[1] Abu-Dawwas, R. and Refai, M., Graded δ-Primary Structures, Bol. Soc. Parana. Mat. 40 (2022), 1-11.
[2] Abumghaiseeb, A. and Ersoy, B.A., On δ-primary hyperideals of commutative semihyperrings, Sigma J. Eng. Nat. Sci. 9(1) (2018), 63-67.
[3] Ameri, R. and Norouzi, M., On commutative hyperrings, Int. J. Algebr. Hyperstructures Appl. 1(1) (2014), 45-58.
[4] Badawi, A. and Fahid, B., On weakly 2-absorbing δ-primary ideals in commutative rings, to appear in Georgian Math. J. DOI 10.
[5] Celikel, E.Y., 2-absorbing δ-semiprimary Ideals of Commutative Rings, Kyungpook Math. J. 61(4) (2021), 711-725.
[6] Corsini, P. and Leoreanu, V., “Applications of Hyperstructure Theory”, Advances in Mathematics (Dordrecht), 5. Kluwer Academic Publishers, Dordrecht, 2003.
[7] Dasgupta, U., On prime and primary hyperideals of a multiplicative hyperring, An. S¸tiint¸. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.) 58(1) (2012), 19-36.
[8] Davvaz, B., “Semihypergroup Theory”, Elsevier Academic Press, London, 2016.
[9] Davvaz, B. and Leoreanu Fotea, V., “Hyperring Theory and Applications”, Palm Harbor, FL: International Academic Press, 2007.
[10] El Khalfi, A., Mahdou, N., Tekir, U., and Koc, S., 1-absorbing δ-primary ideals in commutative rings, An. S¸tiint¸. Univ. “Ovidius” Constant¸a Ser. Mat. 29(3) (2021), 135-150.
[11] Ersoy, B.A., Tekir, ¨ U., Kaya, E., Bolat, M., and Ko¸c, S., On ϕ-δ-primary Submodules, Iran. J. Sci. Technol. 46(2) (2022), 421-427.
[12] Golzio, A.C., A Brief historical survey on hyperstructures in algebra and logic, South Amer. J. Log. 4(1) (2018), 1-29.
[13] Hamoda, M. and Issoual, M., On weakly (m, n)-closed δ-primary ideals of commutative rings, Proyecciones (Antofagasta) 42(5) (2023), 1289-1306.
[14] Jabera, A., On ϕ-S-1-absorbing δ-primary ideals of commutative rings, Filomat 38(2) (2024), 405-420.
[15] Jaber, A., On ϕ-S-1-absorbing δ-primary superideals over commutative super-rings, Asian-Eur. J. Math. (2024).
[16] Krasner, M., A class of hyperrings and hyperfields, Int. J. Math. Math. Sci. 6(2) (1983), 307-311.
[17] Marty, F., Sur une generalization de la notion de groupe, 8th Congres Math. Scandenaves, Stockholm, (1934), 45-49.
[18] Massouros, Ch.G., Free and cyclic hypermodules, Ann. Mat. Pura Appl. 150(1) (1988), 153-166.
[19] Mittas, J., Hypergroupes canoniques, Math. Balkanica 2 (1972), 165-179.
[20] Omidi, S., Davvaz, B., and Zhan, J., Some properties of n-hyperideals in commutative hyperrings, J. Algebraic Hyperstructures Logical Algebras 1(2) (2020), 23-30.
[21] Ozel Ay, E., Yesilot, G., and Sonmez, D., δ-primary hyperideals on commutative hyperrings, Int. J. Math. Math. Sci. (2017), 4 pages.
[22] Stratigopoulos, D., Hyperanneaux non commutatifs: Hyperanneaux, hypercrops, hypermodules, hyperspacesvectoriels et leurs proprietes elementaires, C.R. Acad. Sci. Paris 269 (1969), Serie A, 489-492.
[23] Yesilot, G., Sengelen Sevim, E., Ulucak, G., and Aslankarayi˘git U˘gurlu, E., Some results on delta-primary submodules of modules, Sigma J. Eng. Nat. Sci. 36(2) (2018), 459-464.
[24] Zhao, D., δ-primary ideals of commutative rings, Kyungpook Math. J. 41 (2001), 17-22.