The coherator $\Theta^{\infty}_W$ of cubical weak $\infty$-categories with connections

Document Type : Research Paper

Author

Laboratoire de Math\'ematiques d'Orsay, UMR 8628, Universit\'e de Paris-Saclay and CNRS, B\^atiment 307, Facult\'e des Sciences d'Orsay, 94015 ORSAY Cedex, France.

10.48308/cgasa.2023.104139

Abstract

This work exhibits two applications of the combinatorial approach in [12] of the small category $\Theta_0$ which objects are cubical pasting diagrams. First we provide an accurate description of the monad $\mathbb{S}=(S,\lambda,\mu)$ acting on the category ${\mathbb{C}\mathbb{S}\text{ets}}$ of cubical sets (without degeneracies and connections), which algebras are cubical strict $\infty$-categories with connections, and show that this monad is cartesian, which solve a conjecture in \cite{camark-cub}. Secondly we give a precise construction of the cubical coherator $\Theta^{\infty}_W$ which set-models are cubical weak $\infty$-categories with connections, and we also give a precise construction of the cubical coherator $\Theta^{\infty}_{W^{0}}$ which set-models are cubical weak $\infty$-groupoids with connections.  

Keywords

Main Subjects


1] Ara, D., Sur les ∞-groupo¨ıdes de Grothendieck et une variante ∞-cat`egorique, Th`ese de 3e cycle, Paris 7, Septembre 2010, https://www.i2m.univ-amu.fr/perso/dimitri.ara/files/these.pdf.
[2] Bastiani, A. and Ehresmann, C., Categories of sketched structures, Cah. Topol. G´eom. Diff´er. Cat´eg. 13(2) (1972), 104-214.
[3] Batanin, M., Monoidal globular categories as a natural environment for the theory of weak-n-categories, Adv. Math. 136 (1998), 39-103.
[4] Bergner, J., “The Homotopy Theory of (∞, 1)-Categories”, London Math. Soc. Stud. Texts 90, Cambridge University Press, 2018.
[5] Bourke, J., Iterated algebraic injectivity and the faithfulness conjecture, High. Struct. 4(2) (2020), 183-210.
[6] Bourke, J. and Garner, R., Monads and Theories, Adv. Math. 351 (2019), 1024-1071.
[7] Brown, R., Higgins, P.J., and Sivera, R., “Nonabelian Algebraic Topology”, European Mathematical Society, Tracts in Mathematics  15, 2011.
[8] Grothendieck, A., Pursuing stacks, Manuscript, https://webusers.imj-prg.fr/~georges.maltsiniotis/ps.html.
[9] Kachour, C., D´efinition alg´ebrique des cellules non-strictes, Cah. Topol. G´eom. Diff´er. Cat´eg. 1 (2008), 1-68.
[10] Kachour, C., Algebraic definition of weak (∞, n)-categories, Theory Appl. Categ. 30(22) (2015), 775-807.
[11] Kachour, C., Steps toward the weak higher category of weak higher categories in the globular setting, Categ. Gen. Algebr. Structures Appl. 4(1) (2016), 9-42.
[12] Kachour, C., Combinatorial approach of the Category Θ0 of Cubical Pasting Diagrams, To appears in Categ. Gen. Algebr. Struct. Appl. (2023).
[13] Kachour, C., Combinatorial approach of the Category Θ0 of Cubical Pasting Diagrams, https://arxiv.org/pdf/2102.09787.pdf (2021).
[14] Kachour, C., Algebraic models of cubical weak ∞-categories with connections, Categ. Gen. Algebr. Struct. Appl. 16(1) (2022), 143-187.
[15] Kachour, C., Algebraic models of cubical weak higher structures, Categ. Gen. Algebr. Struct. Appl. 16(1) (2022), 189-220.
[16] Camell Kachour, Introduction to Higher Cubical Operads . Pr´epublication de l’IHES, republished in HAL: https://hal.science/hal-04306455.
[17] Lair, C., Trames et s´emantiques cat´egoriques des syst`emes de trames, J. Diagrammes 18 (1987), 47 pages. http://www.numdam.org/item/DIA_1987__18__A1_0.pdf.
[18] Leinster, T., “Higher Operads, Higher Categories”, London Mathematical Society, Lecture Note Series 298, Cambridge University Press, 2004.
[19] Maltsiniotis, G., Grothendieck ∞-groupoids, and still another definition of ∞-categories, available online: http://arxiv.org/pdf/1009.2331v1.pdf (2010).
[20] Penon, J., Approche polygraphique des ∞-cat´egories non strictes, Cah. Topol. G´eom. Diff´er. Cat´eg. 40(1) (1999), 31-80.
[21] Verity, D., Enriched categories, internal categories and change of base, Ph.D. Thesis, http://www.tac.mta.ca/tac/reprints/articles/20/tr20.pdf.
[22] Weber, M., Familial 2-functors and parametric right adjoints, Theory Appl. Categ. 18(22) (2007), 665-732.