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The coherator Θ∞W of cubical weak
∞-categories with connections

Camell Kachour

Abstract. This work exhibits two applications of the combinatorial ap-
proach in [12] of the small category Θ0 which objects are cubical pasting di-
agrams. First we provide an accurate description of the monad S = (S, λ, µ)
acting on the category CSets of cubical sets (without degeneracies and connec-
tions), which algebras are cubical strict ∞-categories with connections, and
show that this monad is cartesian, which solve a conjecture in [16]. Secondly
we give a precise construction of the cubical coherator Θ∞

W which set-models
are cubical weak ∞-categories with connections, and we also give a precise
construction of the cubical coherator Θ∞

W0 which set-models are cubical weak
∞-groupoids with connections.

1 Introduction

In globular higher category theory two important algebraic steps were nec-
essary for a deeper understanding of some of its facets: the construction
of its category Θ0 of arities (which leads a good ambients for operations
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for the globular theories) [3, 18], and the definition of globular contractions
(which permits to weakened globular theories) [3, 20]. For cubical higher
category theory expressed with algebraic structures we also need the cubi-
cal analogue of these two ingredients: but the cubical Θ0 of arities for the
cubical theories is described in [12], and the cubical contractions for weak-
ened cubical structures were described accurately in [14, 16]. With these
two ingredients in hands this work exhibits two applications which aim is
to understand deeper importants facets of cubical higher category theory:

• First we use the cubical Θ0 [12] which objects are cubical pasting di-
agrams to provide an accurate description of the monad S = (S, λ, µ)
acting on the category CSets of cubical sets (without degeneracies
and connections), which algebras are cubical strict ∞-categories with
connections, and show that this monad is cartesian, which solve a con-
jecture in [16]. In [16] we used this cartesianity to build the theory of
cubical operads which leads to a fundamental cubical weak∞-groupoid
functor:

Top ∞-CGrp,
Π∞

where∞-CGrp is here the category of cubical weak∞-groupoids with
connections (this category is described in [15]), and this functor Π∞
is the cubical analogue of the fundamental globular weak ∞-groupoid
functor:

Top ∞-GGrp,
Π∞

where ∞-GGrp denotes the category of globular weak ∞-groupoids
(this category is described in [10]), built by Michael Batanin in [3].

If X is a rectangular n-divisor, it means that it is an object of Θ0

and also it is an n-cell of the cubical strict ∞-category •-RectDiv
built in [12]. In particular X is described as an n-configuration of
coordinates:

Cn = J1;m1K× · · · × J1;mjK× · · · × J1;mnK,

weighted by n-cells Al ∈ R(n) (where R denotes the underlying endo-
functor of the monad R = (R, i,m) acting on the category of cubical
sets, which algebras are cubical sets equipped with degeneracies), i.e
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for each coordinates dxi
kli
∈ Cn (l ∈ J1;m1 · · ·mnK) is attached an n-

cells Al ∈ R(n), and this weighted is subject to compatibility of faces
(see below). Such attachments of Al ∈ R(n) with dxikli ∈ Cn is denoted

by Aldx
i
kli

1 and is called a basic n-divisor. Thus X is described as a

formal sum X = A1dx
i
k1i

+ · · · + Ardx
i
kri

equipped with a configura-

tion Cn as above, and if Aldx
i
kli

is a basic n-divisor of X then the cell

Al ∈ R(n) is just a degeneracy Al = z(1(q)) of the unique q-cell 1(q) of
the cubical site C, and z here denotes a zigzag of degeneracies. In [12]
the rectangular n-divisor X are first of all seen as terms of a language
which set of variables are objects 1(q) of the cubical site C, thus we
can replace these variables by many kinds of cubical entities, and such
replacement are called decorations of X. More precisely we are going
to see that any rectangular n-divisor X can be decorated by cubical
object, like: a fixed cubical set C ∈ CSets, then such decorations are
denoted by ⟨X,C⟩, and we use its associated inductive sketch E⟨X,C⟩
to build the free cubical strict ∞-category with connections S(C); or
by a fixed functor:

C C,F

where such decoration is denoted by ⟨X,F ⟩, and we use its associated
inductive sketch E⟨X,F ⟩ to define cubical extension and cubical theory
(see 3.2.3), and if F = Y is the Yoneda:

C CSets,Y

then the sketches E⟨X,Y ⟩ are going to be the most important ingredients
to exhibit the underlying combinatorics of the monad S = (S, λ, µ):
the colimit colim E⟨X,Y ⟩ is a kind of gluing of representables, more pre-
cisely this is a gluing of degenerate representables, and by the Yoneda
lemma an n-cell x ∈ S(C) is given by a natural transformation:

colim E⟨X,Y ⟩ C,x

1These labellings of Al ∈ R(n) with the coordinates dxi
kl
i
∈ Cn need in fact to be more

sophisticated: in [12] we enriched these coordinates with a notion of basic boxes, which
have the advantage to capture the entire information of the cubical shape of each cells in
R(1).
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where X ∈ Θ0 is here an n-cell in •-RectDiv; thus the action of S on
C ∈ CSets is described by the formula:

S(C) :=
∐

X∈Θ0

homCSets(colim E⟨X,Y⟩, C).

To achieve the description of S = (S, λ, µ) we need to describe its
multiplication µ; this is done using another decoration of the X ∈ Θ0,
by means of a fixed cubical strict ∞-category with connections C ∈
∞-CCAT, and such decoration is still denoted by ⟨X,C⟩. Consider
now the full subcategory Θ0[C] ⊂ CSets, where objects of Θ0[C] are
these C-decorated rectangular divisors equipped with their cubical set
structure; with it we get a functor:

Θ0[C] (1 ↓ C),SubstC

defined on objects as follow: SubstC(⟨X,C⟩) := colim E⟨X,C⟩. When
C = •-RectDiv we obtain different decorations ⟨X, •-RectDiv⟩ and a
functor:

Θ0[•-RectDiv] (1 ↓ •-RectDiv) = Θ0,
Subst

which is a key ingredient to build the multiplication µ of the monad
S.

Another important aspect of this work is to have a well defined real-
ization of the sketch EX in each decorated sketches. We usually prove
these realization by induction with the first floor, and more, we shall
see that it is enough to deal just with fragments of cocones of the first
floor of E⟨X,Y ⟩ or E⟨X,•-RectDiv⟩.

• In a second part 3.2 of our work we provide another application of
the cubical Θ0 followed with main ideas of weakened cubical algebraic
structures which first ideas were developed in [14, 16]. Let us men-
tion some historical facts related to Section 3, 3.1, and 3.2: in [8]
Alexander Grothendieck has proposed an algebraic definition of glob-
ular weak∞-groupoids, as Sets-models of a sketch Θ∞

W 0 named by him
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coherator. In [19] the author showed that a small variation of this co-
herator Θ∞

W 0 leads to a coherator Θ∞
W which Sets-models are globular

weak ∞-categories. In [5] it is proved that Batanin and Grothendieck
approaches of globular weak ∞-categories are both equivalent. More
precisely if we denote by B0 the globular operad of Batanin such that
B0-algebras are Batanin’s globular weak ∞-categories [3], then these
B0-algebras are equivalent to Sets-models of the globular coherator
described in [19]. Thus our second main application of the cubical Θ0

description in [12], is going to mimic the construction in [19] and in [8],
but for the cubical paradigm and inspired by our method of weakened
cubical algebraic structures in [14, 16]: more precisely we give a pre-
cise construction of the cubical coherator Θ∞

W which set-models are
cubical weak ∞-categories with connections, and we also give a pre-
cise construction of the cubical coherator Θ∞

W 0 which set-models are
cubical weak ∞-groupoids with connections. The main tools to gain
these definitions are inspired by the following works:

1. The globular coherators as in [8, 13, 19];

2. The category Θ0 of cubical pasting diagrams defined in [12];

3. The cubical contractions defined in [14, 16];

4. The cubical weak ∞-groupoids with connections defined in [15].

In order to grasp some good comprehensions about coherators we start
Section 3 by defining in 3.1 the globular coherators Θ∞

Mm for globular
weak (∞,m)-categories (m ∈ N) and the category Mod(Θ∞

Mm) of Sets-
models for Θ∞

Mm . Surprisingly these models of globular weak (∞,m)-
categories have never been described before despite their simplicity
and despite that some literatures surrounding coherators were already
available 20 years ago (see the publications [8, 19]). These models of
globular weak (∞,m)-categories permit to recast the Grothe-ndieck
Conjecture for Homotopy Theory in the wider context of the (∞,m)-
categories:

Conjecture 1.1 (Grothendieck’s Conjecture for Homotopy Theory).
The category Mod(Θ∞

Mm) is Quillen equivalent to categories of simpli-
cial models of weak (∞,m)-categories (for all m ∈ N).
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See for example [4] for such existing simplicial models. It is also
important to notice that the author had developed other globular
algebraic models of weak (∞,m)-categories (for all m ∈ N) in [10].

2 The monad of cubical strict∞-categories with connections

Let us recall some terminology from [12]. With a family of languages Ln =
(Ln, (◦nj )j∈J1;nK) (n ∈ N) we exhibit cubical pasting diagrams as elements

X of a set n-RectDiv of Ln-terms (for each n ∈ N), which lead to a free2

cubical strict∞-category (with connections) •-RectDiv on a terminal object
1 ∈ CSets. The full subcategory of CSets which objects are elements X ∈
n-RectDiv (for all n ∈ N) is denoted by Θ0 and it is the small category of
cubical pasting diagrams, which are synonymous in [12] with rectangular
divisors. For each cubical pasting diagram X ∈ n-RectDiv we associate
an inductive sketch EX and thus we can alternatively see Θ0 as a small
category which objects are such inductive sketches, but also •-RectDiv can
be replaced by the cubical strict ∞-category •-RectDiv′ which cells are
then these inductive sketches. It is important to recall the description of
the inductive sketch EX : if X = A1dx

i
k1i

+ · · ·+Ardx
i
kri

then its underlying

n-configuration is usually written Cn = dxi
k1i

+ · · · + dxikri
, but its precise

definition is just the following finite set of coordinates:

Cn = J1;m1K× · · · × J1;mjK× · · · × J1;mnK.

The sketch EX associated to X is provided by several sketches ECn as-
sociated to its n-configuration Cn (see [12]) called the (◦jn , ◦jn−1 , · · · , ◦j1)-
decompositions of Cn where ji ∈ J1;nK and ji ̸= jk if i ̸= k. Thanks
to the congruences of associativities and of interchange laws [12], all these
sketches provide equivalent formulation of EX , and in order to simplify the
theory we use the (◦n, ◦n−1, · · · , ◦1)-decomposition of Cn which has been
accurately described in the beginning of Section 5 in [12]. The sketch EX
is thus given by the (◦n, ◦n−1, · · · , ◦1)-decomposition of Cn weighted by the

2Thus •-RectDiv = S(1) where S is the underlying endofunctor of the monad
S = (S, λ, µ) acting on the category CSets of cubical sets (without degeneracies and
connections), which algebras are cubical strict ∞-categories with connections.
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basic n-divisors of X. In fine EX is described by a stepped structure of co-
cones, that we prefer to call a floor structure on cocones, and it is interesting
to know that such structured sketches have been studied under the name
Trames in [17]; EX precisely consists of:

• Them2 · · ·mn ◦1-cocones E ln,··· ,l2X (first floor cocones), where (l2, · · · , ln)
∈ J1;m2K× · · · × J1;mnK:

Xln,··· ,l2

Xln,··· ,l2,1 Xln,··· ,l2,2 · · ·Xln,··· ,l2,m1−1 Xln,··· ,l2,m1

tnn−1,1 = snn−1,1 tnn−1,1 = snn−1,1

tnn−1,1

snn−1,1
tnn−1,1

snn−1,1

here tnn−1,1 = snn−1,1 at the bottom left means:

tnn−1,1(X
ln,··· ,l2,1) = snn−1,1(X

ln,··· ,l2,2),

and tnn−1,1 = snn−1,1 at the bottom right means:

tnn−1,1(X
ln,··· ,l2,m1−1) = snn−1,1(X

ln,··· ,l2,m1).

• Themj+1 · · ·mn ◦j-cocones E ln,··· ,lj+1

X (j-floor cocones), where (lj+1, · · · , ln)
∈ J1;mj+1K× · · · × J1;mnK:

Xln,··· ,lj+1

Xln,··· ,lj+1,1 Xln,··· ,lj+1,2 · · · Xln,··· ,lj+1,mj−1 Xln,··· ,lj+1,mj

τn
n−1,j = σn

n−1,j τn
n−1,j = σn

n−1,j

τn
n−1,j

σn
n−1,j

τn
n−1,j

σn
n−1,j

here τnn−1,j = σnn−1,j at the bottom left means:
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τnn−1,j(X
ln,··· ,lj+1,1) = σnn−1,j(X

ln,··· ,lj+1,2),

and τnn−1,j = σnn−1,j at the bottom right means:

τnn−1,j(X
ln,··· ,lj+1,mj−1) = σnn−1,j(X

ln,··· ,lj+1,mj ).

• The unique ◦n-cocone of X (n-floor cocone):

X

X1 X2 · · · Xmn−1 Xmn

τn
n−1,n = σn

n−1,n τn
n−1,n = σn

n−1,n

τn
n−1,n

σn
n−1,n

τn
n−1,n

σn
n−1,n

here τnn−1,n = σnn−1,n at the bottom left means:

τnn−1,n(X
1) = σnn−1,n(X

2),

and τnn−1,n = σnn−1,n at the bottom right means:

τnn−1,n(X
mn−1) = σnn−1,n(X

mn).

In the sequel, many of our reasonings will appeal to induction starting
with the first floor of EX , and these reasonings shall need only fragment of
cocones3 of this first floor, i.e we shall use only sub diagrams of the following
shape:

x x′

tpp−1,j(x) = spp−1,j(x
′)

tpp−1,j

spp−1,j

3These cocones are called j-gluing datas in [12].
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where x and x′ are basic n-divisors of X (because this fragment is taken
from the first floor of EX).

The monad acting on CSets which algebras are cubical strict∞-categories
with connections is denoted by S = (S, λ, µ) and the existence of this monad
is proved in [14]. In this section we will accurately describe S with the cu-
bical Θ0. For that we need to decorate cubical pasting diagrams. Indeed
consider a rectangular n-divisor X = A1dx

i
k1i

+ · · · + Ardx
i
kri

and a cubical

set C ∈ CSets. In fact each cell 1(q) in each basic divisors of X, which
are formally degenerate or not, play the role of variable, and thus we can
substitute them by cells of C, which lead to the following definition:

Definition 2.1. A decoration of X by cells of C is given by a C-decorated
rectangular n-divisor :

⟨X,C⟩ = c1dx
i
k1i

+ · · ·+ crdx
i
kri

i.e a filling of X with cells x of C; more precisely we substitute the 1(q)’s in
each basic divisors of X, which are formally degenerate or not, with q-cells
x of C, such that for all directions j ∈ J1, nK if (Aldx

i
kli
, Al′dx

i
kl

′
i

) are j-gluing

datas for X, i.e are such that tnn−1,j(Aldx
i
kli
) = snn−1,j(Al′dx

i
kl

′
i

) then

tnn−1,j(cl) = snn−1,j(cl′).

A warning is important here: for l ∈ J1; rK if cldx
i
kli

is a basic n-divisor

(decorated) of ⟨X,C⟩, then cl is not necessarily a cell of the cubical set C,
but in general it is a formal degeneracy cl = z(xl) (where z is a zigzag of
degeneracies, see [12]) of a cell xl of C, because basic divisors in X are first
of all boxes which contain degeneracies of the 1(q)’s.

Because X is a rectangular n-divisor, the decoration ⟨X,C⟩ above is an
n-cell of the free cubical strict ∞-category with connections S(C). Here we
see that rectangular divisors may be used to give an accurate description of
the action of the monad S = (S, λ, µ) on cubical sets. But there is a more
elegant way to use these rectangular divisors for the description of S(C),
by means of using gluing of representables4; and for this purpose we need
to define another type of decoration.

4More precisely we will use gluing of degenerate representables.
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Definition 2.2. Consider a rectangular n-divisor X = A1dx
i
k1i

+ · · · +
Ardx

i
kri
, a category C, and a functor

C CF

where we denote F (1(n)) = In, F (snn−1,j) = snn−1,j, and F (t
n
n−1,j) = tnn−1,j.

The F -decorated rectangular n-divisor

⟨X,F ⟩ = c1dx
i
k1i

+ · · ·+ cldx
i
kli
+ · · ·+ crdx

i
kri

is a filling of X by the objects Iq of C, in the sense that in each occurrence
of the 1(q)’s in the boxes of X (degenerate or not), we substitute 1(q) by Iq,
such that for all directions j ∈ J1, nK if (Aldx

i
kli
, Al′dx

i
kl

′
i

) are j-gluing datas

for X, i.e are such that tnn−1,j(Aldx
i
kli
) = snn−1,j(Al′dx

i
kl

′
i

) then

tnn−1,j(cl) = snn−1,j(cl′).

Remark 2.3. It is easy to see that for each rectangular n-divisor X, cor-
responds one and only one decoration ⟨X,F ⟩ for each such functor F .

Remark 2.4. This is important to notice that the expressions cldx
i
kli

are

formal degenerate terms build with the objects In of C. This kind of terms
can be disturbing for logicians because terms for a language must be built
with sets and not by objects of a category, but here we will fall back on
our feet, because these terms have a sense in any elementary topos, and our
main example, the category CSets, feats well for this paradigm.

We can associate to the decoration ⟨X,F ⟩ above, a sketch E⟨X,F ⟩, exactly

as in [12]. Now we are going to define cubical sums for functors C CF ,
as above, and for that we need that the terms cldx

i
kli

and the sketches E⟨X,F ⟩
are well realized in the category C, i.e that these terms and these sketches,
have both realizations which are well defined in the category C.
Definition 2.5. Consider a rectangular n-divisor X = A1dx

i
k1i

+ · · · +
Ardx

i
kri
, a category C, a functor C C,F and the F -decorated rect-

angular n-divisor

⟨X,F ⟩ = c1dx
i
k1i

+ · · ·+ cldx
i
kli
+ · · ·+ crdx

i
kri
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as in 2.2, such that the terms cldx
i
kli
are well realized in C, and the associated

sketch E⟨X,F ⟩ of ⟨X,F ⟩, is well realized in C5. If the colimit: colim E⟨X,F ⟩
exists in C, then we say that F has the cubical sum associated to the F -
decoration ⟨X,F ⟩, or it has X-cubical sum for short. If F has X-cubical
sum for all rectangular divisors X ∈ Θ0, then we say that F has all cubical
sums, or just F is a cubical extension.

The functor i :

C Θ0
i

which sends each objects 1(n) of C to the basic box 1(n)dxiki is a trivial
example of cubical extension. Indeed for the rectangular n-divisor X =
A1dx

i
k1i
+ · · ·+Ardx

i
kri
, the i-decorated rectangular divisor ⟨X, i⟩ is X itself,

and by definition the terms cldx
i
kli

= Aldx
i
kli

are objects of Θ0; also we have

E⟨X,i⟩ = EX , and indeed the sketch EX is by definition a diagram inside Θ0

(or a subcategory of Θ0).

The Yoneda embedding Y:

C CSets

1(n) homCSets(−, 1(n))

Y

is a crucial example of cubical extension. Indeed for the rectangular n-
divisor X = A1dx

i
k1i

+ · · · + Ardx
i
kri
, we have the Y -decorated rectangular

divisor ⟨X,Y ⟩:

⟨X,Y⟩ = c1dx
i
k1i

+ · · ·+ cldx
i
kli
+ · · ·+ crdx

i
kri

where here cldx
i
kli

are decorated basic divisor, and the terms cl are obtained

with Al = z(1(q)) (z is a zigzag of degeneracies and necessarily q ≤ n) by
substituting 1(q) with the representable Y(1(q)) = homC(−, 1(q)); now we
need to show that its associated sketch E⟨X,Y⟩ is well realized in the category
CSets; we will treat only cocones of first floor of E⟨X,Y⟩ (see Section 6 in [12])
because for the other floors of E⟨X,Y⟩ the arguments are similar; arrows of the

5Just below we provide example of well realizations.
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cocones in the first floor6 of E⟨X,Y⟩ have the following shapes (coordinates
are unnecessary at this stage):

cl

spp−1,i(cl)

spp−1,i

cl

tpp−1,i(cl)

tpp−1,i

where 1 ≤ p ≤ n and 1 ≤ i ≤ p; these arrows are themselves built with the
following arrows of the cocones of the sketch EX :

Al

spp−1,i(Al)

spp−1,i

Al

tpp−1,i(Al)

tpp−1,i

where each term cl is obtained with Al = z(1(q)) (z is a zigzag of de-
generacies where necessarily q ≤ p) by substituting 1(q) with the repre-
sentable Y(1(q)) = homC(−, 1(q)); but these terms cl = z(homC(−, 1(q)))
are presheaves7:

Cop Setsz(homC(−,1(q)))

defined pointwise as follow

z(homCSets(−, 1(q)))(1(n)) = z(homC(1(n), 1(q)))

:= {terms z(x)/x ∈ homC(1(n), 1(q))}
i.e z(homCSets(−, 1(q)))(1(n)) is a set of terms. Also if

1(n) 1(p)
f

6In Section 6 in [12] we built the first floor with ◦1-cocones, i.e they were built along
the direction 1; here we treat instead the more general situation where the first floor
consists of ◦i-cocones, and this doesn’t affect at all our arguments because the choice to
use ◦1-cocones in [12] was for simplicity. See the Remark 9 in the end of Section 5 in [12].

7These kinds of formal presheaves, i.e which are built pointwise with terms for a lan-
guage, out of other presheaves, are standard in topos theory.
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is a morphism in Cop, then z(homC(−, 1(q)))(f) is the map in Sets:

z(homC(1(n), 1(q))) z(homC(1(p), 1(q)))
z(homC(−,1(q)))(f)

and if z(x) ∈ z(homC(1(n), 1(q))) (i.e x ∈ homC(1(n), 1(q))), then

z(homC(−, 1(q)))(f)(z(x)) := z(x ◦ f).
This shows that the terms cl (1 ≤ p ≤ n) are well realized in CSets.
Now we need to show that the arrows:

cl

spp−1,i(cl)

spp−1,i

cl

tpp−1,i(cl)

tpp−1,i

are morphisms in CSets, i.e are natural transformations; the only inter-
esting cases are when cl are degenerates (otherwise this is trivial), i.e cl =
z(homC(−, 1(q))); but here z can be a zigzag z′ of degeneracies of homC(−, 1(q))
followed by 1p−1

p,j (1 ≤ j ≤ p), or z can be a zigzag z′ of degeneracies of

homC(−, 1(q)) followed by 1p−1,γ
p,j (1 ≤ j ≤ p − 1 and γ ∈ {−,+}); if we

want to have an accurate description of the natural transformations spp−1,i

and tpp−1,i above, we need these different possibilities of cl:

• cl = 1p−1
p,j (z′(homC(−, 1(q)))), where 1 ≤ j ≤ p;

• cl = 1p−1,−
p,j (z′(homC(−, 1(q)))), where 1 ≤ j ≤ p− 1;

• cl = 1p−1,+
p,j (z′(homC(−, 1(q)))), where 1 ≤ j ≤ p− 1.

For example, if cl = 1p−1
p,j (z′(homC(−, 1(q)))), where 1 ≤ j ≤ p, then we

get:

1p−1
p,j (z′(homC(−, 1(q))))

spp−1,i(1
p−1
p,j (z′(homC(−, 1(q)))))

spp−1,i

1p−1
p,j (z′(homC(−, 1(q))))

tpp−1,i(1
p−1
p,j (z′(homC(−, 1(q)))))

tpp−1,i
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but we have the following relations for 1p−1
p,j (see [14]):

• spp−1,i1
p−1
p,j = 1p−2

p−1,j−1s
p−1
p−2,i and t

p
p−1,i1

p−1
p,j = 1p−2

p−1,j−1t
p−1
p−2,i, if 1 ≤ i <

j ≤ p;
• spp−1,i1

p−1
p,j = 1p−2

p−1,js
p−1
p−2,i−1 and tpp−1,i1

p−1
p,j = 1p−2

p−1,jt
p−1
p−2,i−1, if 1 ≤ j <

i ≤ p;
• spp−1,j1

p−1
p,j = id(p− 1) and tpp−1,j1

p−1
p,j = id(p− 1).

We treat only the case 1 ≤ i < j ≤ p, because the other cases are
completely similar; if 1 ≤ i < j ≤ p, then thanks to the relations just above,
we have got:

1p−1
p,j (z′(homC(−, 1(q))))

1p−2
p−1,j−1(s

p−1
p−2,i(z

′(homC(−, 1(q)))))

spp−1,i

1p−1
p,j (z′(homC(−, 1(q))))

1p−2
p−1,j−1(t

p−1
p−2,i(z

′(homC(−, 1(q)))))

tpp−1,i

For the object 1(n) ∈ Cop we have the following sets:

1p−1
p,j (z′(homC(1(n), 1(q)))) = {terms 1p−1

p,j (z′(x))/x ∈ homC(1(n), 1(q))},

1p−2
p−1,j−1(s

p−1
p−2,i(z

′(homC(1(n), 1(q)))))

= {terms 1p−2
p−1,j−1(s

p−1
p−2,i(z

′(x)))/x ∈ homC(1(n), 1(q))},

1p−2
p−1,j−1(t

p−1
p−2,i(z

′(homC(1(n), 1(q)))))

= {terms 1p−2
p−1,j−1(t

p−1
p−2,i(z

′(x)))/x ∈ homC(1(n), 1(q))}.

Now the natural transformations spp−1,i and tpp−1,i become more trans-
parent: for the object 1(n) ∈ Cop we have two maps in Sets:
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1p−1
p,j (z′(homC(1(n), 1(q))))

1p−2
p−1,j−1(s

p−1
p−2,i(z

′(homC(1(n), 1(q)))))

spp−1,i(1(n))

1p−1
p,j (z′(homC(1(n), 1(q))))

1p−2
p−1,j−1(t

p−1
p−2,i(z

′(homC(1(n), 1(q)))))

tpp−1,i(1(n))

where
spp−1,i(1(n))(1

p−2
p−1,j−1(s

p−1
p−2,i(z

′(x))))

:= 1p−1
p,j (z′(x)) and tpp−1,i(1(n))(1

p−2
p−1,j−1(t

p−1
p−2,i(z

′(x)))) := 1p−1
p,j (z′(x)).

If 1(n) 1(n′)
f

is a morphism in Cop then it is easy to see that we

have the expected naturality for spp−1,i:

1p−1
p,j (z′(homC(1(n), 1(q)))) 1p−1

p,j (z′(homC(1(n′), 1(q))))

1p−2
p−1,j−1(s

p−1
p−2,i(z

′(homC(1(n), 1(q))))) 1p−2
p−1,j−1(s

p−1
p−2,i(z

′(homC(1(n′), 1(q)))))

1
p−1
p,j (z′(homC(f,1(q))))

s
p
p−1,i(1(n))

1
p−2
p−1,j−1(s

p−1
p−2,i(z

′(homC(f,1(q)))))

s
p
p−1,i(1(n

′))

because

1p−1
p,j (z′(homC(f, 1(q))))(s

p
p−1,i(1(n))(1

p−2
p−1,j−1(s

p−1
p−2,i(z

′(x))))) =

1p−1
p,j (z′(homC(f, 1(q))))(1

p−1
p,j (z′(x))) = 1p−1

p,j (z′(x ◦ f)),

and also

spp−1,i(1(n
′))(1p−2

p−1,j−1(s
p−1
p−2,i(z

′(homC(f, 1(q)))))(1
p−2
p−1,j−1(s

p−1
p−2,i(z

′(x))))))

= spp−1,i(1(n
′))(1p−2

p−1,j−1(s
p−1
p−2,i(z

′(x ◦ f))) = 1p−1
p,j (z′(x ◦ f)).

Of course, the naturality of tpp−1,i is proven similarly, and for the cases

cl = 1p−1,γ
p,j (z′(homC(−, 1(q)))) where 1 ≤ j ≤ p − 1 and γ ∈ {−,+}, we
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use similar arguments (the relations expressing faces of 1p−1,γ
p,j are in [14]),

thus we have proved that the sketch E⟨X,Y⟩ is well realized in CSets for any
rectangular divisor X ∈ Θ0.

Now the Yoneda embedding:

C CSets

1(n) homCSets(−, 1(n))

Y

is a cubical extension because colim E⟨X,Y ⟩ exists in CSets for any rectan-
gular divisors X ∈ Θ0, just because CSets is cocomplete. An interesting
fact here is that the faces of the cubical set colim E⟨X,Y ⟩, thanks to the for-
malism of the objects of Θ0, have a direct description: for all directions j ∈
J1, nK, snn−1,j(colim E⟨X,Y⟩) = colim E⟨σn

n−1,j(X),Y⟩, tnn−1,j(colim E⟨X,Y⟩) =

colim E⟨τnn−1,j(X),Y⟩, and any zigzag of sources-targets of colim E⟨X,Y⟩ is equal
to the colimit colim E⟨x,Y⟩ where x is the face of X obtained by this zigzag.

Now let us define the category C-Ext of cubical extensions:
A morphism in C-Ext is given by a commutative triangle

C

C

C′

f

F

F ′

such that the functor f preserves cubical sums, i.e we have f(colim E⟨X,F ⟩) =
colim E⟨X,F ′⟩ for each F -decoration ⟨X,F ⟩ of each rectangular divisor X. It
is easy to see that the functor i :

C Θ0
i

which sends each objects 1(n) of C to the basic box 1(n)dxiki is an initial
object of C-Ext, such that the unique map is given by the functor:
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Θ0

C

C

colim E⟨−,F ⟩

i

F

and thus the small category Θ0 inherits a universal property. In particular
we have the unique map colim E⟨−,Y ⟩:

Θ0

C

CSets

colim E⟨−,Y ⟩

i

Y

where colim E⟨−,Y ⟩ is also the left Kan extension of Y along the functor i.
Thus our formalism shows how to compute this left Kan extension Lani(Y )
by using sketches for objects in Θ0.

Now we are ready to describe the monad S = (S, λ, µ) of cubical strict
∞-categories with connections: as we wrote in [14] the forgetful functor:

∞-CCAT [Cop,Sets] ,U

which sends cubical strict ∞-categories with connections to cubical sets is

right adjoint and its induced monad is written S = (S, λ, µ) where 1CSets Sλ

is its unit and S2 S
µ

is its multiplication.
If C ∈ CSets is a cubical set, then we put:

S(C) :=
∐

X∈Θ0

colim E⟨X,C⟩ =
∐

X∈Θ0

homCSets(colim E⟨X,Y⟩, C).

Remark 2.6. In [18] Tom Leinster has defined before, a similar descrip-
tion of the monad on globular sets which algebras are globular strict ∞-
categories.
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This description shows immediately that S preserved fiber products and
S(C) is a cubical strict ∞-categories with connections.

The unit λ of S is the map:

C S(C),λ

such that if c ∈ C(1(n)), then λ(1(n))(c) := cdxiki , where here dxiki is just
the non-degenerate basic n-divisor (see [12]).

The multiplication µ of S:

S2(C) S(C),
µ

is more subtle and in order to describe it we need first to define a kind of
decoration for cubical strict ∞-categories (with connections).

Definition 2.7. Consider an object C ∈ ∞-CCAT and a rectangular n-
divisor X = A1dx

i
k1i
+ · · ·+Ardx

i
kri
. A decoration of X by cells of C is given

by a C-decorated rectangular n-divisor :

⟨X,C⟩ = c1dx
i
k1i

+ · · ·+ crdx
i
kri
,

i.e a replacement of each Aldx
i
kli

in X by cldx
i
kli

where cl is an n-cell in C(n)

(l ∈ J1; rK), such that for all directions j ∈ J1, nK if (Aldx
i
kli
, Al′dx

i
kl

′
i

) are

j-gluing datas for X, then

tnn−1,j(cl) = snn−1,j(cl′).

Here we must pay attention about this decoration: this decoration must
be seen as a decoration of X by the underlying cubical set of C, i.e in each
basic n-divisor Aldx

i
kli
inX such that Al = z(1(q)) is a zigzag of degeneracies

of the variable 1(q), we replace 1(q) with a q-cell x ∈ C(q); the resulting
decorated basic n-divisor cldx

i
kli

= z(x)dxi
kli

is such that cl = z(x) ∈ C(n)
because we use the degeneracies z of C8 to produce the n-cell cl ∈ C(n).

Of course they are a multitude of C-decorated rectangular n-divisors
⟨X,C⟩ for each X; each ⟨X,C⟩ can be thought in the following way: each

8The z of the expression Al = z(1(q)) are formal degeneracies and the realization of z
in C is still denoted by z.
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coordinate of the underlying rectangular configuration of X is weighted by
(or inhabited by) an n-cell of C, such that all pair (x, y) of cells in it which
are j-adjacents, are such that tnn−1,j(x) = snn−1,j(y) in C; also each ⟨X,C⟩ is
(as X) an n-cube (see [12]); thus each ⟨X,C⟩ is an n-cubical set such that its
faces are themselves C-decorated rectangular p-divisors, where 0 ≤ p ≤ n;
consider now the full subcategory Θ0[C] ⊂ CSets, where objects of Θ0[C]
are these C-decorated rectangular divisors equipped with their cubical set
structure. We shall use this construction just below when C = •-RectDiv,
the cubical strict∞-category of cubical pasting diagrams (described in [12]).
Also for any C-decorated rectangular n-divisors ⟨X,C⟩ we can associate its
sketch E⟨X,C⟩ (as in [12]), where fragments of cocones of its first floor are as
follow

cl cl′

tpp−1,j(cl) = spp−1,j(cl′)

tpp−1,j

spp−1,j

It is enough to work with these fragments to show that the first floor of
the sketch E⟨X,C⟩ is well realized, and then by a straightforward induction
it shows that the entire sketch E⟨X,C⟩ is indeed well realized. Here cl and cl′

are p-cells in C such that tpp−1,j(cl) = spp−1,j(cl′), and the realization of this
cocone is then just the composition:

cl ◦pp−1,j cl′ ,

with respect to the structure of cubical strict ∞-category with connections
on C. As it is written in Section 5 in [12], the decoration ⟨X,C⟩ is called
in [7] page 350 a multi-dimensional arrays, and in [7] they did not pro-
vide a procedure to compute the n-cell colim E⟨X,C⟩ ∈ C(n). The sketch
E⟨X,C⟩ comes from the sketch EX which itself is described in [12] with the
help of the sketch ECn of the underlying n-configuration Cn of X, and this
accurate description of E⟨X,C⟩ permits a procedure to compute this n-cell
colim E⟨X,C⟩. Thus we have the functor:

Θ0[C] (1 ↓ C),SubstC
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defined on objects as follow: SubstC(⟨X,C⟩) := colim E⟨X,C⟩. Now we
consider the important case C = •-RectDiv, thus a decoration of X by cells
of •-RectDiv, i.e we start with a •-RectDiv-decorated rectangular n-divisor

⟨X, •-RectDiv⟩ = X1dx
i
k1i

+ · · ·+Xldx
i
kli
+ · · ·+Xrdx

i
kri
,

i.e a filling of X with cells Xl of n-RectDiv such that for all directions
j ∈ J1, nK if (Aldx

i
kli
, Al′dx

i
kl

′
i

) are j-gluing datas for X, then

τnn−1,j(Xldx
i
kli
) = σnn−1,j(Xl′dx

i
kl

′
i

).

Here sources σnn−1,j and targets τnn−1,j are the sources and the targets
for rectangular divisors.

From ⟨X, •-RectDiv⟩ ∈ Θ0[•-RectDiv] (see just above) we obtain then a
new rectangular n-divisorX(X1, · · · , Xr) ∈ Θ0 that we obtain by reindexing
all coordinates of basic divisors inside each rectangular n-divisors Xl of it.
This construction

⟨X, •-RectDiv⟩ X(X1, · · · , Xr),

produces a functor:

Θ0[•-RectDiv] Θ0,
Subst

called functor of substitution. Here Θ0 = (1 ↓ •-RectDiv), and as we wrote
above this functor is precisely defined on objects by

Subst(⟨X, •-RectDiv⟩) = colim E⟨X,•-RectDiv⟩.

Indeed, consider a fragment of a cocone of the first floor in EX :

Al Al′

tpp−1,j(Al) = spp−1,j(Al′)

tpp−1,j

spp−1,j
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it is realized to the following fragment of a cocone of the first floor of the
sketch E⟨X,•-RectDiv⟩:

Xl Xl′

τpp−1,j(Xl) = σpp−1,j(Xl′)

τpp−1,j

σp
p−1,j

HereXl andXl′ are p-cells in •-RectDiv such that τpp−1,j(Xl) = σpp−1,j(Xl′),
and the realization of this cocone is then just the composition: Xl ◦pp−1,jXl′

with respect to the structure of cubical strict ∞-category with connections
on •-RectDiv. Thus the functor Subst is first of all a colimit functor, in the
sense that Subst sends each ⟨X, •-RectDiv⟩ ∈ Θ0[•-RectDiv] to the colimit
of the realized sketch E⟨X,•-RectDiv⟩:

Subst(⟨X, •-RectDiv⟩) = X(X1, · · · , Xr) = colim E⟨X,•-RectDiv⟩,

but Subst can also be seen as a re-indexation of coordinates for basic divisors
inside each Xl in ⟨X, •-RectDiv⟩.
Remark 2.8. It is interesting to notice that this realization transforms
the maps s and t of the first floor of EX to the maps σ and τ of the first
floor of E⟨X,•-RectDiv⟩. Here we see the interplay between internal sources
and internal targets of individual rectangular n-divisor X with sources and
targets of the cubical strict ∞-category •-RectDiv which contains X as
object.

The multiplication µ of S:

S2(C) S(C),
µ

is then given by

S
2
(C) =

∐
X∈Θ0

homCSets(colim E⟨X,Y⟩, S(C))
∐

X∈Θ0

homCSets(colim E⟨X,Y⟩, C),
µ(C)

where S2(C) is unpacked as follow

S2(C) =
∐

X∈Θ0

homCSets

(
colim E⟨X,Y⟩,

∐

X∈Θ0

homCSets(colim E⟨X,Y⟩, C)
)
.
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Thus an element t ∈ S2(C)(1(n)) is described by a natural transforma-
tion:

colim E⟨X,Y⟩
∐

X∈Θ0

homCSets(colim E⟨X,Y⟩, C),
t

where X is a rectangular n-divisor, and thus t can be presented with a
decoration X by C-decorated9 rectangular n-divisors ⟨Xl, C⟩, and such dec-
oration is written

t = ⟨X,S(C)⟩ = ⟨X1, C⟩dxik1i + · · ·+ ⟨Xl, C⟩dxikli + · · ·+ ⟨Xr, C⟩dxikri ,

which itself underlies the •-RectDiv-decorated rectangular n-divisor

⟨X, •-RectDiv⟩ = X1dx
i
k1i

+ · · ·+Xldx
i
kli
+ · · ·+Xrdx

i
kri
.

Also the elements ⟨Xl, C⟩ ∈ S(C)(1(n)) are described by natural trans-
formations:

colim E⟨Xl,Y⟩ C,
tl

and thus the action of µ(C) on the n-cell t ∈ S2(C)(1(n)) are written

µ(C)(1(n))(t) = t(t1, · · · , tr) ∈ S(C)(1(n)).

As we saw above, the rectangular n-divisor X(X1, · · · , Xr) is equal to

colim E⟨X,•-RectDiv⟩,

thus its associated sketch

Ecolim E⟨X,•-RectDiv⟩ ,

is the colimits (in the category Sketch of sketches) of the sketches EXl
, or

in other words the sketch Ecolim E⟨X,•-RectDiv⟩ is the gluing of the sketches EXl

along the sketch EX . Thus the induced sketch

E⟨colim E⟨X,•-RectDiv⟩,Y⟩,

9This is a decoration by cubical sets as in 2.1



The coherator Θ∞
W of cubical weak ∞-categories with connections 91

is also the colimits of the sketches E⟨Xl,Y ⟩, or we could say that it is the
gluing of the sketches E⟨Xl,Y ⟩ along the sketch E⟨X,Y ⟩. Also this colimit co-
cone in the category Sketch of sketches which base is built with the sketches
E⟨Xl,Y ⟩ and which colimit is the sketch E⟨colim E⟨X,•-RectDiv⟩,Y⟩, is a diagram of

representables10 (they are objects in CSets), and thus we can take the col-
imit in CSets, on each vertices of this colimit cocone: the resulting diagram
is again a colimit diagram, and takes place in the category CSets, where
each vertices of this diagram are now gluing of representables: colim E⟨Xl,Y⟩
form the bases of this diagram and colim E⟨colim E⟨X,•-RectDiv⟩,Y⟩ is the colimit
of this diagram. The arrows of this cocone colimit in CSets are denoted by

colim E⟨Xl,Y⟩ colim E⟨colim E⟨X,•-RectDiv⟩,Y⟩.
ql

Now we are ready to give a description of µ(C):

S2(C) S(C).
µ(C)

We saw that t ∈ S2(C)(1(n)) just above is given by the natural trans-
formations:

colim E⟨Xl,Y⟩ C,
tl

which fill X, i.e t ∈ S2(C)(1(n)) has the following presentation:

t = ⟨X,S(C)⟩ = t1dx
i
k1i

+ · · ·+ tldx
i
kli
+ · · ·+ trdx

i
kri
.

But by the universality of colim E⟨colim E⟨X,•-RectDiv⟩,Y⟩ we get a unique
natural transformation:

colim E⟨Subst(⟨X,•-RectDiv⟩),Y⟩ C,
t(t1,··· ,tr)

such that for all l ∈ J1, rK we have the commutativity

colim E⟨Xl,Y⟩ C

colim E⟨Subst(⟨X,•-RectDiv⟩),Y⟩

ql

tl

t(t1,··· ,tr)

10We call it representables but in fact they are degeneracies of it; see above when we
tried to describe arrows of the cocones in E⟨X,Y⟩.
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and by definition we have µ(C)(1(n))(t) := t(t1, · · · , tr).
Theorem 2.9. The monad S = (S, λ, µ) acting on CSets which algebras
are cubical strict ∞-categories with connections (described in [14, 16]) is
cartesian.

Proof. The description of the monad S = (S, λ, µ) above shows that its
underlying endofunctor S preserves fibred products. We are going to prove
that the multiplication µ is cartesian, i.e we are going to prove that if
C ∈ CSets is a cubical set then the commutative diagram

S2(C) S2(1)

S(C) S(1)

µ(C)

S2(!)

µ(1)

S(!)

is a cartesian square. Consider the commutative diagram in CSets:

C ′ S2(1)

S(C) S(1)

f

g

µ(1)

S(!)

If x is an n-cell of C ′ then f(x) ∈ S(C)(1(n)) is given by a natural
transformation:

colim E⟨X′,Y ⟩ C,
f(x)

where X ′ is a rectangular n-divisor; also S(!)(1(n))(f(x)) ∈ S(1)(1(n)) is
given by the composition:

colim E⟨X′,Y ⟩ C 1,
f(x) !

i.e S(!)(1(n))(f(x)) is the unique map

colim E⟨X′,Y ⟩ 1.!
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Also g(x) ∈ S2(1)(1(n)) is given by the family of natural transforma-
tions:

colim E⟨Xi,Y ⟩ 1,!

for i ∈ J1; rK, and where Xi (for all i ∈ J1; rK) are rectangular n-divisors
which decorate another rectangular n-divisor X, where this decoration is
given by a natural transformation:

colim E⟨X,Y ⟩ S(C),t

and thus µ(1)(1(n))(g(x)) is given by the unique map t(!, · · · , !):

colim E⟨Xi,Y⟩ 1

colim EX(X1,··· ,Xr),Y⟩

qi

!

t(!,··· ,!)

such that for all i ∈ J1; rK, t(!, · · · , !)◦ql =!, which means that µ(1)(1(n))(g(x))
= t(!, · · · , !) is just the unique map:

colim E⟨X(X1,··· ,Xr),Y ⟩ 1.!

But by the hypothesis S(!)(1(n))(f(x)) = µ(1)(1(n))(g(x)), thus X ′ =
X(X1, · · · , Xr), and thus we can rewrite f(x) as follow

colim E⟨X(X1,··· ,Xr),Y ⟩ C.
f(x)

Now consider the morphism l in the diagram

C ′

S2(C) S2(1)

S(C) S(1)

l

f

g

µ(C)

S2(!)

µ(1)

S(!)
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defined as follow: for x ∈ C ′(1(n)), l(x) ∈ S2(C)(1(n)) is given by the
following family of natural transformations:

colim E⟨Xi,Y ⟩ C,
f(x)◦qi

for i ∈ J1; rK, where this family decorate a rectangular n-divisor X by the
hypothesis, and where this decoration were given by the natural transfor-
mation:

colim E⟨X,Y ⟩ S(C),t

then µ(C)(1(n))(l(x)) = t(f(x) ◦ q1, · · · , f(x) ◦ qr) is the unique natural
transformation such that for all i ∈ J1; rK the following diagrams are com-
mutative

colim E⟨Xi,Y⟩ 1

colim EX(X1,··· ,Xr),Y⟩

qi

f(x)◦qi

t(f(x)◦q1,··· ,f(x)◦qr)

which shows by unicity that µ(C)(1(n))(l(x)) = f(x); also S2(!)(1(n))(l(x)) ∈
S2(1)(1(n)) is given by the following compositions of natural transforma-
tions:

colim E⟨Xi,Y ⟩ C 1,
f(x)◦qi !

and for all i ∈ J1; rK, ! ◦ f(x) ◦ qi =!, thus S2(!)(1(n))(l(x)) = g(x); the
unicity of l is evident.

The cartesianity of the unit:

C S(C),λ

is easier; we need to prove that the following diagram is cartesian.

C 1

S(C) S(1)

λ(C)

!

λ(1)

S(!)
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We start with a commutative diagram in CSets:

C ′ 1

S(C) S(1)

f

!

λ(1)

S(!)

Let x be an n-cell of C ′. Then f(x) ∈ S(C)(1(n)) is given by a natural
transformation:

colim E⟨X′,Y ⟩ C,
f(x)

for a rectangular n-divisor X ′, and thus S(!)(1(n))(f(x)) ∈ S(1)(1(n)) is
the unique natural transformation:

colim E⟨X′,Y ⟩ C 1,
f(x) !

given by ! ◦ f(x) =!; but by the hypothesis we have

S(!)(1(n))(f(x)) = λ(1)(1(n))(!(1(n)(x)))

= λ(1)(1(n))(1(n))

= 1(n)dxiki ,

by the definition of λ, this mean that X ′ = 1(n)dxiki is just the basic non-

degenerate n-divisor (see [12]); thus f(x) may be written f(x) = fxdx
i
ki
,

where fx is an n-cell of C; and thus we put l(x) := fx, and the unicity of l
becomes trivial.

C ′

C 1

S(C) S(1)

l

f

!

λ(C)

!

λ(1)

S(!)
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With this theorem we solved the conjecture in [16] for the monad of
cubical strict ∞-categories with connections which provides a complete de-
scription of the cubical operad B0

C of cubical weak ∞-categories with con-
nections.

Proposition 2.10. The monad S = (S, λ, µ) acting on CSets which algebras
are cubical strict ∞-categories (without connections) is cartesian.

Proof. This is easy. Here, we just use the previous proof using only rect-
angular divisors build with classical degeneracies 1nn+1,j (n ∈ N and j ∈
J1, n+ 1K) and their associated rectangular sketches.

With this proposition we can easily use the materials in [16] to build
the cubical operad B0

C of cubical weak ∞-categories without connections.
In particular it is interesting to know that B0

C-algebras of dimensions 2 are
exactly double categories of Verity [21]. Indeed, in [3] Michael Batanin
proved that with globular operads, B0

C-algebras of dimensions 2 are exactly
bicategories, and we can adapt this proof for this cubical paradigm.

3 The cubical coherators

Coherators have been initiated by Alexander Grothendieck [8] in order to
define properly globular weak ∞-groupoids. A coherator Θ∞

M0 for globular
weak∞-groupoids is a theory in the sense of [6] such that Mod(Θ∞

M0) is the
category of globular weak∞-groupoids. These theories are kinds of general-
ization of Lawvere theories and are powerful enough and simple to capture
many higher structures. For example a slight modification of the definition
of the globular coherator Θ∞

M0 (see [19]) leads to the definition of an other
globular coherator Θ∞

M which set-models are globular weak ∞-categories,
and such models are thus called Grothendieck’s globular weak ∞-categories.
In [1] it is conjectured that these models are equivalent to Batanin’s globular
weak ∞-categories [3], and this conjecture has been proved in [5].

3.1 The globular coherators Θ∞
Mm for globular weak (∞,m)-cat

egories (m ∈ N) In order to have a first good smell of the simplicity of
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this Grothendieck’s approach for weakened algebraic structures, we first de-
scribe globular models of weak (∞,m)-categories (m ∈ N). Thus for each
m ∈ N we build a globular coherator Θ∞

Mm which set-models are globu-
lar weak (∞,m)-categories. The author believes these models of (∞,m)-
categories (for all m ∈ N) are probably the simplest one encounter in the
literature (see for example [4, 10]).

3.1.1 Globular magmatic structures

Consider the small category G with objects 1(n) for all n ∈ N, with mor-

phisms those generated for all n ∈ N by the cosources 1(n− 1) 1(n)
snn−1

and the cotargets 1(n− 1) 1(n)
tnn−1

, which satisfy the following coglob-

ular relations:

(i) snn−1 ◦ sn+1
n = tnn−1 ◦ sn+1

n ,

(ii) snn−1 ◦ tn+1
n = tnn−1 ◦ tn+1

n .

The small category G is called the globe category and we may represent
it schematically with the following diagram

1(0) 1(1) 1(2) 1(3) · · · 1(n − 1) 1(n) · · ·
s10

t10

s21

t21

s32

t32

snn−1

tnn−1

Definition 3.1. Globular sets are presheaves on Gop. The category of
globular sets is denoted by Glob.

A globular ∞-magma M is given by a globular set Gop SetsM

equipped with operations Mn ×Mp Mn Mn

◦np
for all n ≥ 1 and all

0 ≤ p ≤ n− 1 such that

• for 0 ≤ p < q < m, smq (y ◦mp x) = smq (y) ◦qp smq (x) and tmq (y ◦mp x) =
tmq (y) ◦qp tmq (x);

• for 0 ≤ q < p < m, smq (y ◦mp x) = smq (y) = smq (x) and tmq (y ◦mp x) =
tmq (y) = tmq (x);

• for 0 ≤ p = q < m, smq (y ◦mp x) = smq (x) and tmq (y ◦mp x) = tmq (x).
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A globular reflexive ∞-magma is an ∞-magma equipped with map for

reflexivity: Mn Mn+1,
1nn+1

n ≥ 0, such that

• snk(1
k
n(x)) = x = tnk(1

k
n(x));

• 1qn(1
p
q(x)) = 1pn(x).

Morphisms between reflexive∞-magmas are morphisms of reflexive glob-
ular sets between their underlying reflexive globular set structure, i.e for:

M M ′,
f

we have commutative diagrams

Mn+1 M ′
n+1

Mn M ′
n

fn+1

1nn+1

fn

1nn+1

which also preserve operations ◦np ; the category of reflexive ∞-magmas is
denoted by ∞-Magr.

An (∞,m)-globular set is a globular set X equipped with jnn−1-reversors,

i.e with maps: Xn Xn,
jnn−1

which satisfy the following equalities.

Xn Xn

Xn−1

snn−1

jnn−1

tnn−1

Xn Xn

Xn−1

tnn−1

jnn−1

snn−1

A morphism of (∞,m)-globular sets is a morphism: X X ′,
f

of

globular sets which satisfy for all n ≥ m the following equalities.

Xn X ′
n

Xn X ′
n

jnn−1

fn

jnn−1

fn

The category of (∞,m)-globular sets is denoted by (∞,m)-Glob.



The coherator Θ∞
W of cubical weak ∞-categories with connections 99

A globular reflexive (∞,m)-magma is a globular reflexive ∞-magma M

equipped with a structure of globular (∞,m)-set; a morphism: M M ′,
f

of globular reflexive (∞,m)-magmas is a morphism of globular reflexive∞-
magmas which is also a morphism of (∞,m)-sets; the category of globular
reflexive (∞,m)-magmas is denoted by (∞,m)-Magr.

Remark 3.2. A globular strict∞-category C is given by a globular reflexive
∞-magma C such that we have the following equalities:

• x ◦nk 1kn(s
n
k(x)) = x and 1kn(t

n
k(x)) ◦nk x = x;

• 1qn(y ◦qp x) = 1qp(y) ◦np 1qp(x);

• x ◦nk (y ◦nk z) = (x ◦nk y) ◦nk z;
• (y′ ◦nq x′) ◦np (y ◦nq x) = (y′ ◦np y) ◦nq (x′ ◦np x).

The category of globular strict ∞-categories is denoted by ∞-CAT. A
globular strict (∞,m)-category is given by an (∞,m)-globular set C which
is also a globular strict ∞-category such that if α ∈ Cn (n ≥ m) then
α ◦nn−1 j

n
n−1(α) = 1n−1

n (tnn−1(α)) and j
n
n−1(α) ◦nn−1 α = 1n−1

n (snn−1(α)). This
n-cell jnn−1(α) of Cn is called a ◦nn−1-inverse of α and it is straightforward
to see that such ◦nn−1-inverse is uniquely defined. The category of globular
strict (∞,m)-categories is defined as the full subcategory of ∞-CAT which
objects are globular strict (∞,m)-categories and is denoted by (∞,m)-CAT.

3.1.2 Globular Theories

We start to define Globular Extensions:

A globular tree t is given by a table of non-negative integers:



i1 i2 i3 · · · ik−1 ik

i′1 i′2 · · · · · i′k−1




where k ≥ 1, il > i′l < il+1, and 1 ≤ l ≤ k − 1.

Let C be a category and G CF be a functor. We denote F (1(n)) =

Dn and we shall keep the same notations for the image of cosources: F (silil′
) =
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silil′
, and for the image of cotargets: F (tilil′

) = tilil′
, because no risk of confu-

sion will occur. In this case G CF is called a globular extension if for
all trees t as just above, the colimit of the following diagram exists in C.

Di1 Di2 · · · D
ik−1 Dik

Di′1 · · · D
i′k−1

t
i1
i′1

s
i2
i′1

t
ik−1

i′
k−1

s
ik
i′
k−1

Remark 3.3. In [8] Alexander Grothendieck called: globular sums, these
colimits.

A morphism H of globular extensions, also called globular functor, is
given by a commutative triangle in CAT:

C

G

C′

H

F

F ′

such that the functor H preserves globular sums. The category of globular
extensions is denoted by G-Ext. In fact this category has an initial object

denoted by G Θ0
i . In fact the small category Θ0 can be described as

the full subcategory of Glob which objects are globular trees, and its role of
category of globular arities is central for describing different sketches which
Sets-models are globular higher structures. In particular this small category
Θ0 contains the basic inductive sketches we need to describe coherators Θ∞

Mm

which Sets-models are globular weak (∞,m)-categories (for all m ∈ N).
Now let us define Globular theories:

A globular theory is given by a small category Θ and a globular exten-

sion: G Θ,F such that the unique induced functor F which makes
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commutative the diagram

Θ0

G

Θ

F

i

F

induces a bijection between objects of Θ0 and objects of Θ. The full sub-
category of G-Ext which objects are globular theories is denoted by G-Th.
Consider an object G ΘF of G-Th, in particular it induces the glob-

ular functor Θ0 ΘF as just above, which is a bijection on objects. A

set model of (F,Θ) or for Θ for short, is given by a functor: Θ Sets,X

such that the functor X ◦ F :

Θ0 Θ Sets,F X

sends globular sums to globular products11, thus for all objects t of Θ0:



i1 i2 i3 · · · ik−1 ik

i′1 i′2 · · · · · i′k−1




we have

X(F (t)) = X


colim




Di1 Di2 · · · Dik−1 Dik

Di′1 · · · Di′k−1

t
i1
i′1

s
i2
i′1

t
ik−1

i′
k−1

s
ik
i′
k−1







= X


(Di1 , ti1

i′1
)
∐

D
i′1

(si2
i′1
, Di2 , ti3

i′2
)
∐

D
i′2

· · ·
∐

D
i′
k−1

(s
ik
i′
k−1

, Dik )




≃ X(Di1) ×
X(D

i′1 )

· · · ×
X(D

i′
k−1 )

X(Dik ).

11Globular products are just dual to globular sums.
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The category of Sets-models of Θ is the full subcategory of the category
of presheaves [Θ, Sets] which objects are Sets-models of Θ, and this category
is denoted by Mod(Θ).

Here are some examples of globular theories:

Example 3.1. The theory ΘM.

The forgetful functor U :

∞-Magr

Glob

⊣ UF

from the category ∞-Magr of globular reflexive ∞-magmas to the category
Glob of globular sets is right adjoint, which left adjoint is denoted by F , and
it induces a monad M = (M,η, µ) on Glob such that we have the equivalence
of categories ∞-Magr ≃M-Alg because U is monadic. The full subcategory
ΘM ⊂ Kl(M) of the Kleisli category of M which objects are trees is called
the theory of reflexive globular ∞-magmas. In fact we have the following
equivalences of categories:

∞-Magr ≃M-Alg ≃Mod(ΘM).

Example 3.2. The theories ΘMm (m ∈ N).
The forgetful functor Um (m ∈ N):

(∞,m)-Magr

Glob

⊣ UmFm

from the category (∞,m)-Magr of globular reflexive (∞,m)-magmas to the
category Glob of globular sets is right adjoint, which left adjoint is denoted
by Fm, and this induces a monad Mm = (Mm, ηm, µm) on Glob such that
we have the equivalence of categories (∞,m)-Magr ≃Mm-Alg, because each
Um (for all m ∈ N) is monadic. The full subcategory ΘMm ⊂ Kl(Mm) of
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the Kleisli category of Mm which objects are trees is called the theory of re-
flexive globular (∞,m)-magmas. In fact we have the following equivalences
of categories:

(∞,m)-Magr ≃Mm-Alg ≃Mod(ΘMm).

3.1.3 Globular coherators

We need to define the notion of admissiblity :

Let G ΘF be a globular theory, i.e an object of G-Th; two arrows:

Dn t
f

g
in Θ are parallels if fsnn−1 = gsnn−1 and ftnn−1 = gtnn−1:

Dn t

Dn−1

f

g

snn−1 tnn−1

Consider a couple (f, g) of parallels arrows in Θ as just above. We say
that it is admissible or algebraic if they don’t belong to the image of the
globular functor F :

Θ0

G

Θ

F

i

F

Consider a couple (f, g) of arrows of Θ which is admissible as just above;
a lifting of (f, g) is given by an arrow h:

Dn+1

Dn t

hsn+1
n tn+1

n

f

g
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such that hsn+1
n = f and htn+1

n = g.
We now define the Batanin-Grothendieck sequence associated to a glob-

ular theory G Θ.F We build it with the following induction:

• If n = 0 we start with the couple (Θ, E) where E denotes the set of
admissible pairs of arrows of C; we shall write (Θ0, E0) = (Θ, E) this
first step;

• if n = 1 we consider then the couple (Θ1, E1) where Θ
1 is obtained by

formally adding in Θ0 = Θ the liftings of all elements (f, g) ∈ E0 = E,
and E1 is the set of admissible couples of arrows in Θ1 which are not
elements of the set E0;

• if for n ≥ 2 the couple (Θn, En) is well defined then Θn+1 is obtained
by formally adding in Θn the liftings of all elements of En, and En+1 is
the set of admissible couples of arrows of Θn+1 which are not elements
of En.

We can also give a slightly different but equivalent induction to build the

Batanin-Grothendieck sequence for such globular theory G Θ :F

• If n = 0 we start with the couple (Θ, E) where E is the set of couples
of arrows which are admissible of Θ; we denote E = E0 = E′

0 = E′
0 \∅

(we shall see soon the meaning of these notations), and Θ0 = Θ;

• if n = 1 we consider the couple (Θ1, E1) where Θ1 is obtained by
formally adding in Θ0 all liftings of the elements (f, g) ∈ E0, E

′
1 is the

set of all pairs of arrows which are admissible in Θ1, and E1 = E′
1\E0;

remark that E0 = E′
0 ⊂ E′

1;

• if n = 2 we consider the couple (Θ2, E2) where Θ2 is obtained by
formally adding in Θ1 all liftings of the elements (f, g) ∈ E1, E

′
2 is the

set of all pairs of arrows which are admissible in Θ2, and E2 = E′
2\E′

1;

• for n ≥ 3 we suppose that the couple (Θn, En) is well defined with
En = E′

n \ E′
n−1, then Θn+1 is obtained by formally adding in Θn

all liftings of the elements (f, g) ∈ En, E
′
n+1 is the set of all pairs of

arrows which are admissible in Θn+1, and En+1 = E′
n+1 \ E′

n;

An important fact is the globular theory Θn obtained by formally adding
in Θn−1 all liftings of elements of En−1 is universal for this adding. To give a
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precise meaning of “formally adding” is just an application of the following
theorem of Christian Lair:

Theorem 3.4 (Lair). The category Sketch of Sketches is projectively sketch-
able, that is there is a projective sketch ESketch such that the category Mod(ESketch)
of set-models of ESketch is equivalent to the category Sketch.

Also the category Cat of small categories is also projectively sketchable
by a projective sketch ECat and we have an easy morphism of projective

sketches: ECat ESketchi which induces a left adjunction F with the

functor Mod(i) : Sketch CatF This construction is called the free
prototype functor in [2]. With these results in hands it is useful to see
the globular theory Θn obtained by formally adding in Θn−1 all liftings
of elements of En−1 as the free category (with the free prototype functor)
generated by this adding. Thus we start with the object Θn−1 + En−1 of
Sketch, where Θn−1+En−1 means the sketch obtained by formally12 adding
all liftings of elements of En−1 in the sketch Θn−1; then Θn is just the free
category F (Θn−1 + En−1) generated by the free prototype functor. This
result also stands for cubical coherators developed in Section 3.2.3.

The Batanin-Grothendieck sequence of the globular theory G ΘF

produces, inside the category G-Th, the following filtered diagram

Θ0 Θ1 · · · Θn · · ·i1 i2 in

that we denote by

(N,≤) G-Th.Θ•

Now we have the materials to define coherators for globular theories:

We start with the datas of the previous subsection, i.e we start with the
Batanin-Grothendieck sequence:

(N,≤) G-Th,Θ•

for a globular theory G Θ.F

12Here “formally” has an accurate logical sense.
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Definition 3.5. The globular theory: G Θ∞,F∞ induced by the col-

imit of the previous filtered diagram Θ•:

Θ0 Θ1 · · · Θn · · ·

Θ∞

i1 i2 in

is called the globular coherator of the type Batanin-Grothendieck associated

to the globular theory G Θ.F

For shorter terminology we shall say that G Θ∞F∞
is the cohera-

tor associated to the globular theory G Θ.F It is straightforward to
see that the Batanin-Grothendieck construction of coherators associated to
globular theory is functorial, and the following endofunctor Φ is called the
Batanin-Grothendieck functor:

G-Th G-Th

(G Θ) (G Θ∞)

Φ

F F∞

An important coherator is Θ∞
M which is the coherator associated to the

globular theory:

G ΘM,
j

that we obtain with the composition

G Θ0 ΘM,
i

This coherator is denoted by Θ∞
M and Mod(Θ∞

M ) is the category of glob-
ular weak ∞-categories of Grothendieck.

Remark 3.6. In 2019 John Bourke has proved [5] the Ara conjecture [1]
which says that the category of globular weak ∞-categories of Batanin is
equivalent to the category of globular weak ∞-categories of Grothendieck:

Mod(ΘB0
C
) ≃Mod(Θ∞

M ),
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where here B0
C denotes the globular operad of Batanin [3] which algebras are

his models of globular weak ∞-categories and ΘB0
C
is its associated theory

that we obtain with the nerve theorem of Weber [22].

Now let us define the coherators Θ∞
Mm (m ∈ N):

The coherator associated to the globular theory G ΘMm
jm

is de-

noted by Θ∞
Mm and Mod(Θ∞

Mm) is the category of globular weak (∞,m)-
categories of Grothendieck (m ≥ 0). If m = 0, the coherator Θ∞

M0 is the
one of globular weak ∞-groupoids of Grothendieck. It is easy to see that
we have the following filtration in the category G-Th:

· · · Θ∞
Mm+1 Θ∞

Mm · · · Θ∞
M0 ,

and also the following diagram

Θ∞
M

· · · Θ∞
Mm+1 Θ∞

Mm · · · Θ∞
M0

which shows that we have the following inclusion of functors when passing
to Sets-models.

Mod(Θ∞
M0) Mod(Θ∞

M1) · · · Mod(Θ∞
Mm) · · ·

Mod(Θ∞
M )

i1 i2 in

3.2 The Cubical Coherators Θ∞
W and Θ∞

W 0 In this section we are
going to define cubical theory, cubical coherators and we shall see that this
cubical paradigm can be translated from the globular one, but this trans-
lation is often non-trivial. In Section 3.2.3 we treat the important cases of
the coherator Θ∞

W which Sets-models are cubical weak ∞-categories with
connections, and the coherator Θ∞

W 0 which Sets-models are cubical weak
∞-groupoids with connections.
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3.2.1 Cubical Theories and their Models

A cubical theory (F,Θ) (or a cubical theory Θ if there is not risk of confusion)
is given by a cubical extension (defined in 2):

C Θ,F

such that the induced unique functor F̄ :

Θ0 Θ,F̄

is a bijection on objects; a chosen initial object in C-Ext:

C Θ0,
i

is a specific cubical theory called the initial cubical theory; what we saw in
2 is that F̄ above is defined (for any rectangular divisor X ∈ Θ0) by the
formula:

F̄ (X) = Lani(F ) = colim E⟨X;F ⟩,

and thus a cubical theory (F,Θ) is in particular given by a small category
Θ which objects are identify with rectangular divisors.

The full subcategory of C-Ext which objects are cubical theories is de-
noted by C-Th and the cubical theory (i,Θ0) is initial in it. We note that
morphisms G in C-Th:

Θ

C

Θ′

G

F

F ′

induce, thanks to the universality of Θ0, the following commutative triangles
in the category Cat of small categories:

Θ

Θ0

Θ′

G

F̄

F̄ ′
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and G is given (for any rectangular divisor X ∈ Θ0) by the formula:

G(colim E⟨X;F ⟩) = colim E⟨X;F ′⟩.

Now we are going to define the category Mod(Θ) of Sets-models of a
cubical theory (F,Θ). A presheaf:

Θop Sets,G

induces the following commutative diagram

Θop
0

Gop ΘGop

Sets

F̄ opiop

F op

G|Gop G

where we have the following formula for all rectangular divisors X ∈ Θop
0 :

F̄ op(X) = colim E⟨X;F ⟩.

We need to describe the value G(colim E⟨X;F ⟩), and in fact what we want
is G to send this colimit to a limit. But the diagram just above shows us
that we need to decorate any rectangular divisor X with the functor GF op,
i.e in each occurence of 1(q) in each basic divisor of X, we substitute it with
G(F (1(q))); the resulting decoration is written ⟨X;GF op⟩ and we know that
with it we can associate its inductive sketch E⟨X;GF op⟩ and also its projective
sketch Eop⟨X;GF op⟩. The limits: lim Eop⟨X;GF op⟩, are dual to cubical sums and
thus they may be called cubical products. Also it is interesting to notice
that, as EX , the projective sketch Eop⟨X;GF op⟩ is also a sketch with a notion

of floors. Now we have the materials to define Sets-models for (F,Θ):

Definition 3.7. The presheaf:

Θop Sets,G
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is a Sets-model of the cubical theory (F,Θ) is for all rectangular divisor
X ∈ Θ0 we have the equality:

G(colim E⟨X;F ⟩) = lim Eop⟨X;GF op⟩.

Morphisms of Sets-models are just natural transformations, and the cat-
egory of Sets-models of the cubical theory (F,Θ) is denoted by Mod(Θ). It
is interesting to notice that we can define models of (F,Θ) for other category
than Sets. For example for any elementary topos T it is possible to define
a similar category Mod(Θ, T ) of T -models of the cubical theory (F,Θ).

3.2.2 Examples of Cubical Theories

Now we are going to give two crucial examples of cubical theory:

• The cubical theory ΘM of cubical reflexive ∞-magmas;

• the cubical theory ΘM0 of cubical reflexive (∞, 0)-magmas;

The theory ΘM leads to the coherator Θ∞
W which Sets-models are cubi-

cal weak ∞-categories with connections, and the theory ΘM0 leads to the
coherator Θ∞

W 0 which Sets-models are cubical weak ∞-groupoids with con-
nections, see 3. In this section we recall the definition of ΘM and ΘM0 , but
the reader is also encouraged to see other details in [14]. Consider a cubical
reflexive set:

(C, (1nn+1,j)n∈N,j∈J1,n+1K, (1
n,γ
n+1,j)n≥1,j∈J1,nK),

equipped with partial operations (◦nj )n≥1,j∈J1,nK where: if a, b ∈ C(n), then
a ◦nj b is defined for j ∈ {1, ..., n} if snj (b) = tnj (a). We also require these
operations to follow the following axioms of position:

(i) For 1 ≤ j ≤ n we have snn−1,j(a ◦nj b) = snn−1,j(a) and t
n
n−1,j(a ◦nj b) =

tnn−1,j(a),

(ii) snn−1,i(a ◦nj b) =
{
snn−1,i(a) ◦n−1

j−1 s
n
n−1,i(b) if 1 ≤ i < j ≤ n

snn−1,i(a) ◦n−1
j snn−1,i(b) if 1 ≤ j < i ≤ n

(iii) tnn−1,i(a ◦nj b) =
{
tnn−1,i(a) ◦n−1

j−1 t
n
n−1,i(b) if 1 ≤ i < j ≤ n

tnn−1,i(a) ◦n−1
j tnn−1,i(b) if 1 ≤ j < i ≤ n
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Definition 3.8. Cubical ∞-magmas are cubical sets equipped with partial
operations as above. A morphism between two cubical ∞-magmas is a
morphism of their underlying cubical sets which respects partial operations
(◦nj )n≥1,j∈J1,nK. The category of cubical ∞-magmas is noted by ∞-CMag.

Definition 3.9. Cubical reflexive∞-magmas are cubical reflexive set equip-
ped a structure of ∞-magmas. A morphism between two cubical reflexive
∞-magmas is a morphism of their underlying cubical reflexive sets which
respects partial operations (◦nj )n≥1,j∈J1,nK. The category of cubical reflexive
∞-magmas is denoted by ∞-CMagr.

Now the forgetful functor:

∞-CMagr CSets,V

is right adjoint and it induces the monad M = (M,η, µ) of cubical reflexive
∞-magmas with its Kleisli category Kl(M). Denote by ΘM the full sub-
category of Kl(M) which objects are objects of Θ0. This small category

ΘM equipped with the canonical inclusion functor: Θ0 ΘM,
j

is an

important cubical theory because it is the basic data we need to build the
coherator Θ∞

W which models are cubical weak ∞-categories with connec-
tions.

Now let us define our second example of cubical theory: the cubical
theory ΘM0 of cubical reflexive (∞, 0)-magmas13; first we use the notion of
cubical (∞, 0)-sets, notion which underly a new sketch (see diagrams below)
which we use to define a coherator which Sets-models are cubical weak
∞-groupoids. Here we define cubical version of the formalism developed
in [10] for globular (∞, 0)-sets. This formalism (defined in [15]) of this
cubical world is very similar to its globular analogue. Consider a cubical set
C = (Cn, s

n
n−1,j , t

n
n−1,j)1≤j≤n. If n ≥ 1 and 1 ≤ j ≤ n, then a (n, j)-reversor

on it is given by a map Cn

jnj
// Cn such that the following diagrams

commute.

Cn Cn

Cn−1

snn−1,j

jnj

tnn−1,j

Cn Cn

Cn−1

tnn−1,j

jnj

snn−1,j

13(∞, 0)-magmas are the magmatic incarnation of ∞-groupoids.
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If for each n > 0 and for each 1 ≤ j ≤ n, there are such (n, j)-reversor
jnj on C, then we say that C is a cubical (∞, 0)-set. The family of maps
(jnj )n>0,1≤j≤n for all (n ∈ N∗) is called an (∞, 0)-structure, and in that case
we shall say that C is equipped with the (∞, 0)-structure (jnj )n>0,1≤j≤n.
When we speak about such (∞, 0)-structure (jnj )n>0,1≤j≤n on C, it means
that it is for all integers n ∈ N∗ where Cn must be non-empty. Seen as
cubical (∞, 0)-set we denote it by

C = ((Cn, s
n
n−1,j , t

n
n−1,j)1≤j≤n, (j

n
j )n>0,1≤j≤n).

If
C′ = ((C ′

n, s
′n
n−1,j , t

′n
n−1,j)1≤j≤n, (j

′n
j )n>0,1≤j≤n)

is another (∞, 0)-set, then a morphism of (∞, 0)-sets:

C C′,f

is given by a morphism of cubical sets such that for each n > 0 and for each
1 ≤ j ≤ n we have the following commutative diagrams.

Cn Cn

C ′
n C ′

n

fn

jnj

fn

j′nj

The category of cubical (∞, 0)-sets is denoted by (∞, 0)-CSets. A cubi-
cal reflexive (∞, 0)-magma is an object of∞-CMagr such that its underlying
cubical set is equipped with an (∞, 0)-structure. Morphisms between cubi-
cal reflexive (∞, 0)-magmas are those of∞-CMagr which are also morphisms
of (∞, 0)-CSets, i.e they preserve the underlying (∞, 0)-structures. The cat-
egory of cubical reflexive (∞, 0)-magmas is denoted by (∞, 0)-CMagr. Now
the forgetful functor:

(∞, 0)-CMagr CSets,V

is right adjoint and it induces the monad M0 = (M0, η0, µ0) of cubical
reflexive (∞, 0)-magmas which Kleisli category is denoted by Kl(M0). Con-
sider now ΘM0 the full subcategory of Kl(M0) which objects are objects of
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Θ0. This small category ΘM0 equipped with the canonical inclusion func-

tor Θ0 ΘM0
j0

is an important cubical theory because it is the basic

data we need to build the coherator Θ∞
W 0 which models are cubical weak

∞-groupoids with connections.

3.2.3 The Cubical Coherators Θ∞
W and Θ∞

W 0

Now we are ready to describe the cubical coherator Θ∞
W which Sets-models

are cubical weak ∞-categories with connections, and the cubical coherator
Θ∞

W 0 of cubical weak ∞-groupoids with connections. More precisely the
coherator Θ∞

W is obtained as a colimit of a directed diagram Θ•
M in the

category C-Th, where the diagram Θ•
M is built inductively starting with the

cubical theory ΘM described in 3.2.2. Also the coherator Θ∞
W 0 is obtained as

a colimit of a directed diagram Θ•
M in the category C-Th, where the diagram

Θ•
M0 is built inductively starting with the cubical theory ΘM0 described in

3.2.2. The main tools to gain these definitions are inspired by the following
works:

1. The globular coherators as in 3.1 and in [8, 19];

2. The category Θ0 of cubical pasting diagrams defined in [12];

3. The cubical contractions defined in [14, 16];

4. The cubical weak ∞-groupoids with connections defined in [15].

Consider an object C ΘF of the category C-Th of cubical theories

and the unique functor Θ0 Θ.F̄ We put here In = F (1(n)); an In-

arrow in Θ is one arrow of Θ with domain the object In. A pair (f, g) of
In-arrows in Θ:

In X,
f

g

is called:

• admissible14 if it doesn’t belong to the image of F̄ ;

14In the sequel we could also use algebraic instead of admissible. Grothendieck used the
expression admissibility instead of algebraicity, this is the reason why we kept this termi-
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• j-admissible (for a direction j ∈ J1, nK) if it is admissible and verify
f ◦ snn−1,j = g ◦ snn−1,j and f ◦ tnn−1,j = g ◦ tnn−1,j ,

In X

In−1

f

g
snn−1,j

In X

In−1

f

g
tnn−1,j

If a pair (f, g) of In-arrows: In X,
f

g
is admissible, then we define

its j-lifting arrows [f, g]nn+1,j (for all j ∈ J1, n+1K) or its j-lifting for short,
as a map [f, g]nn+1,j in Θ:

In+1

In X

In−1

[f,g]nn+1,jtn+1
n,isn+1

n,i

f

g

tnn−1,isnn−1,i

using an induction: we suppose that such operations [−,−]pp+1,k (p ≤ n −
1 and k ∈ J1, p+1K) exist for all faces of f and g; the definition of [f, g]nn+1,j

goes as follow:

• If 1 ≤ i < j ≤ n+ 1, then

[f, g]nn+1,j ◦ sn+1
n,i = [f ◦ snn−1,i, g ◦ snn−1,i]

n−1
n,j−1,

and [f, g]nn+1,j ◦ tn+1
n,i = [f ◦ tnn−1,i, g ◦ tnn−1,i]

n−1
n,j−1;

nology. The intuitive meaning of admissibility is just that arrows which are admissibles,
are operations for cubical theory (thus they do not belong to arrows in Θ0), i.e operations
which arities are the X ∈ Θ0. Thus the terminology algebraic is also correct if we follow
the usual terminology of universal algebra.
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• if 1 ≤ j < i ≤ n+ 1 then

[f, g]nn+1,j ◦ sn+1
n,i = [f ◦ snn−1,i−1, g ◦ snn−1,i−1]

n−1
n,j ,

and [f, g]nn+1,j ◦ tn+1
n,i = [f ◦ tnn−1,i−1, g ◦ tnn−1,i−1]

n−1
n,j ;

• if i = j then

[f, g]nn+1,j ◦ sn+1
n,i = f and [f, g]nn+1,j ◦ tn+1

n,i = g;

• [f, f ]nn+1,j = 1nn+1,j(f).

If a pair (f, g) of In-arrows: In X,
f

g
is j-admissible (for a di-

rection j ∈ J1, nK), then we define its (j,−)-lifting arrow [f, g]n,−n+1,j or its

(j,−)-lifting for short, as a map [f, g]n,−n+1,j in Θ:

In+1

In X

In−1

[f,g]n,−
n+1,jtn+1

n,isn+1
n,i

f

g

tnn−1,isnn−1,i

using an induction: we suppose that such operations [−,−]p,−p+1,k (p ≤ n −
1 and k ∈ J1, pK) exist for all faces of f and g, but also (see the induction
used just below) we have to suppose that the operations [−,−]pp+1,k (p ≤
n− 1 and k ∈ J1, p+1K) defined above exist for such faces; the definition of
[f, g]n,−n+1,j goes as follow:

• for 1 ≤ j ≤ n we have

– [f ; g]n,−n+1,j ◦sn+1
n,j = f and [f ; g]n,−n+1,j ◦sn+1

n,j+1 = [f ; g]n,−n+1,j ◦tn+1
n,j+1 =

g,
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– [f ; g]n,−n+1,j ◦ tn+1
n,j = [f ; g]n,−n+1,j ◦ tn+1

n,j+1 = [f ◦ tnn−1,j ; g ◦ tnn−1,j ]
n−1
n,j ;

• for 1 ≤ i, j ≤ n+ 1 we have

– [f ; g]n,−
n+1,j◦sn+1

n,i =

{
[f ◦ snn−1,i; g ◦ snn−1,i]

n−1,−
n,j−1 if 1 ≤ i < j ≤ n,

[f ◦ snn−1,i−1; g ◦ snn−1,i−1]
n−1,−
n,j if 2 ≤ j + 1 < i ≤ n+ 1;

– [f ; g]n,−
n+1,j◦tn+1

n,i =

{
[f ◦ tnn−1,i; g ◦ tnn−1,i]

n−1,−
n,j−1 if 1 ≤ i < j ≤ n,

[f ◦ tnn−1,i−1; g ◦ tnn−1,i−1]
n−1,−
n,j if 2 ≤ j + 1 < i ≤ n+ 1;

• [f, f ]n,−n+1,j = 1n,−n+1,j(f).

If a pair (f, g) of In-arrows: In X,
f

g
is j-admissible (for a di-

rection j ∈ J1, nK), then we define its (j,+)-lifting arrow [f, g]n,+n+1,j or its

(j,+)-lifting for short, as a map [f, g]n,+n+1,j in Θ:

In+1

In X

In−1

[f,g]n,+
n+1,jtn+1

n,isn+1
n,i

f

g

tnn−1,isnn−1,i

using an induction: we suppose that such operations [−,−]p,+p+1,k (p ≤ n −
1 and k ∈ J1, pK) exist for all faces of f and g, but also (see the induction
used just below) we have to suppose that the operations [−,−]pp+1,k (p ≤
n− 1 and k ∈ J1, p+1K) defined above exist for such faces; the definition of
[f, g]n,+n+1,j goes as follow:

• for 1 ≤ j ≤ n we have

– [f ; g]n,+n+1,j ◦ tn+1
n,j = f,

– [f ; g]n,+n+1,j ◦ sn+1
n,j = [f ; g]n,+n+1,j ◦ sn+1

n,j+1 = [f ◦ snn−1,j ; g ◦ snn−1,j ]
n−1
n,j ;

• for 1 ≤ i, j ≤ n+ 1 we have
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– sn+1
n,i ([f ; g]n,+

n+1,j) =

{
[f ◦ snn−1,i; g ◦ snn−1,i]

n−1,+
n,j−1 if 1 ≤ i < j ≤ n,

[f ◦ snn−1,i−1; g ◦ snn−1,i−1]
n−1,+
n,j if 2 ≤ j + 1 < i ≤ n+ 1;

– tn+1
n,i ([f ; g]n,+

n+1,j) =

{
[f ◦ tnn−1,i; g ◦ tnn−1,i]

n−1,+
n,j−1 if 1 ≤ i < j ≤ n,

[f ◦ tnn−1,i−1; g ◦ tnn−1,i−1]
n−1,+
n,j if 2 ≤ j + 1 < i ≤ n+ 1;

• [f, f ]n,+n+1,j = 1n,+n+1,j(f).

Definition 3.10. A cubical theory Θ is contractible if for all integer n ≥ 0,
all pairs (f, g) of In-arrows in it which are admissible, have a j-lifting for
all j ∈ J1, nK, and if for all integer n ≥ 1, all pairs (f, g) of In-arrows in it
which are j-admissible (j ∈ J1, nK), have a (j,−)-lifting and a (j,+)-lifting.

Given a cubical theory: C Θ,F we are going to associate to it,

functorialy, another cubical theory: G Θ∞,
F∞ which has the property

to be contractible. More precisely we are going to build by induction a
directed diagram in C-Th consisting of inclusions of cubical theories:

Θ0 Θ1 · · · Θn · · ·i1 i2 in

that we denote by

(N,≤) C-Th,Θ•

such that Θ0 = Θ and such that the colimit: colim Θ• in C-Th, gives the
required contractible cubical theory Θ∞:

C Θ0 Θ1 · · · Θn · · ·

Θ∞

F

F∞

i1 i2 in in+1

This colimit Θ∞ of theories is a coherator in the sense of Grothendieck
([19]), i.e it is a contractible theory obtained as a colimit of a diagram Θ•

in C-Th ⊂ Cat of cubical theories. This directed diagram Θ• is defined
inductively as follow:
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• we start the induction with Θ0 = Θ;

• we denote by E0 the set which is the union of all admissible pairs of
In-arrows in Θ (for all n ≥ 0), plus all j-admissible pairs of In-arrows
in Θ (for all n ≥ 1 and for all directions j ∈ J1, nK); thus we obtain
the pair (Θ0, E0);

• Θ1 is obtained by formally (see just below a precise meaning of “for-
mally”) adding in Θ0 all kinds of liftings defined above, of elements of
E0; thus we obtain the inclusion of theories:

Θ0 Θ1;

• denote by E1 the set which is the union of: all admissible pairs of
In-arrows (for all n ≥ 0) in Θ1 which are not in E0, all j-admissible
pairs of In-arrows in Θ1 (for all n ≥ 1) which are not in E0; thus we
obtain the pair (Θ1, E1) and the construction:

(Θ0, E0) (Θ1, E1)

• Θ2 is obtained by formally adding in Θ1 all kinds of liftings of elements
of E1;

• we suppose that until the integer m − 1, thus we suppose that the
sequence:

(Θ0, E0) (Θ1, E1) · · · (Θm−2, Em−2) (Θm−1, Em−1)

is well defined. Thus Θm is obtained by formally adding in Θm−1 all
liftings of elements of Em−1; and we obtain the following diagrams of
inclusions of theories:

Θ0 Θ1 · · · Θm−1 Θm

• we associate to Θm the set Em which is the union of: all admissible
pairs of In-arrows in Θm (for all n ≥ 0) which are not in Em−1, and
all j-admissible pairs of In-arrows (for all n ≥ 1) in Θm which are not
in Em−1. This gives the pair (Θm, Em), and completes our induction.
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The cubical theory: G Θ∞,
F∞ is called the cubical coherator asso-

ciated to the cubical theory: C Θ.F It is straightforward to see that
this construction of coherators associated to cubical theory is functorial,
and we get the following endofunctor Φ:

C-Th C-Th

(F,Θ) (F∞,Θ∞)

Φ

Now we are ready to define the cubical coherator Θ∞
W which Sets-models

are cubical weak ∞-categories with connections: it is defined as the coher-
ator Φ(ΘM ) associated to the theory ΘM which Sets-models are cubical
reflexive ∞-magmas. Thus Θ∞

W is the colimit in C-Th of the directed dia-
gram Θ•

M :

Θ0
M Θ1

M Θ2
M · · · Θn

M Θn+1
M · · ·

Θ∞
W

and is called the cubical coherator of cubical weak ∞-categories with con-
nections. Denote by Mod(Θ∞

W ) the category of Sets-models of Θ∞
W , this is

a category of models of cubical weak ∞-categories with connections. As we
wrote in the introduction, in [14] we proposed another algebraic approach
of cubical weak ∞-categories with connections using the notion of cubical
categorical stretchings15, and in [16] we proposed an operadic16 approach of
cubical weak ∞-categories with connections. We believe that these three
approaches give equivalent models of cubical weak ∞-categories with con-
nections and we don’t hesitate to write the following conjecture:

15These models of cubical weak ∞-categories with connections are the cubical analogue
of the Penon’s globular weak ∞-categories [20].

16These models of cubical weak ∞-categories with connections are the cubical analogue
of the Batanin’s globular weak ∞-categories [3].
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Conjecture 3.11 (Algebraic Models of Cubical Weak ∞-Categories with
Connections). The following category of models of Cubical Weak∞-Catego-
ries with Connections are equivalents:

• The categoryW-Alg ofW-algebras for the monadW = (W, η, ν) acting
on CSets defined in [14];

• The category B0
C-Alg of B0

C-algebras for the cubical operad B0
C acting

on CSets defined in [16];

• The category Mod(Θ∞
W ) of Sets-models of the cubical coherator Θ∞

W

defined in this article.

Also the cubical coherator Θ∞
W 0 := Φ(ΘM0) associated to the theory

ΘM0 which Sets-models are cubical reflexive (∞, 0)-magmas is the cubical
coherator of cubical weak ∞-groupoids with connections. This theory Θ∞

W 0

is the cubical analogue of the globular coherator of Grothendieck ([19]), i.e
it is obtained as a colimit in C-Th of the directed diagram Θ•

M0 :

Θ0
M0 Θ1

M0 Θ2
M0 · · · Θn

M0 Θn+1
M0 · · ·

Θ∞
W 0

Denote by Mod(Θ∞
W 0) the category of Sets-models of Θ∞

W 0 , this is a
category of models of cubical weak ∞-groupoids with connections. As we
wrote in the introduction, in [15] we proposed another algebraic approach
of cubical weak ∞-groupoids with connections using the notion of cubical
groupoidal stretchings17. We believe that these two approaches give equiv-
alent models of cubical weak ∞-groupoids with connections and we don’t
hesitate to write the following conjecture:

Conjecture 3.12 (Algebraic Models of Cubical Weak ∞-Groupoids with
Connections). The following category of models of Cubical Weak∞-Groupo-
ids with connections are equivalents:

17These models of cubical weak ∞-groupoids with connections are the cubical analogue
of the globular weak ∞-groupoids defined in [10].
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• The categoryW0-Alg ofW0-algebras for the monadW0 = (W 0, η0, ν0)
acting on CSets defined in [15];

• The category Mod(Θ∞
W 0) of Sets-models of the cubical coherator Θ∞

W 0

defined in this article.

4 Epilogue

The aim of this epilogue is to describe a wide picture of how to reach cubical
weak ∞-topos with cubical coherators. Even if it looks too conjectural, the
work which have been done in this article plus the work in [11, 16], show
that the discussion and the conjectures below are rather precisely stated.
We believe that the easy conjecture will be the precise description of the
cubical operads Bn

C and the cubical coherators Θ∞
Wn

for all n ≥ 1, for cubical
weak (n,∞)-transformations, plus their induced cocubical objects, and the
equivalence of these two approaches (see below). The hard conjecture should
be the contractibility of the induced cubical operads of coendomorphisms
COEND(B•

C) and COEND(Θ∞
W•) (see below).

After having defined in the last Section 3.2.3 the coherator Θ∞
W which

Sets-models are cubical weak∞-categories with connections, it is interesting
to know how to weakened cubical strict ∞-functors by coherators. In [15]
we weakened cubical strict∞-functors (with connections) and cubical strict
∞-natural transformations (with connections), using the notion of cubical
stretchings. In [16] we described18 a cocubical object of cubical operads in
the category Mnd of monads:

18Actually in [16] the cubical operads Bn
C for n ≥ 1 have only been predicted without

their precise constructions, however the globular work [11] on globular operads plus the
monads W1 and W1 described in [15] show clearly that such cocubical object of operads
must exist, even though it must be described by us or other mathematicians in future
work.
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B0
C B1

C B2
C B3

C · · ·Bn−1
C Bn

C · · ·
s01

t01

s21,1

t21,1

s21,2

t21,2

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

snn−1,n−1

tnn−1,n−1

snn−1,i

tnn−1,i

snn−1,1

tnn−1,1

such that B0
C is the S0-operad19 which algebras are cubical weak∞-categories,

but also the S1-operad B1
C which algebras are cubical weak ∞-functors, the

S2-operad B2
C which algebras are cubical weak ∞-natural transformations,

etc. The coherator version of these constructions is now not difficult, how-
ever it deserves another article; but we can already sketch the construction
of the coherator Θ∞

W1
such that the category Mod(Θ∞

W1
) of Sets-models of

Θ∞
W1

are models of cubical weak ∞-functors (with connections). For that
we need first to define the category Θ1 of arities for cubical ∞-functors.
Objects of Θ1 are triple (X, f(X), X ′) where X and X ′ are cubical past-
ing diagrams in the usual sense, except that for X ′ we need to replace all
variables 1(q) inside each basic divisors by the variables 2(q), i.e the usual
pasting diagrams X have the color 1, whereas here cubical pasting diagrams
X ′ have color 2. We need to well distinguished variables in this formalism
of ∞-functors. Also f(X) is a kind of formal image of X: f(X) is still a
cubical pasting diagram such that if Adxiki is a basic n-divisor of X, then

fn(A)dx
i
ki
becomes a basic n-divisor of f(X). All the notions: cubical exten-

sions, cubical theories, coherators, have their counterparts for this theory of
cubical ∞-functors. If we denote Θ∞

W0
:= Θ∞

W , then we obtain canonically,
a 1-truncated cubical object in Cat:

19Here S0 is the monad S describe in Section 2; S1 is the monad for cubical strict
∞-functors, S2 is the monad for cubical strict ∞-natural transformations, and so on.



The coherator Θ∞
W of cubical weak ∞-categories with connections 123

Θ∞
W0

Θ∞
W1

s01

t01

This 1-truncated cubical object can be extended with the coherator Θ∞
W2

such that the category Mod(Θ∞
W2

) of Sets-models of Θ∞
W2

is a category of
models of cubical weak ∞-natural transformations; thus we obtain a 2-
truncated cubical object in Cat:

Θ∞
W0

Θ∞
W1

Θ∞
W2

s01

t01

s21,1

t21,1

s21,2

t21,2

In fact we can draw the cocubical shape of cubical coherators for all cu-
bical weak higher transformations that we hope to describe more accurately
in a future work.

Θ∞
W0

Θ∞
W1

Θ∞
W2

Θ∞
W3
· · ·Θ∞

Wn−1
Θ∞

Wn
· · ·

s01

t01

s21,1

t21,1

s21,2

t21,2

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

snn−1,n−1

tnn−1,n−1

snn−1,i

tnn−1,i

snn−1,1

tnn−1,1

For example the categoryMod(Θ∞
W3

) of Sets-models of Θ∞
W3

is a category
of models of cubical weak∞-modifications20 (cubical weak∞-modifications
are kinds of homotopies between cubical weak ∞-natural transformations).
As we wrote in the introduction, in [5] it is proved that Batanin and

20Its globular analogue has been described in [9].



124 C. Kachour

Grothendieck approaches of globular weak ∞-categories are both equiva-
lent, and we believe that such equivalences are also true for cubical higher
category theory, and not only for the cubical S0-operad B0

C and the coher-
ator Θ∞

W0
, but also for algebras of Bn

C and Sets-models of Θ∞
Wn

for all inte-
gers n ≥ 1. Let us renamed ∞-categories by: (0,∞)-transformations, ∞-
functors by: (1,∞)-transformations,∞-natural transformations by: (2,∞)-
transformations, etc. The following conjecture shoul-dn’t be too difficult
according to the globular result in [5]:

Conjecture 4.1 (Bn
C-Alg ≃Mod(Θ∞

Wn
) for all n ∈ N). We have the equiv-

alences Bn
C-Alg ≃ Mod(Θ∞

Wn
) for all n ∈ N, where objects in Bn

C-Alg are
operadic models of cubical weak (n,∞)-transformations (with connections),
and where objects inMod(Θ∞

Wn
) are sketches models of cubical weak (n,∞)-

transformations (with connections).

The cocubical object Θ∞
W• above is a cocubical object in the 2-topos Cat

of small categories and thanks to the work [16], we get a cubical operad
of coendomorphisms COEND(Θ∞

W•). As in [16] we can state the following
conjecture.

Conjecture 4.2 (Contractibility of COEND(Θ∞
W•)). The cubical operad

COEND(Θ∞
W•) is equipped with a composition system and is contractible

in the sense of [16].

If this conjecture is true then we get a unique morphism !:

B0
C COEND(Θ∞

W•)
!

of cubical operads, which reveals that the cocubical object Θ∞
W• is a B0

C-
coalgebra. If we accept the conjecture above

Bn
C-Alg ≃Mod(Θ∞

Wn
) for all n ∈ N,

plus this coalgebricity of Θ∞
W• , these show that the cubical weak∞-category

with connections of cubical weak ∞-categories with connections exists with
the formalism of coherators. Thus these conjectures open the perspec-
tive of an accurate approach by coherators of cubical weak ∞-topos of
Grothendieck with connections, and also the perspective to have an accurate
approach by coherators of cubical weak ∞-stacks with connections.
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Algèbrique) who kindly organized me a talk on homotopy types, the 27th
November 2019, and especially the good ambience provided in the LMO,
Paris-Saclay, especially I want to mention Olivier Schiffmann, Benjamin
Hennion, François Charles, Valentin Hernandez, and Patrick Massot. I also
thank Ross Street, Michael Batanin, Mark Weber, Ronald Brown, Richard
Steiner, with whom I interacted during the preparation of this article. An-
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