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δ-primary subhypermodules on Krasner
hyperrings

Elif Kaya, Melis Bolat, Bayram Ali Ersoy, Serkan Onar, Kostaq
Hila∗, and Bijan Davvaz

Abstract. In this paper, we study commutative Krasner hyperrings with
nonzero identity and nonzero unital hypermodules. We introduce a new con-
cept, the δ-primary subhypermodule on Krasner hyperrings. Some character-
izations and properties for δ-primary subhypermodules using the expansion
function δ are provided. The images and inverse images of δ-primary sub-
hypermodules under homomorphism are investigated. Finally, some charac-
terizations for multiplication hypermodules with some special conditions are
provided.

1 Introduction

The hyperstructure theory represents a generalization of algebraic struc-
tures. In algebra, the operation ensures that the element of one set cor-
responds to the value of an element of the other set. In hyperstructures,
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the hyperoperation assigns more than one element to a member of another
set. The class of structures consisting of a non-empty set and at least one
hyperoperation is called algebraic hyperstructures. Hyperalgebra is also a
kind of hyperstructure, such as hypergroups, hyperrings, and hypermodules.
In other words, hypergroup, hyperring and hypermodule structures are the
generalized forms of groups, rings, and modules, respectively, through hy-
peroperation. Hyperstructures, concretely hypergroups, were introduced by
Marty in 1934 [17]. Mittas pioneered the theory of canonical hypergroups
in [19]. Krasner initiated hyperrings and hyperfields in 1983 [16]. Kras-
ner’s students, Mittas and Stratigopoulos, pioneered hypermodules, and
Massouros also worked on free and cyclic hypermodules [18], [19], [20], [22].
Also, Ameri and Norouzi, Corsini, Dasgupta, Davvaz, Omidi, and Leoreanu
Fotea studied hyperrings, in more detail in [3], [6], [7], [9], [8]. Overall,
the study of hyperstructures has attracted significant attention from math-
ematicians worldwide, leading to a rich body of research in various areas of
hyperstructure theory. The applications of hyperstructures extend beyond
mathematics into fields such as computer science, physics, and cryptogra-
phy.

Hyperstructure theory is actively used in computer sciences, mathemat-
ics, geometry, logic theory, and other domains inside and outside of math-
ematics. The brief history of hyperstructures, their usage patterns, the
connections between each other, and their semantic infrastructure are ex-
amined in Golzio’s article [12]. The article delves into the evolution of
hyperstructure theory and its impact on different disciplines, shedding light
on the interdisciplinary nature of this mathematical concept. Golzio’s com-
prehensive analysis provides valuable insights into the practical implications
and potential future developments of hyperstructures in various fields.

Prime and primary ideals have an essential place and a key role in alge-
bra. For this reason, many researchers have worked in this field. Looking
at the respective studies, Dongsheng defined δ-primary ideals, which unify
prime and primary ideals, in 2001 [24]. δ-primary ideals are also extensions
of prime ideals. The concept of δ-primary ideals provides a more comprehen-
sive understanding of the relationships between prime and primary ideals
in algebra. By unifying these two types of ideals, Dongsheng’s work has
opened up new avenues for research and exploration in the field. Ozel Ay,
Yesilot, and Abumghaiseeb, Ersoy applied δ-primary ideals to hyperstruc-



δ-primary subhypermodules on Krasner hyperrings 155

tures in [2] and [21], respectively. In 2018, Yesilot et al. studied δ-primary
modules [23]. Yetkin [5] focused on 2-absorbing δ-semiprimary ideals in
commutative rings, a concept that combines the properties of 2-absorbing
ideals and δ-semiprimary ideals to study the structure of rings in a more nu-
anced way. Ersoy et al. [11] defined the theory of ϕ-δ-primary submodules
in module theory, which builds upon the concept of ϕ-primary submod-
ules to provide a deeper understanding of module structures. Dawwas [1]
introduced the concept of graded δ-primary structures in algebraic struc-
tures, which extends the idea of graded primary structures to incorporate
the notion of δ-primary structures, offering a more comprehensive frame-
work for studying graded objects. Badavi [4] studied the notion of weakly
2-absorbing δ-primary ideals in commutative rings, which further refines
the concept of 2-absorbing primary ideals by incorporating the δ-primary
property. Abdelhaq et al. in [10] investigated 1-absorbing δ-primary ide-
als in commutative rings, building upon the work of Badawi to explore a
more specific case of δ-primary ideals. Hamoda [13] introduced the concept
of weakly (m, n)-closed δ-primary ideals and further explored their prop-
erties and relationships with other types of ideals in commutative rings.
Jabera [14] gave the notion of ϕ-S − 1-absorbing δ-primary ideals and fur-
ther explores their properties and relationships with other types of ideals in
commutative rings. Then, he suggested [15] the idea of ϕ-S − 1-absorbing
δ-primary superideals over commutative super-rings in order to generalize
the concept to a broader algebraic structure. This extension opens up new
avenues for research in super-ring theory and expands the study of primary
ideals to a wider class of rings. This research provides a deeper under-
standing of the behavior of these ideals and their significance in ring theory.
These studies have expanded the understanding of prime and primary ideals
in algebra, providing new insights into their applications. The concept of
δ-primary ideals continues to be a topic of interest for researchers exploring
the connections between algebraic structures and hyperstructures.

In this paper, we investigate a new concept, “δ-primary subhypermod-
ules on Krasner hyperrings”. Throughout the study, we focus on commuta-
tive Krasner hyperrings with nonzero units and nonzero unital hypermod-
ules. (ℜ,⊕, ◦) will be a commutative Krasner hyperring with a nonzero
identity. We denote the set of all hyperideals of ℜ by L(ℜ) and the set of all
proper hyperideals of ℜ by L∗(ℜ). Firstly, we define δ-primary subhyper-
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module on Krasner hyperrings, and we provide some characterizations for
δ-primary subhypermodules. Then we investigate whether the union of the
collection of δ-primary subhypermodules preserves the algebraic structure.
Besides, we examine the images and inverse images of δ-primary subhyper-
modules under homomorphism. Finally, we provide some characterizations
for multiplication hypermodules with some special conditions.

2 Preliminaries

Marty [17] defined hyperstructures, hypergroupoid, hypergroup, subhyper-
group and commutative hypergroup in 1934. Then Mittas [19] innovated
canonical hypergroups and Krasner [16] established Krasner hyperrings and
hyperfields. In this part, we will give some basic definitions and theorems
related to hyperstructures and their properties, building upon the founda-
tional work of Marty, Mittas, and Krasner. Understanding these concepts
is crucial for further exploration of the applications and implications of hy-
perstructures in various mathematical contexts.

Definition 2.1. [17] Let ℜ be a non-empty set, P ∗(ℜ) represents the family
of non-empty subsets of ℜ and ◦ : ℜ × ℜ −→ P ∗(ℜ) is a hyperoperation.
Let (ℜ, ◦) be a hypergroupoid.

i) ∀a, b, c ∈ ℜ, if a◦(b◦c) = (a◦b)◦c, which means,
⋃

u∈a◦b
u◦c = ⋃

v∈b◦c
a◦v

then ℜ is called a semihypergroup.
ii) ∀a ∈ ℜ, if there exists e ∈ ℜ such that a ∈ (e ◦ a)∩ (a ◦ e) in another

phrase {a} ⊆ (e ◦ a) ∩ (a ◦ e), then e is called identity element.

Definition 2.2. Let (ℜ, ◦) be a semihypergroup. ∀a ∈ ℜ, if a◦ℜ = ℜ◦a =
ℜ, then (ℜ, ◦) is called a hypergroup.

Definition 2.3. Let (ℜ, ◦) be a hypergroup and K ̸= ∅ be a subset of ℜ. If
a◦K = K ◦a = K, ∀a ∈ K, then (K, ◦) is called a subhypergroup of (ℜ, ◦).

Definition 2.4. Let (ℜ, ◦) be a hypergroup. If a ◦ b = b ◦a, ∀a, b ∈ ℜ, then
(ℜ, ◦) is a commutative hypergroup.

Definition 2.5. [19] Let ℜ ≠ ∅. (ℜ,⊕) is called a canonical hypergroup (⊕
is a hyperoperation) if the following axioms are satisfied:

i) a⊕ b ⊆ ℜ, for a, b ∈ ℜ,
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ii) a⊕ (b⊕ c) = (a⊕ b)⊕ c, for a, b, c ∈ ℜ,
iii) a⊕ b = b⊕ a, for a, b ∈ ℜ,
iv) ∃0 ∈ ℜ such that a⊕ 0 = {a}, for any a ∈ ℜ,
v) ∃!a′ ∈ ℜ, such that 0 ∈ a⊕ a′, for any a ∈ ℜ,
vi) c ∈ a ⊕ b implies that b ∈ (−a) ⊕ c and a ∈ c ⊕ (−b), that means

(ℜ,⊕) is reversible.

In this paper, we denote c⊕ (−b) with c⊖ b.

Definition 2.6. [16] (ℜ,⊕, ◦) is called a Krasner hyperring if the following
statements hold:

i) (ℜ,⊕) is a canonical hypergroup;
ii) (ℜ, ◦) is a semigroup having 0 as a ◦ 0 = 0 ◦ a = 0, for all a ∈ ℜ;
iii) (b⊕ c) ◦ a = (b ◦ a)⊕ (c ◦ a) and a ◦ (b⊕ c) = (a ◦ b)⊕ (a ◦ c), for all

a, b, c ∈ ℜ.

Definition 2.7. [18] Let (ℜ,⊕, ◦) be a hyperring with unit element 1.
(M,+) is a commutative hypergroup with the map · : ℜ ×M → P ∗(M)
defined by (a,m) → a · m ∈ M, “ + ” is a hyperoperation and “ · ” is
an external hyperoperation. Then M is called an ℜ-hypermodule if the
following statements hold, for all a, b ∈ ℜ and m,n ∈M :

i) (a⊕ b) ·m = a ·m+ b ·m,
ii) a · (m+ n) = a ·m+ a · n,
iii) (a ◦ b) ·m = a · (b ·m),
iv) a · 0M = 0M ,
v) 1 ·m = m.

Definition 2.8. [22] Let M be an ℜ-hypermodule. Then M is said to be
a multiplication ℜ-hypermodule if for all subhypermodule N of M , there
exists a hyperideal I of ℜ such that N = I ◦M.

Definition 2.9. [21, 24] δ-primary hyperideal is called an expansion of a
hyperideal if δ : L(ℜ) −→ L(ℜ) is a function that satisfies the following
properties:

i) I ⊆ δ(I), for all hyperideals I of ℜ,
ii) If I ⊆ J, where I and J are hyperideals of ℜ, then δ(I) ⊆ δ(J).
iii) δ(I ∩ J) = δ(I) ∩ δ(J) for all ideals I, J of ℜ. Entire of the δ ideal

expansions provides the property δ2 = δ, which is δ(δ(I)) = δ(I), for all
ideal I of ℜ.
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Definition 2.10. [21] An expansion function δℜ of hyperideals I of a
hyperring ℜ is called δℜ-primary if a ◦ b ∈ I, then a ∈ I or b ∈ δℜ(I), for all
a, b ∈ ℜ.

Remark 2.11. [21] Let δ1 and δ2 be two hyperideal expansions. Then the
δ1∩δ2 is also a hyperideal expansion. Also δ1 and δ2 hyperideal expansions,
I ⊆ δ1 (I) and I ⊆ δ2 (I) , then I ⊆ δ1 (I) ∩ δ2 (I) . Also, P and Q be any
hyperideals of ℜ and P ⊆ Q. Hence, δ1 (P ) ⊆ δ1 (Q) and δ2 (P ) ⊆ δ2 (Q) it
follows that δ1 (P ) ∩ δ2 (P ) ⊆ δ1 (Q) ∩ δ2 (Q) .

Remark 2.12. [21] A hyperideal expansion preserves intersection if δℜ(I∩
J) = δℜ(I) ∩ δℜ(J) for any hyperideals I and J of ℜ.

Remark 2.13. [21] Let ℜ, S be any hyperrings, I be any hyperideal of
S and σ be a good homomorphism such that σ : ℜ → S. If δℜ(σ−1(I)) =
σ−1(δℜ(I)), then δℜ is called a global hyperideal expansion.

3 δ-primary subhypermodules on Krasner hyperrings

Throughout this section, (ℜ,⊕, ◦) is a commutative Krasner hyperring with
nonzero unit,M is an ℜ-hypermodule with unitary and N is a proper subhy-
permodule of M . We denote the set of all subhypermodules of M by L(M),
the set of all hyperideals of ℜ by L(ℜ) and the set of all proper hyperideals
of ℜ, by L∗(ℜ). δ : L(ℜ) −→ L(ℜ) function is defined as a hyperideal ex-
pansion function that satisfies the following properties: i) I ⊆ δ(I), for all
hyperideals I of ℜ, ii) If I ⊆ J, where I and J are hyperideals of ℜ, then
δ(I) ⊆ δ(J). Initially, we give the definition of δ-primary subhypermodule
and present some examples.

Definition 3.1. Let N be a proper subhypermodule of an ℜ-module M. N
is said to be a δ-primary subhypermodule if a◦m ∈ N , for each a ∈ ℜ, m ∈
M, then a ∈ δℜ((N :M)) or m ∈ N.

Example 3.2. Let ℜ be a commutative Krasner hyperring with a nonzero
identity. Let us consider the following functions δ on L(ℜ), for any I ∈ L(ℜ):

(i) δ0(I) = I, i.e., δ is the identity function.
(ii) δ1(I) =

√
I, i.e., δ is the radical operation.

(iii) δres(I) = (I : J) for a fixed J ∈ L(ℜ).
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(iv) δJ(I) = I ⊕ J for a fixed J ∈ L(ℜ).
All these functions are examples of expansion on L(ℜ).

Theorem 3.3. Let ℜ be a hyperring andM be a hypermodule of ℜ. Assume
that N be a proper subhypermodule of M .

(i) N is a prime subhypermodule if and only if N is a δ0-primary sub-
hypermodule.

(ii) N is a primary subhypermodule if and only if N is a δ1-primary
subhypermodule.

Proof. (i) Suppose that N is a prime subhypermodule of M and a ◦ m ∈
N for all a ∈ ℜ, m ∈ M. So m ∈ N or a ∈ (N : M) = δ0(N : M).
Thus N is a δ0-primary subhypermodule. For the contrary, let N be a
δ0-primary subhypermodule of M , and a ◦m ∈ N for all a ∈ ℜ, m ∈ M.
Then a ∈ δ0(N : M) or m ∈ N . N is a prime hypersubmodule of M , since
δ0(N :M) = (N :M).

(ii) Suppose that N is a primary subhypermodule, and a◦m ∈ N , for all
a ∈ ℜ,m ∈M. Then m ∈ N or ak ∈ (N : M), for some k ∈ N. So it means
a ∈

√
(N :M) = δ1(N : M). Then N is a δ1-primary subhypermodule.

Conversely, let N be a δ1-primary subhypermodule ofM , and a◦m ∈ N for
all a ∈ ℜ, m ∈M. Then a ∈ δ1(N : M) or m ∈ N since N be a δ1-primary
subhypermodule. So a ∈

√
(N :M) because of δ1(N : M) =

√
(N :M).

Thus N is a primary subhypermodule of M .

Let δ, γ be hyperideal expansions on L(ℜ). If δℜ(I) ⊆ γℜ(I), for each
I ∈ L(ℜ), then we write δ ≤ γ.
Proposition 3.4. Let M be an ℜ-hypermodule and N be a proper subhy-
permodule of M and δ, γ be hyperideal expansions on L(ℜ).

(i) If δ ≤ γ, then every δ-primary subhypermodule is a γ-primary sub-
hypermodule.

(ii) Every prime subhypermodule is a δ-primary subhypermodule.

Proof. (i) Suppose that N is a δ-primary subhypermodule and x ◦ y ∈ N
for every x ∈ ℜ, y ∈ M. Then we have x ∈ δℜ(N : M) or y ∈ N. So
δℜ(N : M) ⊆ γℜ(N : M), since δ ≤ γ. Finally we get that x ∈ γℜ(N : M)
or y ∈ N which means N is γ-primary subhypermodule.

(ii) Let N be a prime subhypermodule of M and x ◦ y ∈ N and for
any x ∈ M , y ∈ ℜ. We know that x ∈ N or y ∈ (N : M) since N is
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prime subhypermodule of M . (N :M) ⊆ δℜ(N :M) since δ is a submodule
expansion function. So y ∈ δℜ(N :M). Therefore x ∈ N or y ∈ δℜ(N :M)
which means N is a δ-primary subhypermodule of M .

The converse of Proposition 3.4(ii) may not be true in general. If we take
δ1 (I) =

√
I, it is easy to see the subhypermodule 4Z of the hypermodule Z

is δ-primary subhypermodule but it is not prime subhypermodule.

Proposition 3.5. Let δ be a hyperideal expansion and {Li : i ∈ ∆} be a di-
rected family of δ-primary subhypermodules of finitely generated ℜ-hypermodule

M. Then L =
⋃

i∈∆
Li is a δ-primary subhypermodule.

Proof. Let {Li : i ∈ ∆} be a directed family of δ-primary subhypermodules
of finitely generated hypermodule M. Assume that a ◦m ∈ L, for all a ∈ ℜ,
m ∈ M. Indeed a ◦m ∈ Lk, for some k ∈ ∆. We get either a ∈ δℜ(Lk : M)
or m ∈ Lk, because of Lk is a δ-primary subhypermodule. If m ∈ Lk, then

clearly we have m ∈
⋃

i∈∆
Li = L. If a ∈ δℜ(Lk : M), then we have a ∈

δ(
⋃

i∈∆
Li :M) since Lk ⊆

⋃

i∈∆
Li = L. Hence L is a δ-primary subhypermodule

of M.

Considering the intersection of two δ-primary subhypermodules, it turns
out that it is not δ-primary, since the intersection of two δℜ-primary hyper-
ideal is not δℜ-primary.

Example 3.6. Let 2Z and 3Z be δℜ-primary hyperideals. But 2Z∩3Z = 6Z
is not δℜ-primary hyperideal of ℜ, since while 3 ◦ 4 ∈ 6Z, neither 3 /∈ 6Z
nor 4 /∈ δ(6Z) (in other words neither 4 /∈ 6Z nor 3 /∈ δ(6Z)).
Lemma 3.7. Let N be a proper subhypermodule of ℜ-hypermodule M. If
N is δ-primary subhypermodule, then (N : M) is a δℜ-primary hyperideal
of ℜ.
Proof. Assume that a ◦ m ∈ (N : M), for all a,m ∈ ℜ and a /∈ δℜ(N :
M) = δℜ((N : M) : M)), at the same time a /∈ (N : M) ⊆ δℜ(N : M).
Then a ◦m ◦M ⊆ N and a ◦M ⊈ N. There is an element t ∈M such that
a ◦m ◦ t ∈ N and a ◦ t /∈ N. So we get m ∈ N ⊆ (N : M), since N is a
δ-primary subhypermodule. Therefore (N : M) is a δℜ-primary hyperideal
of ℜ.
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Lemma 3.8. Let N be a proper subhypermodule of ℜ-hypermodule M. N is
a δ-primary subhypermodule if and only if for each hyperideal J of ℜ and
each subhypermodule L, J ◦ L ⊆ N implies that J ⊆ δℜ(N :M) or L ⊆ N.

Proof. Suppose that N is a δ-primary subhypermodule. Let us assume
J ◦L ⊆ N and a ∈ J . Then there exists t ∈ L\N such that a◦t ∈ J ◦L ⊆ N.
We get a ∈ δℜ(N :M), since N is a δ-primary subhypermodule. Therefore
J ⊆ δℜ(N :M). For the converse, a′ ◦ t′ ∈ N and t′ /∈ N. So (a′)◦ (t′) ⊆ N
and (t′) ⊈ N. Then a′ ∈ (a′) ⊆ δℜ(N : M). Hereby N is a δ-primary
subhypermodule of M.

Lemma 3.9. Let N be a proper subhypermodule of multiplication
ℜ-hypermodule M. N is a δ-primary subhypermodule if and only if (N :M)
is a δℜ-primary hyperideal of ℜ.

Proof. Assume that N is δ-primary subhypermodule. Then, by Lemma
3.7, (N : M) is a δℜ-primary hyperideal of ℜ. To the contrary, assume
that (N :M) is a δℜ-primary hyperideal of ℜ. Suppose that J ◦K ⊆ N and
K ⊈ N , where K is any subhypermodule ofM and J is any hyperideal of ℜ.
There exists a hyperideal I such that I ◦M = K, sinceM is a multiplication
ℜ-hypermodule. Thus we can find J ◦ I ◦M ⊆ N and J ◦ I ⊆ (N :M). Also
we have I ◦M ⊈ N , which means I ⊈ (N :M). Therefore J ⊆ δℜ((N :M)),
since (N : M) is a δℜ-primary hyperideal. By Lemma 3.8, we find that N
is a δ-primary subhypermodule of M.

Theorem 3.10. Let N be a proper subhypermodule of multiplication ℜ-
hypermodule M.

(i) If N is a δ-primary subhypermodule of M and J is a hyperideal such
that J ⊈ δℜ((N : M)), then (N : J) = N , where (N : J) = {m ∈ M :
m ◦ J ⊆ N}.

(ii) Let L be any δ-primary subhypermodule and Q be any subset of M .
Then (L : Q) is δℜ-primary hyperideal, where (L : Q) = {r ∈ ℜ : r◦Q ⊆ L}.

Proof. (i) Obviously N ⊆ (N : J). On the other hand, (N : J) ◦ J ⊆ N
and we assume that J ⊈ δℜ((N :M)). (N : J) ⊆ N , since N is a δ-primary
subhypermodule of M . Therefore N = (N : J).

(ii) Suppose that a ◦m ∈ (L : Q), for all a,m ∈ ℜ, and m /∈ (L : Q).
Then we can find n ∈ Q such that a ◦m ◦ n ∈ L and m ◦ n /∈ L. From the
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hypothesis, L is a δ-primary subhypermodule. Then we get a ∈ δℜ((L :M)).
Hereby (L : M) ⊆ (L : Q) means δℜ((L : M)) ⊆ δℜ((L : Q)). Therefore
a ∈ δℜ((L : Q)).

Lemma 3.11. Let Li be δ-primary subhypermodules ofM and δℜ((Li :M))
for i = 1, 2, .., n. If a hyperideal expansion δℜ preserves the intersection, then

L =
n⋂

i=1
Li is δ-primary subhypermodule.

Proof. Assume that a◦m ∈ L and m /∈ L.We can find a k such that a◦m ∈
Lk,m /∈ Lk. Then a ∈ δℜ((Lk :M)), since Lk is δ-primary subhypermodule.

(L :M) = (

n⋂

i=1

Li :M) =

n⋂

i=1

(Li :M)

and δℜ preserves intersection of hyperideal expansion. So

δℜ((L :M)) = δℜ((
n⋂

i=1

Li :M)) =

n⋂

i=1

δℜ((Li :M)).

Therefore a ∈ δℜ((L : M)). We get L is δ-primary subhypermodule of
M.

Now we give the notions of multiplication preserving, quotient preserv-
ing, and product in multiplication ℜ-hypermodule.

Definition 3.12. Let M be a multiplication ℜ-hypermodule and J be any
hyperideal of ℜ. If δℜ(J) ◦M = δ(J ◦M), then an expansion δ is called
multiplication preserving.

Example 3.13. Let R[x] denote the ring of polynomials over the real num-
bers R with variable x. We define a hyperideal J in R[x] as follows:

J = ⟨x⟩ = {f(x) ∈ R[x] | the constant term of f(x) is zero}.

Now, let M = R[x] itself be the multiplication R-hypermodule, where the
multiplication is given by polynomial multiplication. Define the expansion
δ : R[x] → R[x] as the identity map. That is, δ(f(x)) = f(x) for all
f(x) ∈ R[x]. If δ is multiplication preserving:

δ(J) = δ(⟨x⟩) = ⟨x⟩.
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J ◦M = ⟨x⟩ ◦ R[x] = {f(x)g(x) | f(x) ∈ ⟨x⟩, g(x) ∈ R[x]} = ⟨x⟩.
δR(J) ◦M = δR(⟨x⟩) ◦ R[x] = ⟨x⟩ ◦ R[x] = ⟨x⟩.

As δR(J) ◦M = J ◦M , the expansion δ is indeed multiplication preserving.

Definition 3.14. Let M be a multiplication ℜ-hypermodule and N be a
proper subhypermodule of M . An expansion δ is called quotient preserving
if δℜ((N :M)) = (δ(N) :M).

Example 3.15. LetM be the multiplication R-hypermodule given byM =
R[x], the ring of polynomials over the real numbers R with variable x.
Consider the proper subhypermodule N defined as follows:

N = {f(x) ∈ R[x] | f(0) = 0}.

That is, N consists of all polynomials whose constant term is zero. Let
δ : R[x]→ R[x] be an expansion defined as follows:

δ(f(x)) = f(x) + x.

If δ is quotient preserving:

(N :M) = {r ∈ R | rx ∈ N} = {0}.

δR((N :M)) = δR({0}) = {0}.
δ(N) = {f(x) + x | f(x) ∈ N} = {f(x) | f(0) = 0} = N.

(δ(N) :M) = (N :M) = {0}.
Therefore, we have δR((N :M)) = (δ(N) :M).

Definition 3.16. Let M be a multiplication ℜ-hypermodule and N , L
are subhypermodules of M , where N = I ◦M and L = J ◦M , for some
I, J ∈ L(ℜ). Denote the product of N and L by N ◦ L and define it by
I ◦ J ◦M . In other words, q ◦ t = Rq ◦Rt = I ◦ J ◦M, for q, t ∈M .

Example 3.17. Consider the multiplication R-hypermodule M = R2 with
the usual component-wise scalar multiplication. Let e1 = (1, 0) and e2 =
(0, 1) denote the standard basis vectors of R2 and define two subhypermod-
ules N and L of M as follows:

N = ⟨e1⟩ = {(x, 0) | x ∈ R},
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L = ⟨e2⟩ = {(0, y) | y ∈ R}.
Let I and J represented by 2× 2 matrices such that:

I =

(
1 0
0 0

)
,

J =

(
0 0
0 1

)
.

We compute the product of N and L, denoted by N ◦ L:

N ◦ L = I ◦ J ◦M.

For any vector v = (x, y) ∈M , we have:

I ◦ J ◦ v = I ◦ (J(v)) = I ◦ (0, y) = (0, 0).

Thus, N ◦ L consists solely of the zero vector.

The following theorem characterizes the behavior of subhypermodules in
relation to N under the expansion δ and how to ensure that N is a primary
subhypermodule with respect to δ in the hypermodule M .

Theorem 3.18. Let M be a multiplication ℜ-hypermodule, N be a proper
subhypermodule of M and δ be an expansion which preserves quotient and
multiplication. Then N is δ-primary subhypermodule if and only if for any
two subhypermodules Q1, Q2 of M, if Q1 ◦Q2 ⊆ N, then Q1 ⊆ N or Q2 ⊆
δ(N).

Proof. Assume that N is δ-primary subhypermodule of M . Suppose Q1 ◦
Q2 ⊆ N and Q1 ⊈ N, for any subhypermodules Q1, Q2 of M. We know
that M is multiplication hypermodule, so there exist hyperideals I1 and
I2 such that Q1 = I1 ◦ M and Q2 = I2 ◦ M, respectively. We can find
I1 ◦ M ⊈ N, then I1 ⊈ (N : M), since Q1 ⊈ N. Therefore Q1 ◦ Q2 =
I1 ◦ I2 ◦M ⊆ N means I1 ◦ I2 ⊆ (N : M). Hence I2 ⊆ δR((N : M)). It
follows Q2 = I2 ◦M ⊆ δR((N : M)) ◦M = (δ(N) : M) ◦M = δ(N) as δ
is quotient and multiplication preserving. To the contrary, we assume N is
a subhypermodule of M and Q1 ⊈ N. There exist I1 and I2 hyperideals in
ℜ such that Q1 = I1 ◦M and Q2 = I2 ◦M because of M is multiplication
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hypermodule. Q1 ◦ Q2 = I1 ◦ I2 ◦M = (I1 ◦M) ◦ (I2 ◦M) ⊆ N. Then
by the assumption I2 ◦M ⊆ δ(N) which means I2 ⊆ (δ(N) : M). Hereby
I2 ⊆ δℜ(N : M) as δ is quotient preserving. Therefore N is a δ-primary
subhypermodule.

Corollary 3.19. Let M be a multiplication ℜ-hypermodule, N be a proper
subhypermodule of M and δ be an expansion which preserves quotient and
multiplication. Then N is δ-primary subhypermodule if and only if q◦t ∈ N,
then q ∈ N or t ∈ δ(N), for any q, t ∈M.

Proof. Suppose that N is δ-primary subhypermodule of M. By Theorem
3.18, we get the requested. Conversely, suppose Q1 ◦Q2 ⊆ N, Q1 ⊈ N, for
any subhypermodules Q1, Q2 ofM. Let t ∈ Q2. Then ∃q ∈ Q1 \N such that
q ◦ t ∈ Q1 ◦ Q2 ⊆ N. From the hypothesis t ∈ δ(N). Therefore Q2 ⊆ δ(N)
and N is δ-primary subhypermodule.

Definition 3.20. Let ℜ be a hyperring. An element a of ℜ is said to be
δℜ-nilpotent, if a ∈ δℜ({0ℜ}).
Example 3.21. Consider the hyperring ℜ = R[x], the ring of polynomials
over the real numbers R with variable x. Define the expansion δℜ : R[x]→
R[x] as follows:

δℜ(f(x)) = x · f(x).
Now, let’s find δℜ({0ℜ}), which is the image of the zero element of ℜ under
δℜ. Since {0ℜ} consists only of the zero polynomial 0ℜ, we have:

δℜ({0ℜ}) = δℜ(0) = x · 0 = 0.

Then an element a ∈ ℜ = R[x] is δℜ-nilpotent if a ∈ δℜ({0ℜ}) = {0}. An
example of such an element would be any non-zero constant polynomial
a ∈ R[x], because when multiplied by x, it yields the zero polynomial

x · c = 0,

where c ∈ R is any non-zero constant. So, any non-zero constant polynomial
in R[x] is δℜ-nilpotent.

Now, we will show in the following theorem that the zero divisors of the
quotient hypermodule ℜ/K are nilpotent under the action of δℜ. It is a
crucial property for understanding the structure and behavior of δ-primary
subhypermodules within multiplication hypermodules.



166 E. Kaya, M. Bolat, B.A. Ersoy, S. Onar, K. Hila, B. Davvaz

Theorem 3.22. Let M be a multiplication ℜ-hypermodule, N be a proper
subhypermodule of M and δℜ be a global expansion. N is δ-primary sub-
hypermodule if and only if all zero divisors of ℜ/K are δℜ-nilpotent for
K = (N :M).

Proof. By Lemma 3.9, we need to prove K is δℜ-primary hyperideal if and
only if every zero divisor of ℜ/K is δℜ-nilpotent. Suppose thatK = (N :M)
is δℜ-primary hyperideal of ℜ. Let α = a⊕K be any zero divisor of ℜ/K.
Then there exists a β = b⊕K ∈ ℜ/K such that α◦β = a◦b⊕K ⊆ 0ℜ/K = K
with b /∈ K. By the assumption K is δℜ-primary hyperideal, then we have
a ∈ δ(K) and α ⊆ δ(K)/K. σ : ℜ → ℜ/K is a natural homomorphism
and δ is a global expansion, δ(K) = δ(σ−1(0ℜ/K)) = σ−1(δ({0ℜ/K})). Now
on we find that δ(K)/K = σ(δ(K) = δ({0ℜ/K}) using the surjectivity of
σ. So α ⊆ δ({0ℜ/K}) and it is δℜ-nilpotent. Conversely, suppose that
every zero divisor of ℜ/K is δℜ-nilpotent. Let a ◦ b ∈ K, b /∈ K, for any
a, b ∈ ℜ. Then α ◦ β ⊆ 0ℜ/K with β ̸= 0ℜ/K . So β is a zero divisor of
ℜ/K. Then α ⊆ δ({0ℜ/K} = δ(K)/K, since every zero divisor of ℜ/K is
δℜ-nilpotent. We can find a q ∈ δ(K) such that a⊖q ⊆ K ⊆ δ(K). Therefore
a = (a⊖ q)⊕ q ⊆ δ(K). Hence K is δℜ-primary.

Now, we will give the concepts of nilpotent subhypermodule, δ-nilpotent,
zero divisor, and global homomorphism in a multiplication ℜ-hypermodule.

Definition 3.23. LetM be a multiplication ℜ-hypermodule, N be a subhy-
permodule ofM . Then N is said to be nilpotent subhypermodule if Nk = 0,
for some k ∈ Z+ and q ∈M is said to be nilpotent if qk = 0, ∃k ∈ Z+.

Example 3.24. Let M be the set of 2 × 2 matrices over R, and let N be
the subhypermodule consisting of matrices of the form:

(
0 a
0 0

)

where a ∈ R. For any matrix A ∈ N , raising Ak for any positive integer k
will result in:

Ak =

(
0 a
0 0

)k
=

(
0 0
0 0

)
.
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This implies that Nk = {0} for any positive integer k and N is a nilpotent
subhypermodule. Consider the matrix:

q =

(
0 1
0 0

)
.

Then, q2 =

(
0 1
0 0

)2

=

(
0 0
0 0

)
, which means q is nilpotent with k = 2.

Therefore, N is a nilpotent subhypermodule of M , and q is a nilpotent
element of M .

Definition 3.25. Let M be a multiplication ℜ-hypermodule. An element
q of M is said to be δ-nilpotent, if q ∈ δ({0M}).

Definition 3.26. Let M be a multiplication ℜ-hypermodule. An element
a ̸= 0M is called a zero divisor in M when exists an element m ̸= 0M in M
such that a ◦m = ℜ ◦ a ◦ ℜ ◦m = 0M .

Example 3.27. Consider the hypermodule M = R2 with the standard
multiplication and addition of vectors. We define the scalar multiplication
by λ ◦ (x, y) = (λx, λy) for λ ∈ R and (x, y) ∈ R2. Now, let’s take the
element a = (1, 0) ̸= (0, 0). And let m = (0, 1) ̸= (0, 0). Then we have:

a ◦m = (1, 0) ◦ (0, 1) = (1 · 0, 0 · 1) = (0, 0)

R ◦ a ◦ R ◦m = R ◦ (1, 0) ◦ R ◦ (0, 1)
= λ ◦ (1, 0) ◦ λ ◦ (0, 1) = (λ · 0, 0 · λ) = (0, 0)

Thus, a = (1, 0) is a zero divisor in M = R2.

Example 3.28. Let ℜ = {0, 1, 2} be a set with hyperoperation ⊕ and a
binary operation ⊙ as follows.

⊕ 0 1 2

0 {0} {1} {2}
1 {1} {0} {1, 2}
2 {2} {1, 2} {0}

and

⊙ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1
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Then (ℜ,⊕,⊙) is a hyperring. Let M = {0, a, b, c} with the following hy-
peroperations.

⊞ 0 a b c

0 {0} {a} {b} {c}
a {a} {c} {a, b} {a, c}
b {b} {a, b} {0} {b, c}
c {c} {a, c} {b, c} {0}

and

� 0 a b c

0 0 0 0 0
1 0 a 0 c
2 0 b 0 b

Then (M,⊞,�) is a hypermodule over hyperring (ℜ,⊕,⊙) . Let subhyper-
module N = {0, b} ⊆M and I = {0, 2} be hyperideal of ℜ. Since

0 � 0 = 0, 0 � a = 0, 0 � b = 0, 0 � c = 0,
2 � 0 = 0, 2 � a = b, 2 � b = 0, 2 � c = b,
then {0, b} = N = I ◦M and M is a multiplication ℜ-hypermodule. Let

x = 2 ̸= 0 and m = b ̸= 0. As x �m = 2 � b = 0 and ℜ ⊙ x ⊙ ℜ �m = 0
such as
ℜ⊙ x⊙ℜ�m = 0⊙ x⊙ 0 �m = 0⊙ 2⊙ 0 � b = 0⊙ 0 � b = 0 � b = 0
ℜ⊙ x⊙ℜ�m = 0⊙ x⊙ 1 �m = 0⊙ 2⊙ 1 � b = 0⊙ 1 � b = 0 � b = 0
ℜ⊙ x⊙ℜ�m = 0⊙ x⊙ 2 �m = 0⊙ 2⊙ 2 � b = 0⊙ 2 � b = 0 � b = 0
ℜ⊙ x⊙ℜ�m = 1⊙ x⊙ 0 �m = 1⊙ 2⊙ 0 � b = 2⊙ 0 � b = 0 � b = 0
ℜ⊙ x⊙ℜ�m = 1⊙ x⊙ 1 �m = 1⊙ 2⊙ 1 � b = 2⊙ 1 � b = 2 � b = 0
ℜ⊙ x⊙ℜ�m = 1⊙ x⊙ 2 �m = 1⊙ 2⊙ 2 � b = 1⊙ 2 � b = 2 � b = 0
ℜ⊙ x⊙ℜ�m = 2⊙ x⊙ 0 �m = 2⊙ 2⊙ 0 � b = 1⊙ 0 � b = 0 � b = 0
ℜ⊙ x⊙ℜ�m = 2⊙ x⊙ 1 �m = 2⊙ 2⊙ 1 � b = 1⊙ 1 � b = 1 � b = 0
ℜ⊙ x⊙ℜ�m = 2⊙ x⊙ 2 �m = 2⊙ 2⊙ 2 � b = 1⊙ 2 � b = 2 � b = 0
So, x = 2 is a zero divisor in M.

Definition 3.29. An expansion δ is called global homomorphism, where
M and W are any ℜ-hypermodules, σ : M → W is a hypermodule ho-
momorphism and σ−1(δ(N)) = δ(σ−1(N)), for any N subhypermodule of
W.

Example 3.30. Consider two R-hypermodules M = R2 and W = R, both
with the standard scalar multiplication and addition of vectors. Now, define
a map σ :M →W as σ(x, y) = x for (x, y) ∈ R2. For all (x1, y1), (x2, y2) ∈
M ,

σ((x1, y1) ◦ (x2, y2)) = σ(x1x2, y1y2) = x1x2

= σ(x1, y1) ◦ σ(x2, y2).
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Then, σ is a hypermodule homomorphism. Let δ : L(M) → L(W ) be
defined by δ(N) = {(x, y) ∈ M : σ(x, y) ∈ N} for any subhypermodule
N ⊆W .

σ−1(δ(N)) = σ−1({(x, y) ∈M : σ(x, y) ∈ N})
= {(x, y) ∈M : σ(x, y) ∈ N}
= {(x, y) ∈M : x ∈ N}
= {(x, y) ∈M : σ(x, y) ∈ σ(σ−1(N))}
= δ(σ−1(N)).

Hence, δ is a global homomorphism.

The expansion δ plays a crucial role in characterizing the structure of
N as a δ-primary subhypermodule. The following theorem shows how to
ensure that the zero divisors of M/N are annihilated by some power of δ.

Theorem 3.31. Let M be a multiplication ℜ-hypermodule, N be a proper
subhypermodule of M and δ be global, quotient and multiplication preserving
expansion. Then N is δ-primary subhypermodule if and only if all zero
divisors of M/N are δ-nilpotent.

Proof. Suppose that N is a δ-primary subhypermodule ofM . Let α = a⊕N
be any zero divisor of M/N. Then there exists a β = b ⊕ N ⊆ M/N such
that α◦β = a◦b⊕N ⊆ 0M/N = N with b /∈ N. By the assumption, we have
a ∈ δ(N) and α ⊆ δ(N)/N. σ :M →M/N is a natural homomorphism and
δ is global expansion, δ(N) = δ(σ−1({0M/N})) = σ−1(δ({0M/N})). Now
on we find that δ(N)/N = σ(δ(N) = δ({0M/N}) using the surjectivity
of σ. So α ⊆ δ({0M/N}) and it is δ-nilpotent. Conversely, suppose that
every zero divisor of M/N is δ-nilpotent. Let a ◦ b ∈ N , b /∈ N , for any
a, b ∈ M. Then α ◦ β ⊆ 0M/N with β ̸= 0M/N . So β is a zero divisor of
M/N. Then α ⊆ δ({0M/N} = δ(N)/N , since every zero divisor of M/N is
δ-nilpotent. We can find a q ∈ δ(N) such that a⊖q ⊆ N ⊆ δ(N). Therefore
a = (a⊖ q)⊕ q ⊆ δ(N). Hence N is δ-primary subhypermodule of M .

Lemma 3.32. Let M and W be two multiplication ℜ-hypermodules, N be
subhypermodule of W, σ :M →W be an onto hypermodule homomorphism
and δ be global, quotient and multiplication preserving expansion. Then
σ−1(N) is δ-primary subhypermodule of M , where N is δ-primary subhy-
permodule of W.
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Proof. Let Q1 ◦ Q2 ⊆ σ−1(N), Q1 ⊈ σ−1(N), for any subhypermodules
Q1, Q2 ofM. There exist hyperideals I1, I2 ∈ ℜ such that Q1 = I1◦M,Q2 =
I2 ◦M , since M is multiplication hypermodule. Then we get (I1 ◦M) ◦ (I2 ◦
M) = (I1 ◦ I2) ◦ M ⊆ σ−1(N) and I1 ◦ M ⊈ σ−1(N). Since σ is onto,
then σ((I1 ◦ I2) ◦M) ⊆ N and σ( I1 ◦M) ⊈ N. So (I1 ◦ I2) ◦ σ(M) ⊆ N
and I1 ◦ σ( M) ⊈ N. It means I1 ◦ I2 ◦ W ⊆ N and I1 ◦ W ⊈ N. By
the hypothesis, I2 ◦W ⊆ δ(N), so we have σ( I2 ◦M) ⊆ δ(N). Therefore
I2 ◦M ⊆ σ−1(δ(N)) = δ(σ−1(N)) as δ is global homomorphism. Hence
Q2 ⊆ δ(σ−1(N)) and σ−1(N) is δ-primary subhypermodule of M .

The following proposition indicates that the δ-primary subhypermodule
property of N is preserved under the hypermodule homomorphism σ. This
relationship between N and σ(N) highlights the importance of understand-
ing the structure of hypermodules.

Proposition 3.33. Let M and W be two multiplication ℜ-hypermodules, N
be subhypermodule of M such that N ⊇ ker(σ) and σ :M → W be an onto
hypermodule homomorphism. Let δ be global, quotient and multiplication
preserving expansion. Then N is δ-primary subhypermodule of M if and
only if σ(N) is δ-primary subhypermodule of W.

Proof. Suppose that N is a δ-primary subhypermodule ofM. Let Q1 ◦Q2 ⊆
σ(N), Q2 ⊈ σ(N), for any subhypermodules Q1, Q2 of W. There exist hy-
perideals I1, I2 ∈ ℜ such that Q1 = I1 ◦W,Q2 = I2 ◦W , since W is multipli-
cation hypermodule. Then we get (I1 ◦W )◦ (I2 ◦W ) = (I1 ◦I2)◦W ⊆ σ(N)
and I2 ◦W ⊈ σ(N). Since σ is onto, (I1 ◦ I2) ◦M = (I1 ◦M) ◦ (I2 ◦M) ⊆ N
and I2 ◦ M ⊈ N. By the hypothesis, we have I1 ◦ M ⊆ δ(N). There-
fore I1 ◦W ⊆ σ(δ(N)) = δ(σ(N)) as δ is global homomorphism and σ is
onto. Hence Q1 ⊆ δ(σ(N)) and σ(N) is δ-primary subhypermodule of W .
Conversely, suppose that σ(N) is δ-primary subhypermodule of W. Since
N ⊇ ker(σ), then σ−1(σ(N)) = N and we have N is δ-primary subhyper-
module of M by Lemma 3.32.

The following corollary demonstrates the expansion δ preserves the pri-
mary subhypermodule property when passing fromM toM/N for the study
of primary subhypermodules in quotient hypermodules.

Corollary 3.34. Let M be a multiplication ℜ-hypermodule, N , L be two
subhypermodules of M such that N ⊆ L and δ be a global, quotient and mul-
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tiplication preserving expansion. Then L/N is δ-primary subhypermodule of
M/N if and only if L is δ-primary subhypermodule of M.

Proof. It is obvious by Lemma 3.32 and Proposition 3.33.

4 Conclusion

In this paper, characterizations of the δ-primary subhypermodule were pro-
vided using the expansion function δ. We introduced the δ-primary sub-
hypermodule, and several characterizations to classify them were obtained.
Then, we investigated whether the union of the collection of δ-primary sub-
hypermodules preserves the algebraic structure. Besides, we examined the
images and inverse images of δ-primary subhypermodules under homomor-
phism. Also, we provided some characterizations for multiplication hyper-
modules with some special conditions. The results presented in this paper
contribute to a better understanding of the structure of hypermodules with
respect to the expansion function δ. These characterizations are essential for
further research in this area and provide a foundation for future studies on
δ-primary subhypermodules. We investigated many behaviors of δ-primary
subhypermodules in particular cases. Our findings shed light on the intri-
cate relationships between hypermodules and δ-primary subhypermodules,
paving the way for deeper exploration into their properties. This analysis
opens up new avenues for studying the behavior of subhypermodules un-
der the expansion function δ in various contexts. In future work, one can
generalize this study. Future research could explore the application of these
characterizations in other areas of mathematics or investigate the properties
of δ-primary subhypermodules in different algebraic structures. We suggest
open problems to researchers based on our findings.
(1) To consider 1-absorbing δ-primary subhypermodules on Krasner hyper-
rings,
(2) To describe 2-absorbing δ-primary subhypermodules on Krasner hyper-
rings,
(3) To think ϕ-δ-primary subhypermodules on Krasner hyperrings,
(4) To think weakly δ-primary subhypermodules on Krasner hyperrings,
(5) To think S-δ-primary subhypermodules on Krasner hyperrings.
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