[1] Mahmoudi, M., Internal injectivity of Boolean algebras in MSet, Algebra Universalis 41(3) (1999), 155-175.
[2] Assem, I., Simson, D., and Skowroński, A., “Elements of the Representation Theory of Associative Algebras”, Vol. 1, Techniques of Representation Theory, London Math. Soc. Student Texs 65, Cambridge University Press, 2007.
[3] Arnold, D.and Laubenbacher, R., Finitely generated modules over pullback rings, J. Algebra 184 (1996), 304-332.
[4] Bass, H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-29.
[5] Butler, M.C.R. and Ringel, C.M., Auslander-Reiten sequences with few middle terms, with applications to string algebra, Comm. Algebra 15 (1987), 145-179.
[6] Ebrahimi Atani, S., On pure-injective modules over pullback rings, Comm. Algebra 28 (2000), 4037-4069.
[7] Ebrahimi Atani, S., On secondary modules over Dedekind domains, Southeast Asian Bull. Math. 25(25) (2001), 1-6.
[8] Ebrahimi Atani, S., On secondary modules over pullback rings, Comm. Algebra 30 (2002), 2675-2685.
[9] Ebrahimi Atani, S., Indecomposable weak multiplication modules over Dedekind domains, Demonstratio Math. 41 (2008), 33-43.
[10] Ebrahimi Atani, S., Dolati Pish Hesari, S., Khoramdel, M., and Sedghi Shanbeh Bazari, M., Absorbing comultiplication modules over a pullback ring, Int. Electron. J. Algebra 24 (2018), 31-49.
[11] EbrahimiAtani,R.andEbrahimiAtani,S.,comultiplicationmodulesoverapullback of Dedekind domains, Czechoslovak Math. J. 59 (2009), 1103-1114.
[12] Ebrahimi Atani, R. and Ebrahimi Atani, S., On primary multiplication modules over pullback rings, Algebra Discrete Math. 11(2) (2011), 1-17.
[13] Ebrahimi Atani, R. and Ebrahimi Atani, S., On semiprime multiplication modules over pullback rings, Comm. Algebra 41 (2013), 776-791.
[14] Ebrahimi Atani, R. and Ebrahimi Atani, S., Weak comultiplication modules over a pullback of commutative local Dedekind domains, Algebra Discrete Math. 1 (2009), 1-13.
[15] Ebrahimi Atani, S. and Esmaeili Khalil Saraei, F., Indecomposable primary comul- tiplication modules over a pullback of two Dedekind domains, Colloq. Math. 120 (2010), 23-42.
[16] Ebrahimi Atani, S. and Esmaeili Khalil Saraei, F., On quasi comultiplication modules over pullback rings, Int. Electron. J. Algebra 26 (2019), 95-110.
[17] Ebrahimi Atani, S. and Farzalipour, F., Weak multiplication modules over a pullback of Dedekind domains, Colloq. Math. 114 (2009), 99-112.
[18] Facchini, A. and Vámos, P., Injective modules over pullback rings, J. London Math. Soc. 31 (1985), 125-138.
[19] Farzalipour, F., On 2-absorbing multiplication modules over pullback rings, Indian J. Pure Appl. Math. 50(40) (2019), 1021-1038.
[20] Haefner, J. and Klingler, L., Special quasi-triads and integral group rings of finite representation type I, J. Algebra 158 (1993), 279-322.
[21] Haefner, J. and Klingler, L., Special quasi-triads and integral group rings of finite representation type II, J. Algebra 158 (1993), 323-374.
[22] Karamzadeh, O.A.S. and Rahimpour, Sh., On λ-Finitely Embedded Modules, Alge- bra Colloq. 12(2) (2005), 281-292.
[23] Kirichenko, V.V., Classification of the pairs of mutually annihilating operators in a graded space and representations of a dyad of generalized uniserial algebra, In: Rings an Linear Group, Zap, Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 75 (1978), 91-109 and 196-197 (in Russian).
[24] Klingler, L., Integral representation of groups of square-free order, J. Algebra 129 (1990), 26-74.
[25] Kaplansky, I., Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. (1952), 327-340.
[26] Kielpiniki, R., On Γ-pure-injective modules, Bull. Acad. Sci. Math. 15 (1967), 127- 131.
[27] Levy, L.S., Modules over pullbacks and subdirect sums, J. Algebra 71 (1981), 50-61.
[28] Levy, L.S., Modules over Dedekind-like rings, J. Algebra 93 (1985), 1-116.
[29] Levy, L.S., Mixed modules over ZG, G, cyclic of prime order, and over related Dedekind pullbacks, J. Algebra 71 (1981), 62-114.
[30] MacCasland, R.L., Moore, M.E., and Smith, P.F., On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), 79-103.
[31] Moore, M. and Smith, S.J., Prime and radical submodules of modules over commutative rings, Comm. Algebra 10 (2002), 5037-5064.
[32] Nazarova, L.A. and Roiter, A.V., Finitely generated modules over a dyad of local Dedekind rings and finite groups having an abelian normal subgroup of index, p. Izv. Acad. Nauk. SSSR 33 (1969), 65-69.
[33] Payrovi, Sh. and Babaei, S., On the 2-absorbing submodules, Iranian J. Math. Sci. and Inf. 10 (2015), 131-137.
[34] dela Pena, J.A. and Simson, D., Projective modules, reflection functors, quadraic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733- 753.
[35] Prest, M., “Model Theory and Modules”, London Mathematical Society, Cambridge University Press, 1988.
[36] Prest, M., Zieglar spectrum of tame hereditary algebras, J. Algebra 207 (1998), 146- 164.
[37] Ringel, C.M., The Zieglar spectrum of a tame hereditary algebra, Colloq. Math. 76 (1998), 106-115.
[38] Simson, D., “Linear representations of partially ordered sets and vector space categories”, Algebra, Logic and Applications, Vol. 4. Switzerland-Australia: Gordon and Breach Science Publisher, 1992.
[39] Simson, D. and Skowroński, A., “Elements of the Representation Theory of Associative Algebras”, Vol. 3. Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge University Press, 2007.
[40] Simson, D., Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), 31-68.
[41] Warfield, R.B., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
[42] Wiseman, A.N., Projective modules over pullback rings, Math. Proc. Cambridge Philos. Soc. 97 (1985), 399-406.
[43] Yassine, A., Nikmehr, M.J., Nikandish, R., On 1-Absorbing Prime Ideals of Commutative Rings, J. Algebra Appl. 20(10) (2020), 2150175.