$A\{S^{-1}\} \cong A\{x_s \mid s \in S\} / \langle \{x_s \cdot s - 1 \mid s \in S\} \rangle.$$

• I. Moerdijk and G. Reyes introduced the notion of the C^{∞} -radical of an ideal I of a C^{∞} -ring $\mathfrak{A} = (A, \Phi)$ (thus, a ring-theoretical ideal) as the set:

$$\sqrt[\infty]{I} = \{a \in A \mid (A/I)\{a + I^{-1}\} \cong \{0\}\}$$

• The C^{∞} -spectrum of a C^{∞} -ring A is the topological space whose underlying set is $X = \{ \mathfrak{p} \subseteq A \mid (\mathfrak{p} \text{ is a prime ideal}) \& (\sqrt[\infty]{\mathfrak{p}} = \mathfrak{p}) \}$ and whose topology

is generated by $\mathcal{B} = \{D^{\infty}(a) \mid a \in A\}$, where $D^{\infty}(a) = \{\mathfrak{p} \in X \mid a \notin \mathfrak{p}\}$. Moreover, \mathcal{B} is closed under finite intersections and arbitrary reunions. We denote this topological space by $\operatorname{Spec}^{\infty}(A)$. Sometimes, when there is no danger of confusion, we write $\operatorname{Spec}^{\infty}(A)$ to denote the underlying set to this topological space, instead of X;

• The \mathcal{C}^{∞} -radical of a \mathcal{C}^{∞} -ideal I of a \mathcal{C}^{∞} -ring A is characterised by:

$$\sqrt[\infty]{I} = \bigcap \{ \mathfrak{p} \in \operatorname{Spec}^{\infty}(A) \mid I \subseteq \mathfrak{p} \}$$

- There is an $ad\ hoc$ definition of saturation for \mathcal{C}^{∞} -rings, the smooth saturation of a subset S of a \mathcal{C}^{∞} -ring A, given by $S^{\infty-\text{sat}} = \{a \in A \mid \eta_S(a) \in A\{S^{-1}\}^{\times}\}$. The smooth saturation is related to the \mathcal{C}^{∞} -radical of an ideal $I \subseteq A$ by $\sqrt[\infty]{I} = \{a \in A \mid I \cap \{a\}^{\infty-\text{sat}} \neq \varnothing\}$;
- Along with the notion of a C^{∞} -radical ideal we have the concept of a reduced C^{∞} -ring, which is a C^{∞} -ring $\mathfrak{A} = (A, \Phi)$ such that $\sqrt[\infty]{(0_A)} = (0_A)$.
- A \mathcal{C}^{∞} -ringed space is a pair (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X : Open $(X)^{\mathrm{op}} \to \mathcal{C}^{\infty}$ **Ring** is a sheaf. A morphism of \mathcal{C}^{∞} -ringed spaces is a pair $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of \mathcal{C}^{∞} -ringed spaces is a continuous map $f: X \to Y$ and a morphism of sheaves $f^{\sharp}: f^{\dashv}[\mathcal{O}_Y] \to \mathcal{O}_X$, where $f^{\dashv}[\mathcal{O}_Y]$ is described in **Definition 4.5** of [12].

3 On von Neumann regular \mathcal{C}^{∞} -rings

We begin by registering a fact that is valid for any C^{∞} -ring regarding to its idempotents and localizations:

Lemma 3.1. Let A be any C^{∞} -ring and $e \in A$ an idempotent element. There are unique isomorphisms:

$$A\{e^{-1}\} \cong A/(1-e) \cong A \cdot e := \{a \cdot e \mid a \in A\}$$

Proof. It is straightforward. A detailed proof is given in Lemma 1 of [10].

Next we give a precise definition of a von Neumann regular \mathcal{C}^{∞} -ring. Loosely speaking, it is a \mathcal{C}^{∞} -ring (A, Φ) such that $\widetilde{U}(A, \Phi)$ is a von Neumann regular commutative unital ring.

Definition 3.2. Let $\mathfrak{A} = (A, \Phi)$ be a \mathcal{C}^{∞} -ring. We say that \mathfrak{A} is a **von Neumann regular** \mathcal{C}^{∞} -**ring** if one (and thus all) of the following equivalent², conditions is satisfied:

- (i) $(\forall a \in A)(\exists x \in A)(a = a^2x);$
- (ii) Every principal ideal of A is generated by an idempotent element, i.e., $(\forall a \in A)(\exists e \in A)(\exists u \in A)(\exists z \in A)((e^2 = e)\&(eu = a)\&(az = e))$
- (iii) $(\forall a \in A)(\exists! b \in A)((a = a^2b)\&(b = b^2a))$

Example 3.3. Consider the set $\mathbb{R}^m = \mathcal{C}^{\infty}(\{*\}) \times \cdots \times \mathcal{C}^{\infty}(\{*\})$, together with the function:

$$\Phi^{(m)}: \bigcup_{n \in \mathbb{N}} \mathcal{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R}) \to \bigcup_{n \in \mathbb{N}} \operatorname{Func}\left((\mathbb{R}^{m})^{n}, (\mathbb{R}^{m})\right)$$

$$\mathbb{R}^{n} \xrightarrow{f} \mathbb{R} \mapsto \mathbb{R}^{m} \times \cdots \times \mathbb{R}^{m} \xrightarrow{\Phi^{(m)}(f)} \mathbb{R}^{m}$$

with:

$$\Phi^{(m)}(f): \qquad (\mathbb{R}^m)^n \to \mathbb{R}^m \\ ((x_j^1)_{j=1}^m, \cdots, (x_j^n)_{j=1}^m) \mapsto (f((x_1^i)_{i=1}^n), \cdots, f((x_m^i)_{i=1}^n))$$

Therefore $\mathfrak{A} = (\mathbb{R}^m, \Phi^{(m)})$ is the product \mathcal{C}^{∞} -ring. In this \mathcal{C}^{∞} -ring we have, in particular, the following binary operation:

$$\Phi^{(m)}(\cdot): \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m ((x_j)_{1 \le j \le m}, (y_j)_{1 \le j \le m}) \mapsto (x_1 \cdot y_1, \cdots, x_m \cdot y_m)$$

so we write $(x_1, \dots, x_m) \cdot (y_1, \dots, y_m) = (x_1 \cdot y_1, \dots, x_m \cdot y_m)$.

We claim that $\mathfrak{A} = (\mathbb{R}^m, \Phi^{(m)})$ is a von Neumann-regular \mathcal{C}^{∞} -ring. In fact, given any $(a_1, \dots, a_m) \in \mathbb{R}^m$, then for each $i \in \{1, \dots, m\}$ such that $a_i \neq 0$, we take $x_i = a_i^{-1}$, and for each i such that $a_i = 0$, we take $x_i = 0$. The element $x = (x_i)_{i=1}^m \in \mathbb{R}^m$ is such that:

$$(a_1, \dots, a_m) = (a_1^2, \dots, a_m^2) \cdot (x_1, \dots, x_m).$$

Thus, $\mathfrak{A} = (\mathbb{R}^m, \Phi^{(m)})$ is a von Neumann-regular \mathcal{C}^{∞} -ring.

²See, Proposition 3.9, given later.

Remark 3.4. Observe that the construction given in the example above can be replicated by replacing \mathbb{R} by any \mathcal{C}^{∞} -field.

Remark 3.5. Let \mathbb{T}' be the theory of Von Neumann regular \mathcal{C}^{∞} -rings in the language $\mathcal{L}' = \mathcal{L} \cup \{*\}$, where * is an 1-ary function symbol, which contains:

- the (equational) \mathcal{L} -axioms for of \mathcal{C}^{∞} -rings;
- the (equational) \mathcal{L}' -axiom

$$\sigma := (\forall x)((x \cdot x^* \cdot x = x) \& (x^* \cdot x \cdot x^* = x^*))$$

that is, $\mathbb{T}' := \mathbb{T} \cup \{\sigma\}$. By the **Theorem of Extension by Definition**, we know that \mathbb{T}' is a conservative extension of \mathbb{T} .

An homomorphism of von Neumann C^{∞} -rings, A and B is simply a C^{∞} -homomorphism between these C^{∞} -rings. We have the following:

Definition 3.6. We denote by $\mathcal{C}^{\infty}\mathbf{v}\mathbf{N}\mathbf{R}\mathbf{i}\mathbf{n}\mathbf{g}$ the category whose objects are von Neumann-regular \mathcal{C}^{∞} -rings and whose morphisms are the \mathcal{C}^{∞} -homomorphisms between them. Thus, $\mathcal{C}^{\infty}\mathbf{v}\mathbf{N}\mathbf{R}\mathbf{i}\mathbf{n}\mathbf{g}$ is a full subcategory of $\mathcal{C}^{\infty}\mathbf{R}\mathbf{i}\mathbf{n}\mathbf{g}$.

The following lemma tells us that, in C^{∞} **vNRing**, taking localizations and taking the ring of fractions with respect to a special element yields, up to isomorphisms, the same object.

Lemma 3.7. If A is a von Neumann regular C^{∞} -ring, then given any $a \in A$ there is some idempotent element $e \in A$ such that $A\{a^{-1}\} \cong A\{e^{-1}\} \cong A/(1-e)$.

Proof. Since $a \cdot y = e$ and $e \cdot x = a$, then $e \in \{a\}^{\infty-\text{sat}}$ and $a \in \{e\}^{\infty-\text{sat}}$. Thus, $\{a\}^{\infty-\text{sat}} = \{e\}^{\infty-\text{sat}}$, so $A\{a^{-1}\} \cong A\{e^{-1}\}$. By Lemma 3.1, it follows that $A\{a^{-1}\} \cong A\{e^{-1}\} \cong A/(1-e)$.

Lemma 3.8. Let A be a von Neumann-regular C^{∞} -ring, $S \subseteq A$ and let $\widetilde{U}: C^{\infty}\mathbf{Ring} \to \mathbf{CRing}$ be the forgetful functor. Then:

$$\widetilde{U}\left(A\{S^{-1}\}\right) = \widetilde{U}(A)[S^{-1}]$$

Proof. We prove the result first in the case $S = \{a\}$ for some $a \in A$. Since A is a von Neumann-regular C^{∞} -ring, by Lemma 3.7, given $a \in A$ there is some idempotent element $e \in A$ such that (a) = (e) and $A\{a^{-1}\} \cong A\{e^{-1}\} \cong A/(1-e)$. Now, $A/(1-e) \cong A[e^{-1}]$, and $A[e^{-1}] \cong \widetilde{U}(A)[e^{-1}]$, and since $\widetilde{U}(A)[e^{-1}] \cong \widetilde{U}(A)[a^{-1}]$, as ordinary commutative rings 3 the result follows.

Whenever S is finite, we have $A\{S^{-1}\} = A\{a^{-1}\}$, for $a = \prod S$, and we can use the proof we have just made. For a general $S \subseteq A$, we write $S = \bigcup_{S' \subseteq_{\text{fin}} S} S'$ and use the fact that $\widetilde{U} : \mathcal{C}^{\infty} \mathbf{Ring} \to \mathbf{CRing}$ preserves directed colimits and that $A\{S^{-1}\} \cong \varinjlim_{S' \subseteq_{\mathbb{R}^{S}} S} A\{S'^{-1}\}$.

As a corollary, we have the following:

Proposition 3.9. C^{∞} **vNRing** $\subseteq C^{\infty}$ **Ring** *is closed under localizations.*

The following result is an adaptation of Proposition 1 of [1] for the C^{∞} -case.

Theorem 3.10. If A is a von Neumann regular C^{∞} -ring then A is a reduced C^{∞} -ring.

Proof. By the **Lemma 3.7**, $\sqrt[\infty]{(0)} = \{a \in A \mid A\{a^{-1}\} \cong \{0\}\}$. Now, let $a \in \sqrt[\infty]{(0)}$ and let $e \in A$ be an idempotent element such that (a) = (e). Then $A/(1-e) \cong A\{e^{-1}\} \cong A\{a^{-1}\}$. Thus, $A/(1-e) \cong \{0\}$ yields $1 \in (1-e)$, so there must exist some $z \in A$ such that $1 = z \cdot (1-e)$, and (1-e) is an invertible idempotent of A, so 1-e=1 and e=0. Thus, a=0, so $\sqrt[\infty]{(0)} \subseteq \{0\}$.

The following result shows us that whenever A is a von Neumann regular \mathcal{C}^{∞} -ring, the notions of \mathcal{C}^{∞} -spectrum, Zariski spectrum, maximal spectrum and thus, the structure sheaf of its affine scheme coincide.

Theorem 3.11. Let A be a von Neumann regular C^{∞} -ring. Then:

- 1) $\sqrt[\infty]{(0)} = \sqrt{(0)} = (0);$
- 2) $\operatorname{Spec}^{\infty}(A) = \operatorname{Specm}(\widetilde{U}(A)) = \operatorname{Spec}(\widetilde{U}(A))$, as topological spaces;

³note that $\widetilde{U}(A/(1-e)) = \widetilde{U}(A)/(1-e) = \widetilde{U}(A)[e^{-1}]$

3) The structure sheaf of A in the category C^{∞} Ring is equal to the structure sheaf of U(A) in the category CRing.

Proof. Ad 1): By Theorem 3.10, since A is a von Neumann regular \mathcal{C}^{∞} -ring, $\sqrt[\infty]{(0)} = (0)$. Since we always have $(0) \subseteq \sqrt{(0)} \subseteq \sqrt[\infty]{(0)}$, it follows that $\sqrt{(0)} = (0)$.

Ad 2): Note that in a von Neumann regular \mathcal{C}^{∞} -ring every prime ideal is a maximal ideal. In fact, let \mathfrak{p} be a prime ideal in A. Given $a+\mathfrak{p}\neq \mathfrak{p}$ in A/\mathfrak{p} , then $a+\mathfrak{p}\in (A/\mathfrak{p})^{\times}$. Since A is a von Neumann regular ring, there exists some $b\in A$ such that aba=a, so $a+\mathfrak{p}=aba+\mathfrak{p}$, $a+\mathfrak{p}=(ab+\mathfrak{p})\cdot (a+\mathfrak{p})$, therefore $ab+\mathfrak{p}=1+\mathfrak{p}$ and, thus, ab=1 in A/\mathfrak{p} .

Hence, every non-zero element of A/\mathfrak{p} is invertible, so A/\mathfrak{p} is a field. Under those circumstances, it follows that \mathfrak{p} is a maximal ideal, so Spec (A) = Specm (A).

We always have Specm $(A) \subseteq \operatorname{Spec}^{\infty}(A)$ and $\operatorname{Spec}^{\infty}(A) \subseteq \operatorname{Spec}(A)$, so:

$$\operatorname{Spec}(A) \subseteq \operatorname{Specm}(A) \subseteq \operatorname{Spec}^{\infty}(A) \subseteq \operatorname{Spec}(A)$$

and $\operatorname{Spec}^{\infty}(A) = \operatorname{Spec}(A)$.

Note, also, that both the topological spaces $\operatorname{Spec}(A)$ and $\operatorname{Spec}^{\infty}(A)$ have the same basic open sets, $D^{\infty}(a) = \{\mathfrak{p} \in \operatorname{Spec}^{\infty}(A) \mid a \notin \mathfrak{p}\} = \{\mathfrak{p} \in \operatorname{Spec}(A) \mid a \notin \mathfrak{p}\} = D(a)$, hence $\operatorname{Spec}^{\infty}(A) = \operatorname{Spec}(A)$ also as topological spaces.

Ad 3). It is an immediate consequence of 2.
$$\Box$$

Proposition 3.12. Let A be a C^{∞} -ring. Then the following are equivalent:

- (i) A is von Neumann-regular, i.e., $(\forall a \in A)(\exists x \in A)(a = a^2x)$.
- ${\rm (ii)}\ \ \textit{Every principal ideal of A is generated by an idempotent element, i.e.,}$

$$(\forall a \in A)(\exists e \in A)(\exists y \in A)(\exists e \in A)((e^2 = e)\&(ey = e)\&(ez = e))$$

(iii)
$$(\forall a \in A)(\exists b \in A)((a = a^2b)\&(b = b^2a))$$

Moreover, when A is von Neumann-regular, then A is $(\mathcal{C}^{\infty}-)$ reduced (i.e., $\sqrt[\infty]{(0)} = \sqrt{(0)} = (0)$) and for each $a \in A$ the idempotent element e satisfying (ii) and the element b satisfying (iii) are uniquely determined.

Proof. The implication (iii) \rightarrow (i) is obvious, so we omit the proof.

Ad (i) \rightarrow (ii): Let I=(a) be a principal ideal of A. By (i), there is $x \in A$ such that $a=a^2x$, so we define e:=ax, which is idempotent since $e^2=(ax)^2=a^2x^2=(a^2x)x=ax=e$. By definition, $e=ax\in(a)=I$, so $(e)\subseteq I$, and since $a=a^2x=(ax)a=ea$ we also have $a\in(e)$, so $I=(a)\subseteq(e)$. Hence, I=(e).

Ad (ii) \rightarrow (i): Let $a \in A$ be any element. By (ii) there are $e \in A$, $y \in A$ and $z \in A$ such that $e^2 = e$, a = ey and e = az. Define $x := z^2y$, and we have $a^2x = a^2z^2y = e^2y = ey = a$.

Ad (i) \rightarrow (iii): Let $a \in A$ be any element. By (i), there is some $x \in A$ such that $a = a^2x$. There can be many $x \in A$ satisfying this role, but there is a "minimal" one: the element ax is idempotent and we can project any chosen x down with this idempotent, obtaining $b := ax^2$. Then $aba = aab^2a = (ax)(ax)a = axa = a$ and $bab = (ax^2)a(ax^2) = (ax)^3x = (ax)x = b$

Now suppose that A is a von Neumann-regular \mathcal{C}^{∞} -ring, and let $a \in A$ be such that $a \in \sqrt[\infty]{(0)}$. Then let e be an idempotent such that ey = a, az = e, for some $y, z \in A$. Then a is such that $A\{a^{-1}\} \cong \{0\}$, and by Lemma 3.7 there is some idempotent $e \in A$ such that $A\{a^{-1}\} \cong A/(1-e)$. Now, $A\{a^{-1}\} \cong \{0\}$ occurs if and only if, $A/(1-e) \cong \{0\}$, i.e., if and only if, (1-e) = A. Since (1-e) = A, it follows that $1-e \in A^{\times}$, and since $e \cdot (1-e) = 0$, it follows by cancellation that e = 0, hence a = ey = 0y = 0.

Let $e, e' \in A$ be idempotents of an arbitrary ring satisfying (e) = (e'). Select $r, r' \in A$ such that er' = e' and e'r = e. Then e' = er' = er'e = e'e = e're' = e'r = e. Thus, if an ideal is generated by an idempotent element, this element is uniquely determined.

Finally, let A be a von Neumann-regular \mathcal{C}^{∞} -ring. Select a member $a \in A$ and consider $b, b' \in A$ such that $a^2b' = a = a^2b, \ b = b^2a, \ b' = b'^2a$. Then $[(b-b')a]^2 = (b-b')^2a^2 = (b-b')(ba^2-b'a^2) = (b-b')(a-a) = (b-b') \cdot 0 = 0$ and $[(b-b') \cdot a]^2 \in (0)$. Since A is \mathcal{C}^{∞} -reduced, $[(b-b') \cdot a]^2 \in (0) = \sqrt[\infty]{(0)}$. By item (1) of Theorem 3.11, $\sqrt[\infty]{(0)} = \sqrt{(0)}$, so $[(b-b') \cdot a]^2 \in \sqrt[\infty]{(0)} = \sqrt{(0)}$ and $(b-b') \cdot a = 0$. Therefore $b-b' = b^2a - b'^2a = (b^2-b'^2)a = (b+b')(b-b')a = (b+b') \cdot 0 = 0$.

Remark 3.13. Let A be a von Neumann-regular \mathcal{C}^{∞} -ring and $e \in A$ be any idempotent element. Then $A \cdot e$ is a von Neumann-regular \mathcal{C}^{∞} -ring.

Indeed, we have $A \cdot e \cong A/(1-e)$ and the latter is an homomorphic image of a von Neumann-regular \mathcal{C}^{∞} -ring, namely A/(1-e) = q[A].

Lemma 3.14. Let A be a local C^{∞} -ring. The only idempotent elements of A are 0 and 1.

Proof. See Lemma 4 of [10].

Proposition 3.15. Let A be a von Neumann-regular C^{∞} -ring whose only idempotent elements are 0 and 1. Then the following assertions are equivalent:

- (i) A is a C^{∞} -field;
- (ii) A is a C^{∞} -domain;
- (iii) A is a local C^{∞} -ring.

Proof. The implications (i) \rightarrow (ii), (i) \rightarrow (iii) are immediate, so we omit their proofs.

Ad (iii) \rightarrow (i): Suppose A is a local \mathbb{C}^{∞} -ring. Since A is a von Neumann-regular \mathbb{C}^{∞} -ring, given any $x \in A \setminus \{0\}$ there exists some idempotent element $e \in A$ such that (x) = (e). However, the only idempotent elements of A are, by Lemma 3.14, 0 and 1. We claim that (x) = (1), otherwise we would have (x) = (0), so x = 0.

Now, (x) = (1) implies $1 \in (x)$, so there is some $y \in A$ such that $1 = x \cdot y = y \cdot x$, and x is invertible. Thus A is a \mathcal{C}^{∞} -field.

Ad (ii) \rightarrow (i): Suppose A is a \mathcal{C}^{∞} -domain. Given any $x \in A \setminus \{0\}$, we have $(\forall y \in A \setminus \{0\})(x \cdot y \neq 0)$, so $(x) \neq (0)$. Since A is a von Neumann-regular \mathcal{C}^{∞} -ring, (x) is generated by some non-zero idempotent element, namely, 1. Hence (x) = (1) and $x \in A^{\times}$.

Proposition 3.16. The inclusion functor $i: \mathcal{C}^{\infty}\mathbf{vNRing} \hookrightarrow \mathcal{C}^{\infty}\mathbf{Ring}$ creates filtered colimits, i.e., $\mathcal{C}^{\infty}\mathbf{vNRing}$ is closed in $\mathcal{C}^{\infty}\mathbf{Ring}$ under filtered colimits.

Proof. (Sketch) Filtered colimits in C^{∞} Ring are formed by taking the colimit of the underlying sets and defining the n-ary functional symbol $f^{(n)}$ of an n-tuple (a_1, \dots, a_n) into a common C^{∞} -ring occurring in the diagram and taking the element $f^{(n)}(a_1, \dots, a_n)$ there. Given a filtered poset

 (I, \leq) and a a filtered family of \mathcal{C}^{∞} -rings, for every element $\alpha \in \varinjlim A_i$, there is some $i \in I$ and $a_i \in A_i$ such that $\alpha = [(a_i, i)]$. Since A_i is a von Neumann-regular \mathcal{C}^{∞} -ring, there must exist some idempotent $e_i \in A_i$ such that $(a_i) = (e_i)$. It suffices to take $\eta = [(e_i, i)] \in \varinjlim A_i$, which is an idempotent element of $\lim A_i$ such that $(\alpha) = ([(a_i, i)]) = ([(e_i, i)]) = (\eta)$.

We have the following important result, which relates von Neumann-regular C^{∞} -rings to the topology of its smooth Zariski spectrum:

Theorem 3.17. Let A be a C^{∞} -ring. The following assertions are equivalent:

- i) A is a von Neumann-regular C^{∞} -ring;
- ii) A is a C^{∞} -reduced C^{∞} -ring (i.e., $\sqrt[\infty]{(0)} = (0)$) and $\operatorname{Spec}^{\infty}(A)$ is a Boolean space, i.e., a compact, Hausdorff and totally disconnected space.

Proof. Ad $(i) \rightarrow (ii)$: it follows from item (1) of Theorem 3.11.

Since $\operatorname{Spec}^{\infty}(A)$ is a spectral space, we only need to show that $\mathcal{B} = \{D^{\infty}(a) \mid a \in A\}$ is a clopen basis for its topology.

Given any $a \in A$, since A is a von Neumann regular \mathcal{C}^{∞} -ring, there is some idempotent element $e \in A$ such that (a) = (e), so $D^{\infty}(a) = D^{\infty}(e)$. We claim that $\operatorname{Spec}^{\infty}(A) \setminus D^{\infty}(e) = D^{\infty}(1-e)$, hence $D^{\infty}(a) = D^{\infty}(e)$ is a clopen set.

In fact, from item (iii) of Lemma 1.2 of [14], $D^{\infty}(e) \cap D^{\infty}(1-e) = D^{\infty}(e \cdot (1-e)) = D^{\infty}(0) = \{ \mathfrak{p} \in \operatorname{Spec}^{\infty}(A) \mid 0 \notin \mathfrak{p} \} = \varnothing$. Moreover, for every prime ideal \mathfrak{p} we have $e \notin \mathfrak{p}$ or $(1-e) \notin \mathfrak{p}$ (for if this was not the case, we would have a prime ideal \mathfrak{p}_0 such that $e \in \mathfrak{p}_0$ and $(1-e) \in \mathfrak{p}_0$, so $1 = (1-e) + e \in \mathfrak{p}_0$, which would not be a proper ideal). Thus $\operatorname{Spec}^{\infty}(A) = D^{\infty}(e) \cup D^{\infty}(1-e)$.

Ad $(ii) \to (i)$. Since $\operatorname{Spec}^{\infty}(A)$ is a Boolean space, it is a Hausdorff space and for every $a \in A$, $D^{\infty}(a)$ is compact, hence it is closed. Thus, we conclude that for every $a \in A$, $D^{\infty}(a)$ is a clopen set, so $\operatorname{Spec}^{\infty}(A) \setminus D^{\infty}(a)$ is a clopen subset of $\operatorname{Spec}^{\infty}(A)$.

Now, for every clopen C in $\operatorname{Spec}^{\infty}(A)$ there is some $b \in A$ such that $C = D^{\infty}(b)$. Since C is clopen in $\operatorname{Spec}^{\infty}(A)$, it is in particular an open set, and since $\{D^{\infty}(a) \mid a \in A\}$ is a basis for the topology of $\operatorname{Spec}^{\infty}(A)$, there is a family, $\{b_i \in A \mid i \in I\}$, of elements of A such that $C = \bigcup_{i \in I} D^{\infty}(b_i)$. Since

C is compact, there is a finite subset $I' \subseteq I$ such that $C = \bigcup_{i \in I'} D^{\infty}(b_i)$. Applying the item (iii) of Lemma 1.4 of [14], we conclude that there is some element $b \in A$ such that $\bigcup_{i \in I'} D^{\infty}(b_i) = D^{\infty}(b)$.

Since $\operatorname{Spec}^{\infty}(A) \setminus D^{\infty}(a)$ is clopen, there is some $d \in A$ such that $\operatorname{Spec}^{\infty}(A) \setminus D^{\infty}(a) = D^{\infty}(d)$. We have $\varnothing = D^{\infty}(a) \cap D^{\infty}(d) = D^{\infty}(a \cdot d) = \{ \mathfrak{p} \in \operatorname{Spec}^{\infty}(A) \mid a \cdot d \notin \mathfrak{p} \}$, so $(\forall \mathfrak{p} \in \operatorname{Spec}^{\infty}(A))(a \cdot d \in \mathfrak{p})$, hence $a \cdot d \in \bigcap \operatorname{Spec}^{\infty}(A) = \sqrt[\infty]{(0)} = (0)$, where the last equality is due to the fact that A is a \mathcal{C}^{∞} -reduced \mathcal{C}^{∞} -ring.

We have, then, $a \cdot d = 0$. Also, we have $D^{\infty}(a^2 + d^2) = D^{\infty}(a) \cup D^{\infty}(d) = \operatorname{Spec}^{\infty}(A) = D^{\infty}(1)$. By item (i) of Lemma 1.4 of [14], $D^{\infty}(a^2 + d^2) \subseteq D^{\infty}(1)$ implies $a^2 + d^2 \in \{1\}^{\infty-\operatorname{sat}}$. Since $\{1\}^{\infty-\operatorname{sat}} = A^{\times}$, it follows that $a^2 + d^2 \in A^{\times}$, so there is some $y \in A$ such that $y \cdot (a^2 + d^2) = 1$, $ya^2 + yd^2 = 1$. Since $a \cdot d = 0$, we get $a(a^2y) + a(b^2y) = a \cdot 1 = aa^2(a \cdot y) = a$.

The following proposition will be useful to characterize the von Neumann-regular \mathcal{C}^{∞} -rings by means of the ring of global sections of the structure sheaf of its affine scheme.

Proposition 3.18. If a C^{∞} -ring A is a von-Neumann-regular C^{∞} -ring and $\mathfrak{p} \in \operatorname{Spec}^{\infty}(A)$, then $A/\mathfrak{p} \cong A\{A \setminus \mathfrak{p}^{-1}\}$ and both are C^{∞} -fields.

Proof. We are going to show that the only maximal ideal of $A\{A \setminus \mathfrak{p}^{-1}\}$, $\mathfrak{m}_{\mathfrak{p}}$ is such that $\mathfrak{m}_{\mathfrak{p}} \cong \{0\}$.

Let $\eta_{\mathfrak{p}}: A \to A\{A \setminus \mathfrak{p}^{-1}\}$ be the localization morphism of A with respect to $A \setminus \mathfrak{p}$. We have $\mathfrak{m}_{\mathfrak{p}} = \langle \eta_{\mathfrak{p}}[A \setminus \mathfrak{p}] \rangle = \{ \eta_{\mathfrak{p}}(a) / \eta_{\mathfrak{p}}(b) \mid (a \in \mathfrak{p}) \& (b \in A \setminus \mathfrak{p}) \}$. We must show that for every $a \in \mathfrak{p}$, $\eta_{\mathfrak{p}}(a) = 0$, which is equivalent, by Theorem 1.4 of [14], to assert that for every $a \in \mathfrak{p}$ there is some $c \in (A \setminus \mathfrak{p})^{\infty-\text{sat}} = A \setminus \mathfrak{p}$ such that $c \cdot a = 0$ in A.

Ab absurdo, suppose $\mathfrak{m}_{\mathfrak{p}} \neq \{0\}$, so there is $a \in \mathfrak{p}$ such that $\eta_{\mathfrak{p}}(a) \neq 0$, i.e., such that for every $c \in A \setminus \mathfrak{p}$, $c \cdot a \neq 0$. Since A is a von Neumann-regular C^{∞} -ring, for this a there is some idempotent $e \in \mathfrak{p}$ such that (a) = (e).

Since $a \in (e)$, there is some $\lambda \in A$ such that $a = \lambda \cdot a$, hence:

$$0 \neq \eta_{\mathfrak{p}}(a) = \eta_{\mathfrak{p}}(\lambda \cdot e) = \eta_{\mathfrak{p}}(\lambda) \cdot \eta_{\mathfrak{p}}(e)$$

and $\eta_{\mathfrak{p}}(e) \neq 0$.

Since $\eta_{\mathfrak{p}}(e) \neq 0$,

$$(\forall d \in A \setminus \mathfrak{p})(d \cdot e \neq 0). \tag{3.1}$$

Since e is an idempotent element, $1 - e \notin \mathfrak{p}$, for if $1 - e \in \mathfrak{p}$ then $e + (1 - e) = 1 \in \mathfrak{p}$ and \mathfrak{p} would not be a proper prime ideal.

We have also:

$$e \cdot (1 - e) = 0, \tag{3.2}$$

The equation (3.2) contradicts (3.1), so $\mathfrak{m}_{\mathfrak{p}} \cong \{0\}$ and $A\{A \setminus \mathfrak{p}^{-1}\}$ is a C^{∞} -field.

As a consequence, we register another proof of $(iii) \rightarrow (i)$ of Proposition 3.15.

Corollary 3.19. Let $\mathfrak{A} = (A, \Phi)$ be a local von Neumann-regular \mathcal{C}^{∞} -ring. Then \mathfrak{A} is a \mathcal{C}^{∞} -field.

Proof. (Sketch)Let $\mathfrak{m} \subseteq A$ be the unique maximal ideal of A. By Proposition 3.18, since A is von Neumann-regular, $A_{\mathfrak{m}} \cong A/\mathfrak{m}$, which is a \mathcal{C}^{∞} -field. Also, $A_{\mathfrak{m}} = A\{A \setminus \mathfrak{m}^{-1}\} = A\{A^{\times -1}\} \cong A$, and since $A_{\mathfrak{m}}$ is isomorphic to a \mathcal{C}^{∞} -field, it follows that A is a \mathcal{C}^{∞} -field.

Summarizing, we have the following result:

Theorem 3.20. If A is a von Neumann-regular C^{∞} -ring, then the set $\operatorname{Spec}^{\infty}(A)$ with the smooth Zariski topology, $\operatorname{Zar}^{\infty}$, is a Boolean topological space, by Theorem 3.17. Moreover, by Proposition 3.18, for every $\mathfrak{p} \in \operatorname{Spec}^{\infty}(A)$.

$$A_{\mathfrak{p}} = \varinjlim_{a \neq \mathfrak{p}} A\{a^{-1}\} \cong A\{A \setminus \mathfrak{p}^{-1}\}$$

is a C^{∞} -field.

The above theorem suggests us that von Neumann-regular \mathcal{C}^{∞} -rings behave much like ordinary von Neumann-regular commutative unital rings. In the next sections we are going to explore this result using sheaf theoretic machinery.

Proposition 3.21. The limit in C^{∞} Ring of a diagram of von Neumann-regular C^{∞} -rings is a von Neumann-regular C^{∞} -ring. In particular, C^{∞} vNRing is a complete category and the inclusion functor from the category of all von Neumann regular C^{∞} -rings, C^{∞} vNRing, to C^{∞} Ring preserves all limits.

Proof. (Sketch) It is clear from the definition that the class $\mathcal{C}^{\infty}\mathbf{vNRing}$ of von Neumann-regular \mathcal{C}^{∞} -rings is closed under arbitrary products in the class $\mathcal{C}^{\infty}\mathbf{Ring}$, of all \mathcal{C}^{∞} -rings. Thus it suffices to show that it is closed under equalizers.

So let A, B be von Neumann-regular rings and $f, g : A \to B$ be C^{∞} -homomorphisms. Their equalizer in C^{∞} Ring is given by the set $E = \{a \in A \mid f(a) = g(a)\}$, endowed with the restricted ring operations from A.

To see that E is von Neumann-regular, we need to show that for $a \in E$, the (unique) element b satisfying $ab^2 = b$ and $a^2b = a$ also belongs to E. But this is true since the quasi-inverse element is unique and is preserved under \mathcal{C}^{∞} -homomorphisms.

Proposition 3.22. The category C^{∞} **vNRing** is the smallest subcategory of C^{∞} **Ring** closed under limits containing all C^{∞} -fields.

Proof. Clearly all \mathcal{C}^{∞} -fields are von Neumann-regular \mathcal{C}^{∞} -rings, and by Proposition 3.21 so are limits of \mathcal{C}^{∞} -fields. Thus \mathcal{C}^{∞} **vNRing** contains all limits of \mathcal{C}^{∞} -fields. On the other hand the ring of global sections of a sheaf can be expressed as a limit of a diagram of products and ultraproducts of the stalks (by Lemma 2.5 of [13]). All these occurring (ultra)products are von Neumann-regular \mathcal{C}^{∞} -rings as well and hence so is their limit, by Proposition 3.21.

4 Von Neumann-regular \mathcal{C}^{∞} -Rings and Boolean Algebras

In this section we also apply von Neumann regular \mathcal{C}^{∞} -ring to naturally represent Boolean Algebras in a strong sense: i.e., not only all Boolean algebras are isomorphic to the Boolean algebra of idempotents of a von Neumann regular \mathcal{C}^{∞} -ring, as every homomorphism between such Boolean algebras of idempotents is (essentially) induced by a \mathcal{C}^{∞} -homomorphism.

Remark 4.1. By Stone Duality, there is an anti-equivalence of categories between the category of Boolean algebras, **BA**, and the category of Boolean spaces, **BoolSp**.

Under this anti-equivalence, a Boolean space (X, τ) is mapped to the Boolean algebra of clopen subsets of (X, τ) , Clopen (X):

Clopen: **BoolSp**
$$\to$$
 BA
$$(X, \tau) \xrightarrow{f} (Y, \sigma) \mapsto \text{Clopen}(Y) \xrightarrow{f^{-1} \upharpoonright} \text{Clopen}(X)$$

The quasi-inverse functor is given by the Stone space functor: a Boolean algebra B is mapped to the Stone space of B, $\operatorname{Stone}(B) = (\{U \subseteq B : U \text{ is an ultrafilter in } B\}, \tau_B)$, where τ_B is the topology whose basis is given by the image of the map $t_B : B \to \mathscr{P}(\operatorname{Stone}(B))$ (the set of all subsets of $\operatorname{Stone}(B)$), $b \mapsto t_B(b) = S_B(b) = \{U \in \operatorname{Stone}(B) : b \in U\}$.

Stone: **BA**
$$\rightarrow$$
 BoolSp

$$B \xrightarrow{h} B' \mapsto \text{Stone}(B') \xrightarrow{h^{-1} \upharpoonright} \text{Stone}(B)$$

Remark 4.2. Let $(A', +', \cdot', 0', 1')$ be any commutative unital ring, $B(A') = \{e \in A' \mid e^2 = e\}$ and denote by $\land', \lor', *', \le', 0'$ and 1' its respective associated Boolean algebra operations, relations and constant symbols as constructed above. Note that for any commutative unital ring homomorphism $f: A \to A'$, the map $B(f) := f \upharpoonright_{B(A)}: B(A) \to B(A')$ is such that:

- (i) $B(f)[B(A)] \subseteq B(A')$;
- (ii) $(\forall e_1 \in A)(\forall e_2 \in A)(B(f)(e_1 \land e_2) = f \upharpoonright_{B(A)} (e_1 \cdot e_2) = (f \upharpoonright_{B(A)} (e_1)) \cdot (f \upharpoonright_{B(A)} (e_2)) = B(f)(e_1) \land B(f)(e_2))$
- (iii) $(\forall e_1 \in A)(\forall e_2 \in A)(B(f)(e_1 \lor e_2) = f \upharpoonright_{B(A)} (e_1 + e_2 e_1 \cdot e_2) = (f \upharpoonright_{B(A)} (e_1)) + f \upharpoonright_{B(A)} (e_2) f \upharpoonright_{B(A)} (e_1) \cdot f \upharpoonright_{B(A)} (e_2) = B(f)(e_1) \lor g(f)(e_2))$

(iv)
$$(\forall e \in B(A))(B(f)(e^*) = f \upharpoonright_{B(A)} (1 - e) = f \upharpoonright_{B(A)} (1) - f \upharpoonright_{B(A)} (e) = 1' - f \upharpoonright_{B(A)} (e) = B(f)(e)^*)$$

hence a morphism of Boolean algebras.

We also have, for every ring A, $B(\mathrm{id}_A) = \mathrm{id}_{B(A)}$ and given any $f: A \to A'$ and $f': A' \to A''$, $B(f' \circ f) = B(f') \circ B(f)$, since $B(f) = f \upharpoonright_{B(A)}$, so:

$$B: \quad \begin{array}{ccc} \mathbf{CRing} & \to & \mathbf{BA} \\ & A & \mapsto & B(A) \\ & A \xrightarrow{f} A' & \mapsto & B(A) \xrightarrow{B(f)} B(A') \end{array}$$

is a (covariant) functor.

Since we can regard any C^{∞} -ring A as a commutative unital ring via the forgetful functor $\widetilde{U}: C^{\infty}\mathbf{Ring} \to \mathbf{CRing}$, we have a (covariant) functor:

$$\begin{array}{cccc} \widetilde{B}: & \mathcal{C}^{\infty}\mathbf{Ring} & \to & \mathbf{BA} \\ & A & \mapsto & \widetilde{B}(A) := (B \circ U)(A) \\ & A \xrightarrow{f} A' & \mapsto & \widetilde{B}(A) \xrightarrow{\widetilde{B}(f)} \widetilde{B}(A') \end{array}$$

Now, if A is any C^{∞} -ring, we can define the following map:

$$j_A: \widetilde{B}(A) \to \operatorname{Clopen}(\operatorname{Spec}^{\infty}(A))$$
 $e \mapsto D^{\infty}(e) = \{\mathfrak{p} \in \operatorname{Spec}^{\infty}(A) \mid e \notin \mathfrak{p}\}$

Claim 1: The map defined above is a Boolean algebra homomorphism.

Note that for any $e \in B(A)$, $D^{\infty}(e^*) = D^{\infty}(1 - e) = \operatorname{Spec}^{\infty}(A) \setminus D^{\infty}(e) = D^{\infty}(e)^*$, since:

$$D^{\infty}(e) \cap D^{\infty}(1-e) = D^{\infty}(e \cdot (1-e)) = D^{\infty}(0) = \varnothing$$

and

$$D^{\infty}(e) \cup D^{\infty}(e^*) = D^{\infty}(e) \cup D^{\infty}(1-e) = D^{\infty}(e^2 + (1-e)^2) = D^{\infty}(e + (1-e)) = D^{\infty}(1) = \operatorname{Spec}^{\infty}(A).$$

Hence $j_A(e^*) = j_A(1-e) = D^{\infty}(1-e) = \operatorname{Spec}^{\infty}(A) \setminus D^{\infty}(e) = D^{\infty}(e)^* = j_A(e)^*$.

By the item (iii) of Lemma 1.4 of [14], $D^{\infty}(e \cdot e') = D^{\infty}(e) \cap D^{\infty}(e')$, so $\jmath_A(e \wedge e') = D^{\infty}(e \cdot e') = D^{\infty}(e) \cap D^{\infty}(e') = \jmath_A(e) \cap \jmath_A(e')$. Last,

$$\jmath_{A}(e \vee e') = \jmath_{A}(e + e' - e \cdot e') = D^{\infty}(e + e' - e \cdot e') = D^{\infty}(e^{2}) \cup D^{\infty}(e' - e \cdot e') = D^{\infty}(e) \cup D^{\infty}(e' \cdot (1 - e)) = D^{\infty}(e) \cup [D^{\infty}(e') \cap D^{\infty}(1 - e)] = D^{\infty}(e) \cup D^{\infty}(e') \cap [D^{\infty}(e) \cup D^{\infty}(e')] \cap [D^{\infty}(e) \cup D^{\infty}(e')] \cap [D^{\infty}(e) \cup D^{\infty}(e')] = D^{\infty}(e) \cup D^{\infty}(e') = \jmath_{A}(e) \cup \jmath_{A}(e'),$$

and the claim is proved.

Claim 2: $j_A : \widetilde{B}(A) \to \text{Clopen}(\operatorname{Spec}^{\infty}(A))$ is an injective map.

In order to prove that $j_A : \widetilde{B}(A) \to \operatorname{Clopen}(\operatorname{Spec}^{\infty}(A))$ is an injective map, it suffices to show that $j_A^{-1}[\operatorname{Spec}^{\infty}(A)] = \{1\}.$

In order to prove it, we need the following:

Claim 2.1:
$$(j_A(e) = \operatorname{Spec}^{\infty}(A)) \iff (e \in A^{\times}).$$

In fact, $a \in A^{\times} \Rightarrow D^{\infty}(a) = \operatorname{Spec}^{\infty}(A)$. On the other hand, if $a \notin A^{\times}$ then there is some maximal \mathcal{C}^{∞} -radical prime ideal $\mathfrak{m} \in \operatorname{Spec}^{\infty}(A)$ such that $a \in \mathfrak{m}$. If $\mathfrak{m} \notin D^{\infty}(a)$ then $j_A(a) = D^{\infty}(a) \neq \operatorname{Spec}^{\infty}(A)$. Hence $j_A(a) = \operatorname{Spec}^{\infty}(A) \Rightarrow a \in A^{\times}$, and the claim is proved.

Let $e \in \widetilde{B}(A)$ be such that $j_A(e) = D^{\infty}(e) = \operatorname{Spec}^{\infty}(A)$, so by Claim 2.1, it follows that $e \in A^{\times}$ and since e is idempotent, e = 1, that is $j_A^{\dashv}[\operatorname{Spec}^{\infty}(A)] = \{1\}.$

The injective map $j_A : \widetilde{B}(A) \to \operatorname{Spec}^{\infty}(A)$ suggests that the idempotent elements of the Boolean algebra $\widetilde{B}(A)$ associated with a \mathcal{C}^{∞} -ring A hold a strong relationship with the canonical basis of the Zariski topology of $\operatorname{Spec}^{\infty}(A)$. We are going to show that these idempotent elements, in the case of the von Neumann-regular \mathcal{C}^{∞} -rings, represent all the Boolean algebras.

Theorem 4.3. Let A be a von Neumann regular C^{∞} -ring. The map:

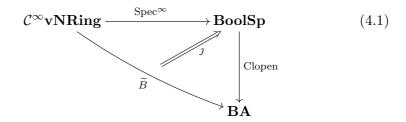
$$j_A: \widetilde{B}(A) \to \operatorname{Clopen}(\operatorname{Spec}^{\infty}(A))$$
 $e \mapsto D^{\infty}(e) = \{\mathfrak{p} \in \operatorname{Spec}^{\infty}(A) \mid e \notin \mathfrak{p}\}$

is an isomorphism of Boolean algebras.

Proof. We already know that j_A is an injective Boolean algebras homomorphism, so it suffices to prove that it is also surjective. This is achieved noting that given any $a_1, a_2, \dots, a_n \in A$, there is some $b \in A$ such that $D^{\infty}(a_1) \cup D^{\infty}(a_2) \cup \dots \cup D^{\infty}(a_n) = D^{\infty}(b)$, which is proved by induction, using item (iii) of Lemma 1.4 of [14] for the case n = 2.

Since A is a von Neumann-ring, given this $b \in A$, there is an idempotent element, e, such that (b) = (e), so $D^{\infty}(b) = D^{\infty}(e)$. Thus, j_A is surjective, as claimed.

Theorem 4.4. We have the following diagram of categories, functors and a natural isomorphism:



Proof. First note that since A is a von Neumann-regular \mathcal{C}^{∞} -ring, the set of the compact open subsets of (the Boolean space) $\operatorname{Spec}^{\infty}(A)$ equals $\operatorname{Clopen}(\operatorname{Spec}^{\infty}(A))$.

On the one hand, given a von Neumann regular \mathcal{C}^{∞} -ring A, we have Clopen (Spec^{∞} (A)) = $\jmath_A[\widetilde{B}(A)] = \{D^{\infty}(e) \mid e \in \widetilde{B}(A)\}.$

For every von Neumann regular C^{∞} -ring A, by Theorem 4.3, we have the following isomorphism of Boolean algebras:

$$j_A: \widetilde{B}(A) \to \operatorname{Clopen}(\operatorname{Spec}^{\infty}(A))$$
 $e \mapsto D^{\infty}(e)$

It is easy to see that for every \mathcal{C}^{∞} -homomorphism $f: A \to A'$, we have the following commutative diagram:

$$\begin{split} \widetilde{B}(A) & \xrightarrow{\jmath_A} \operatorname{Clopen}\left(\operatorname{Spec}^{\infty}\left(A\right)\right) \\ & \widetilde{B}(f) \bigg\downarrow & \qquad & \downarrow \operatorname{Clopen}\left(\operatorname{Spec}^{\infty}(f)\right) \\ & \widetilde{B}(A') & \xrightarrow{\jmath_{A'}} \operatorname{Clopen}\left(\operatorname{Spec}^{\infty}\left(A'\right)\right) \end{split}$$

In fact, given $e \in \widetilde{B}(A)$, we have, on the one hand, $\jmath_A(e) = D_A^{\infty}(e)$ and $\operatorname{Clopen}(\operatorname{Spec}^{\infty}(f))(D_A^{\infty}(e)) = D_{A'}^{\infty}(f(e))$. On the other hand, $\jmath_{A'} \circ \widetilde{B}(f)(e) = \jmath_{A'}(f(e)) = D_{A'}^{\infty}(f(e))$, so the diagram (4.1) commutes.

Thus, j is a natural transformation and $j: \widetilde{B} \Longrightarrow \text{Clopen} \circ \text{Spec}^{\infty}$ is a natural isomorphism and the diagram "commutes" (up to natural isomorphism).

The following lemma is a well-known result, of which the authors could not find a proof anywhere in the current literature. The authors provide a proof in Lemma 6 of [10].

Lemma 4.5. Let (X, τ) be a Boolean topological space, and let:

$$\mathcal{R} = \{ R \subseteq X \times X \mid (R \text{ is an equivalence relation on } X) \& \\ \& ((X/R) \text{ is a discrete compact space}) \}$$

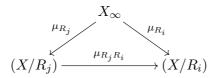
which is partially ordered by inclusion. Whenever $R_i, R_j \in \mathcal{R}$ are such that $R_j \subseteq R_i$, we have the continuous surjective map:

$$\mu_{R_j R_i} : (X/R_j) \rightarrow (X/R_i)$$
 $[x]_{R_j} \mapsto [x]_{R_j}$

so we have the inverse system $\{(X/R_i); \mu_{R_jR_i} : (X/R_j) \to (X/R_i)\}$. By definition (see, for instance, [11]),

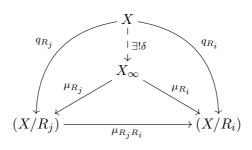
$$\varprojlim_{R \in \mathcal{R}} (X/R) = \{([x]_{R_i})_{R_i \in \mathcal{R}} \in \prod_{R \in \mathcal{R}} (X/R) \mid R_j \subseteq R_i \to ([x]_{R_i} = \mu_{R_j R_i}([x]_{R_j}))\}$$

Let X_{∞} denote $\varprojlim_{R \in \mathcal{R}} \frac{X}{R}$, so we have the following cone:



We consider X_{∞} together with the induced subspace topology of $\prod_{R \in \mathcal{R}} (X/R)$.

By the universal property of X_{∞} , there is a unique continuous map map $\delta: X \to X_{\infty}$ such that the following diagram commutes:



We claim that such a $\delta: X \to X_{\infty}$ is a homeomorphism, so:

$$X \cong \varprojlim_{R \in \mathcal{R}} (X/R)$$

that is, X a profinite space.

Proof. See Lemma 6 of [10].

Let **BoolSp** be the category whose objects are all the Boolean spaces and whose morphisms are all the continuous functions between Boolean spaces. Given any Boolean space (X, τ) , let

$$\mathcal{R}_X = \{ R \subseteq X \times X \mid R \text{ is an equivalence relation on } X \text{ and}$$
 $(X/R) \text{ is discrete and compact} \}$

We are going to describe an equivalence functor between **BoolSp** and the category of profinite topological spaces: this is a known result, but we cannot found a reference containing a detailed description.

First we note that given any continuous function $f: X \to X'$ and any $R' \in \mathcal{R}_{X'}$,

$$R_f := (f \times f)^{\dashv} [R'] \subseteq X \times X$$

is an equivalence relation on X and the following diagram:

$$X \xrightarrow{p_{R_f}} X'$$

$$\downarrow^{p_{R_f}} \downarrow^{p'_R} \downarrow^{p'_R}$$

$$(X/R_f) \xrightarrow{f_{R_fR'}} (X'/R')$$

where $p_{R_f}: X \to (X/R_f)$ and $p_{R'}: X' \to (X'/R')$ are the canonical projections, commutes.

We know, by Theorem 4.3 of [11] that $f_{R_fR'}:(X/R_f)\to (X'/R')$ is a continuous map, and it is easy to see that $f_{R_fR'}$ is injective, as we are going to show.

Given any $[x]_{R_f}$, $[y]_{R_f} \in \frac{X}{R_f}$ such that $[x]_{R_f} \neq [y]_{R_f}$, *i.e.*, such that $(x,y) \notin R_f$, we have $(f(x),f(y)) \notin R'$, *i.e.*, $[f(x)]_{R'} \neq [f(y)]_{R'}$. Thus, since:

$$f_{R_fR'}([x]_{R_f}) = (f_{R_fR'} \circ p_{R_f})(x) = (p_{R'} \circ f)(x) = [f(x)]_{R'}$$

and

$$f_{R_f R'}([y]_{R_f}) = (f_{R_f R'} \circ p_{R_f})(y) = (p_{R'} \circ f)(y) = [f(y)]_{R'}$$

it follows that $f_{R_fR'}([x]_{R_f}) \neq f_{R_fR'}([y]_{R_f})$.

Since $f_{R_fR'}: \frac{X}{R_f} \to \frac{X'}{R'}$ is an injective continuous map and $\frac{X'}{R'}$ is discrete, it follows that given any $[x']_{R'} \in \frac{X'}{R'}$:

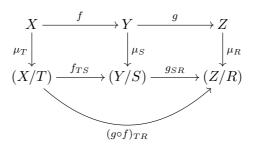
$$f_{R_fR'}^\dashv[\{[x']_{R'}\}] = \begin{cases} \varnothing, \text{ if } [x']_{R'} \notin f_{R_fR'}[X/R_f], \\ \{*\}, \text{ otherwise} \end{cases},$$

so every singleton of $\frac{X}{R_f}$ is an open subset of $\frac{X}{R_f}$, and $\frac{X}{R_f}$ is discrete. Also, since X is compact, $\frac{X}{R_f}$ is compact, and it follows that and $R_f \in \mathcal{R}_X$.

Now, if $R'_1, R'_2 \in \mathcal{R}_{X'}$ are such that $R'_1 \subseteq R'_2$, then $R'_{1f} \subseteq R'_{2f}$. In fact, given $(x,y) \in R'_{1f}$, we have $(f \times f)(x,y) \in R'_1$, and since $R'_1 \subseteq R'_2$, it follows that $(f \times f)(x,y) \in R'_2$, so $(x,y) \in R'_{2f}$.

Let X,Y,Z be Boolean spaces, $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ be two Boolean spaces homomorphisms and $R \in \mathcal{R}_Z$. We easily see that $((g \circ f) \times (g \circ f))^{\dashv}[R] = (f \times f)^{\dashv}[(g \times g)^{\dashv}[R]]$.

Denoting $T := (f \times f)^{\dashv} [(g \times g)^{\dashv} [R]]$ and $S := (g \times g)^{\dashv} [R]$, we have the following commutative diagram:



Given a continuous map between Boolean spaces, $f:X\to X'$, we can define a map $\check{f}:\varprojlim_{R\in\mathcal{R}_X}(X/R)\to\varprojlim_{R'\in\mathcal{R}_{X'}}(X'/R')$ in a functorial manner.

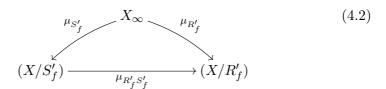
Let $R', S' \in \mathcal{R}_{X'}$ be any two equivalence relations such that $R' \subseteq S'$, so given $f: X \to X'$ the following diagram commutes:

$$(X/S'_f) \xrightarrow{\mu_{R'_f S'_f}} (X'/R'_f)$$

$$f_{S'_f S'} \downarrow \qquad \qquad \downarrow^{f_{R'_f R'}}$$

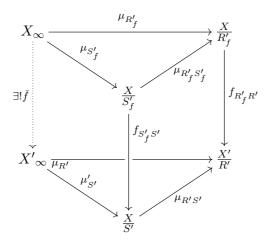
$$(X'/S') \xrightarrow{\mu_{R'S'}} (X'/R')$$

and since the diagram (4.2) commutes, the diagram (4.3) also commutes.



$$(X'/S') \xrightarrow{f_{R'_f R'} \mu_{R'_f}} X_{\infty} \xrightarrow{f_{R'_f R'} \mu_{R'_f}} (4.3)$$

By the universal property of X'_{∞} , there is a unique $\check{f}: X_{\infty} \to X'_{\infty}$ such that the following prism is commutative:



It can be proven that:

$$\begin{array}{ccccc} \Delta: & \mathbf{BoolSp} & \to & \mathbf{ProfinSp} \\ & X & \mapsto & X_{\infty} = \varprojlim_{R \in \mathcal{R}_X} (X/R) \\ & X \stackrel{f}{\longrightarrow} X' & \mapsto & X_{\infty} \stackrel{\check{f}}{\longrightarrow} X'_{\infty} \end{array}$$

is a functor using the uniqueness properties regarding X_{∞} and \check{f} (for details, see [10]).

Theorem 4.6. Let \mathbb{K} be a C^{∞} -field. Following the notation of Lemma 4.5, define the contravariant functor:

$$\begin{array}{cccc} \widehat{k}: & \mathbf{BoolSp} & \to & \mathcal{C}^{\infty}\mathbf{vNRing} \\ & (X,\tau) & \mapsto & A_X:=\varinjlim_{R \in \mathcal{R}} \mathbb{K}^{U\left(\frac{X}{R}\right)} \end{array}$$

Then there is a natural isomorphism:

$$\epsilon: \mathrm{Id}_{\mathbf{BoolSp}} \stackrel{\cong}{\Rightarrow} \mathrm{Spec}^{\infty} \circ \widehat{k}$$

Therefore:

- The functor \hat{k} is faithful;
- The functor $\operatorname{Spec}^{\infty} : \mathcal{C}^{\infty}\mathbf{vNRing} \to \mathbf{BoolSp}$ is "full up to conjugation";

• The functor $\operatorname{Spec}^{\infty}: \mathcal{C}^{\infty}\mathbf{vNRing} \to \mathbf{BoolSp}$ is isomorphism-dense. In particular: for each (X,τ) be a Boolean space, there is a von Neumann-regular \mathcal{C}^{∞} -ring, A_X , such that $\operatorname{Spec}^{\infty}(A_X) \approx X$.

Proof. By the Theorem 34, p. 118 of [6],

$$\operatorname{Spec}^{\infty}(A_X) \approx \varprojlim_{R \in \mathcal{R}} \operatorname{Spec}^{\infty}(\mathbb{K}^{U(X/R)}).$$

By the Theorem 33, p. 118 of [6],

$$\operatorname{Spec}^{\infty}(\mathbb{K}^{U(X/R)}) \approx X/R,$$

SO

$$\varprojlim_{R\in\mathcal{R}}\operatorname{Spec}^{\infty}\left(\mathbb{K}^{U\left(\frac{X}{R}\right)}\right)\approx\varprojlim_{R\in\mathcal{R}}\left(X/R\right)\approx X$$

Since the homeomorphisms above are natural, just take $\epsilon_X: X \to \operatorname{Spec}^{\infty}(A_X)$ as the composition of these homeomorphisms.

In particular, $\operatorname{Spec}^{\infty}(A_X) \approx X$ and $\operatorname{Spec}^{\infty}$ is an isomorphism-dense functor.

Let $\phi: X \to X'$ be a continuous function between Boolean spaces. Since ϵ is a natural isomorphism, we have $\phi = \epsilon_{X'}^{-1} \circ \operatorname{Spec}^{\infty}(\widehat{k}(\phi)) \circ \epsilon_{X}$. In particular, there exists a homomorphism of von Neumann regular \mathcal{C}^{∞} -rings $f: A' \to A$ and homeomorphisms of Boolean spaces $\psi: X \to \operatorname{Spec}^{\infty}(A)$ and $\psi': X' \to \operatorname{Spec}^{\infty}(A')$, such that

$$\phi = {\psi'}^{-1} \circ \operatorname{Spec}^{\infty}(f) \circ \psi,$$

thus $\operatorname{Spec}^{\infty}$ is a full up to conjugatization functor.

Let $\phi, \psi: X \to X'$ be continuous functions between Boolean spaces such that $\widehat{k}(\phi) = \widehat{k}(\psi)$. Then

$$\phi = \epsilon_{X'}^{-1} \circ \operatorname{Spec}^{\infty}(\widehat{k}(\phi)) \circ \epsilon_{X} = \epsilon_{X'}^{-1} \circ \operatorname{Spec}^{\infty}(\widehat{k}(\psi)) \circ \epsilon_{X} = \psi,$$

thus \hat{k} is a faithful functor.

Theorem 4.7. Let \mathbb{K} be a C^{∞} -field. Defining the covariant functor (composition of contravariant functors):

$$\check{K} = \widehat{k} \circ \text{Stone} : \mathbf{BA} \to \mathcal{C}^{\infty} \mathbf{vNRing}.$$

Then there is a natural isomorphism

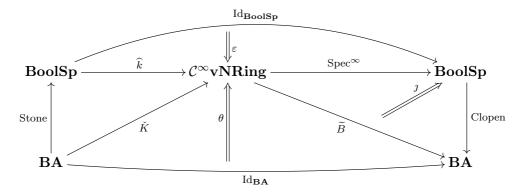
$$\theta: \mathrm{Id}_{\mathbf{B}\mathbf{A}} \stackrel{\cong}{\Rightarrow} \widetilde{B} \circ \check{K}.$$

Therefore:

- The functor \check{K} is faithful;
- The functor \widetilde{B} is full up to conjugation;
- The functor $\widetilde{B}: \mathcal{C}^{\infty} \mathbf{vNRing} \to \mathbf{BA}$ is isomorphism-dense. In particular: given any \mathcal{C}^{∞} -field \mathbb{K} and any Boolean algebra B, there is a von Neumann regular \mathcal{C}^{∞} -ring which is a \mathbb{K} -algebra, $\check{K}(B)$, such that $\widetilde{B}(\check{K}(B)) \cong B$.

Proof. This follows directly by a combination of the Theorem 4.6 above, Stone duality (Remark 4.1), Theorem 4.4 and Theorem 4.3. \Box

The diagram below summarizes the main functorial connections established in this section:



We finish this work with the following:

Remark 4.8. The theorem above leads us to the natural question(s):

- Is \widetilde{B} an equivalence of categories, possibly with with \check{K} being the quasi-inverse of \widetilde{B} , for some C^{∞} -field \mathbb{K} ?
- For every \mathcal{C}^{∞} -field \mathbb{K} with card $(\mathbb{K}) > \operatorname{card}(\mathbb{R})$, \check{K} can not be a quasi-inverse of \widetilde{B} ; in fact, since for every Boolean algebra A, $\check{K}(A)$ is in particular a \mathbb{K} -algebra, we have $\operatorname{card}(\check{K}(A)) \geq \operatorname{card}(\mathbb{K})$, whenever $A \ncong \{0\}$. Let V be a von Neumann-regular \mathcal{C}^{∞} -ring; since the class of \mathcal{C}^{∞} -fields is first-order axiomatizable in the language of \mathcal{C}^{∞} -rings, and every \mathcal{C}^{∞} -field is an infinite set (since it is, in particular, a non-trivial \mathbb{R} -algebra), then by the $\operatorname{L\"{o}}$ wenheim-Skolem Theorem (upward, which we denote by $\uparrow \operatorname{LS}$), there is a \mathcal{C}^{∞} -field \mathbb{K} such that $\operatorname{card}(\mathbb{K}) > \operatorname{card}(V)$. Therefore, $\operatorname{card}(\check{K}(\widetilde{B}(V))) \geq \operatorname{card}(\mathbb{K}) > \operatorname{card}(V)$ and, thus, $\check{K}(\widetilde{B}(V)) \ncong V$. Since there exist non-trivial von Neumann-regular \mathcal{C}^{∞} -rings V with $\operatorname{card}(V) = \operatorname{card}(\mathbb{R})$, this shows that there is no \mathcal{C}^{∞} -field \mathbb{K} , with $\operatorname{card}(\mathbb{K}) > \operatorname{card}(\mathbb{R})$, such that \check{K} is a quasi-inverse of \check{B} .
- It is important to stress that the functor \widetilde{B} is not an equivalence of categories. In fact, by \uparrow LS, there are \mathcal{C}^{∞} -fields, \mathbb{K} , with card $(\mathbb{K}) > \operatorname{card}(\mathbb{R})$. We saw above that \widetilde{B} is a "full up to conjugation functor", but if \widetilde{B} were a full functor, then the Boolean algebra isomorphism $\widetilde{B}(\mathbb{K}) \cong \mathbf{2} \stackrel{\operatorname{id}_2}{\to} \mathbf{2} \cong \widetilde{B}(\mathbb{R})$ should be the image of some \mathcal{C}^{∞} -homomorphism $\mathbb{K} \to \mathbb{R}$: this is a contradiction since a \mathcal{C}^{∞} -homomorphism between \mathcal{C}^{∞} -fields must be injective. Therefore \widetilde{B} is not a full functor, thus \widetilde{B} is not an equivalence of categories.

References

- [1] Arndt, P. and Mariano, H.L., The von Neumann-regular hull of (preordered) rings and quadratic forms, South Amer. J. Log. 2(2) (2016), 201-244.
- [2] Berni, J.C. and Mariano, H.L., Separation theorems in the commutative algebra of C^{∞} -rings and applications, Comm. Algebra 51(5) (2023), 2014-2044.
- [3] Berni, J.C, "Some Algebraic and Logical Aspects of \mathcal{C}^{∞} -Rings", Ph.D Thesis, Universidade de São Paulo, 2018.
- [4] Berni, J.C., Figueiredo, R., and Mariano, H.L., On the order theory of C^{∞} -reduced C^{∞} -rings, J. Appl. Logics 9(1) (2022), 93-134.

- [5] Berni, J.C. and Mariano, H.L., Classifying toposes for some theories of C^{∞} -rings, South Amer. J. Log. 4(2) (2018), 313-350.
- [6] Berni, J.C. and Mariano, H.L., Topics on smooth commutative algebra, arXiv preprint: arXiv:1904.02725, 2019.
- [7] Berni, J.C. and Mariano, H.L., C^{∞} -rings: an interplay between geometry and logics, Bol. Mat. 27(2) (2020), 85-112.
- [8] Berni, J.C. and Mariano, H.L., A geometria diferencial sintética e os mundos onde podemos interpretá-la: um convite ao estudo dos anéis C[∞], Rev. Mat. Univ. 1 (2020), 5-30.
- [9] Berni, J.C. and Mariano, H.L., A universal algebraic survey of C^{∞} -rings, Lat. Amer. J. Math. 1(1) (2022), 8-39.
- [10] Berni, J.C. and Mariano, H.L., Von Neumann regular C^{∞} rings and applications, arXiv e-prints, arXiv:1905.09617, 2019.
- [11] Dugundji. J., "Topology", Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, 1966.
- [12] Joyce, D., "Algebraic Geometry over \mathcal{C}^{∞} -Rings", American Mathematical Society, 2019.
- [13] Kennison, J.F., Integral domain type representations in sheaves and other topoi, Math. Z. 151 (1976), 35-56.
- [14] Moerdijk, I., Van Quê, N., and Reyes, G.E., Rings of smooth functions and their localizations II, a chapter in: "Mathematical Logic and Theoretical Computer Science, CRC Press, (1986), 277-300.
- [15] Moerdijk, I. and Reyes, G.E., "Models for Smooth Infinitesimal Analysis", Springer Science & Business Media, 2013.
- [16] Scholze, P., "Condensed Mathematics", Lecture notes based on joint work with D. Clausen, Available at Scholze's Webpage, 2019.

Jean Cerqueira Berni Department of Mathematics, São Paulo State University - UNESP, 13506-900, São Paulo, Brazil

Email: j.berni@unesp.br

Hugo Luiz Mariano Department of Mathematics, University of São Paulo, 05508-090, São Paulo, Brazil

Email: hugomar@ime.usp.br