S-Metrizability and the Wallman basis of a frame

Document Type : Research Paper


Univeristy of KwaZulu-Natal



The Wallman basis of a frame and the corresponding induced compactification was first investigated by Baboolal [2]. In this paper, we provide an intrinsic characterisation of S-metrizability in terms of the Wallman basis of a frame. Particularly, we show that a connected, locally connected frame is S-metrizable if and only if it has a countable locally connected and uniformly connected Wallman basis.


Main Subjects

[1] Baboolal, B., Connectedness in metric frames, Appl. Categ. Structures 13 (2005), 161-169.
[2] Baboolal, B., Local connectedness and the Wallman compactification, Quaestions Mathematicae. (2012), 245-257.
[3] Baboolal, D. and Banaschewski, B., Compactification and local connectedness of frames, Pure Appl. Algebra 70 (1991), 3-16.
[4] Banaschewski, B., Compactification of frames, Math. Nachr. 149 (1990), 105-116.
[5] Banaschewski, B., Lecture on Frames, Seminar, University of Cape Town, 1988.
[6] Banaschewski, B. and Pultr, A., A Stone Duality for Metric Spaces, American Mathematical Society, 1992.
[7] Garc´ıa-M´aynez, A., Property C, Wallman basis and S-metrizability, Topology Appl. 12 (1981), 237-246.
[8] Johnstone, P.T., Wallman compactification of locales, Houston J. Math. 10(2) (1984), 201-206.[9] Picado, J. and Pultr, A., Frames and Locales: Topology without points, Frontiers in Mathematics, Springer Basel AG, 2012.
[10] Pultr, A., Pointless uniformities I. complete regularity, Comment. Math. Univ. Carolin 25(1) (1984), 91-104.
[11] Rathilal, C., A note on S-metrizable frames, Topology Appl 307 (2022).
[12] Sierpinski, W., Sur une condition pour qu’un continu soit une courbe jordanienne, Fund. Math 1 (1920), 44-60.
[13] Steiner, E.F., Wallman spaces and compactification, Fund. Math. 61 (1967), 295-304.