# Classification of 1-absorbing comultiplication modules over a pullback ring

Document Type : Research Paper

Authors

1 Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697, Tehran, Iran.

2 Department of Mathematics, Payame Noor University, P.O.BOX 19395- 3697, Tehran, Iran.

Abstract

One of the aims of the modern representation theory is to solve classification problems for subcategories of modules over a unitary ring R. In this paper, we introduce the concept of 1-absorbing comultiplication modules and classify 1-absorbing comultiplication modules over local Dedekind domains and we study it in detail from the classification problem point of view. The main purpose of this article is to classify all those indecomposable 1-absorbing comultiplication modules with finite-dimensional top over pullback rings of two local Dedekind domains and establish a connection between the 1-absorbing comultiplication modules and the pure-injective modules over such rings. In fact, we extend the definition and results given in [17] to a more general 1-absorbing comultiplication modules case.

Keywords

Main Subjects

#### References

[1] Mahmoudi, M., Internal injectivity of Boolean algebras in MSet, Algebra Universalis 41(3) (1999), 155-175.
[2] Assem, I., Simson, D., and Skowroński, A., “Elements of the Representation Theory of Associative Algebras”, Vol. 1, Techniques of Representation Theory, London Math. Soc. Student Texs 65, Cambridge University Press, 2007.
[3] Arnold, D.and Laubenbacher, R., Finitely generated modules over pullback rings, J. Algebra 184 (1996), 304-332.
[4] Bass, H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-29.
[5] Butler, M.C.R. and Ringel, C.M., Auslander-Reiten sequences with few middle terms, with applications to string algebra, Comm. Algebra 15 (1987), 145-179.
[6] Ebrahimi Atani, S., On pure-injective modules over pullback rings, Comm. Algebra 28 (2000), 4037-4069.
[7] Ebrahimi Atani, S., On secondary modules over Dedekind domains, Southeast Asian Bull. Math. 25(25) (2001), 1-6.
[8] Ebrahimi Atani, S., On secondary modules over pullback rings, Comm. Algebra 30 (2002), 2675-2685.
[9] Ebrahimi Atani, S., Indecomposable weak multiplication modules over Dedekind domains, Demonstratio Math. 41 (2008), 33-43.
[10] Ebrahimi Atani, S., Dolati Pish Hesari, S., Khoramdel, M., and Sedghi Shanbeh Bazari, M., Absorbing comultiplication modules over a pullback ring, Int. Electron. J. Algebra 24 (2018), 31-49.
[11] EbrahimiAtani,R.andEbrahimiAtani,S.,comultiplicationmodulesoverapullback of Dedekind domains, Czechoslovak Math. J. 59 (2009), 1103-1114.
[12] Ebrahimi Atani, R. and Ebrahimi Atani, S., On primary multiplication modules over pullback rings, Algebra Discrete Math. 11(2) (2011), 1-17.
[13] Ebrahimi Atani, R. and Ebrahimi Atani, S., On semiprime multiplication modules over pullback rings, Comm. Algebra 41 (2013), 776-791.
[14] Ebrahimi Atani, R. and Ebrahimi Atani, S., Weak comultiplication modules over a pullback of commutative local Dedekind domains, Algebra Discrete Math. 1 (2009), 1-13.
[15] Ebrahimi Atani, S. and Esmaeili Khalil Saraei, F., Indecomposable primary comul- tiplication modules over a pullback of two Dedekind domains, Colloq. Math. 120 (2010), 23-42.
[16] Ebrahimi Atani, S. and Esmaeili Khalil Saraei, F., On quasi comultiplication modules over pullback rings, Int. Electron. J. Algebra 26 (2019), 95-110.
[17] Ebrahimi Atani, S. and Farzalipour, F., Weak multiplication modules over a pullback of Dedekind domains, Colloq. Math. 114 (2009), 99-112.
[18] Facchini, A. and Vámos, P., Injective modules over pullback rings, J. London Math. Soc. 31 (1985), 125-138.
[19] Farzalipour, F., On 2-absorbing multiplication modules over pullback rings, Indian J. Pure Appl. Math. 50(40) (2019), 1021-1038.
[20] Haefner, J. and Klingler, L., Special quasi-triads and integral group rings of finite representation type I, J. Algebra 158 (1993), 279-322.
[21] Haefner, J. and Klingler, L., Special quasi-triads and integral group rings of finite representation type II, J. Algebra 158 (1993), 323-374.
[22] Karamzadeh, O.A.S. and Rahimpour, Sh., On λ-Finitely Embedded Modules, Alge- bra Colloq. 12(2) (2005), 281-292.
[23] Kirichenko, V.V., Classification of the pairs of mutually annihilating operators in a graded space and representations of a dyad of generalized uniserial algebra, In: Rings an Linear Group, Zap, Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 75 (1978), 91-109 and 196-197 (in Russian).
[24] Klingler, L., Integral representation of groups of square-free order, J. Algebra 129 (1990), 26-74.
[25] Kaplansky, I., Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. (1952), 327-340.
[26] Kielpiniki, R., On Γ-pure-injective modules, Bull. Acad. Sci. Math. 15 (1967), 127- 131.
[27] Levy, L.S., Modules over pullbacks and subdirect sums, J. Algebra 71 (1981), 50-61.
[28] Levy, L.S., Modules over Dedekind-like rings, J. Algebra 93 (1985), 1-116.
[29] Levy, L.S., Mixed modules over ZG, G, cyclic of prime order, and over related Dedekind pullbacks, J. Algebra 71 (1981), 62-114.
[30] MacCasland, R.L., Moore, M.E., and Smith, P.F., On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), 79-103.
[31] Moore, M. and Smith, S.J., Prime and radical submodules of modules over commutative rings, Comm. Algebra 10 (2002), 5037-5064.
[32] Nazarova, L.A. and Roiter, A.V., Finitely generated modules over a dyad of local Dedekind rings and finite groups having an abelian normal subgroup of index, p. Izv. Acad. Nauk. SSSR 33 (1969), 65-69.
[33] Payrovi, Sh. and Babaei, S., On the 2-absorbing submodules, Iranian J. Math. Sci. and Inf. 10 (2015), 131-137.
[34] dela Pena, J.A. and Simson, D., Projective modules, reflection functors, quadraic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733- 753.
[35] Prest, M., “Model Theory and Modules”, London Mathematical Society, Cambridge University Press, 1988.
[36] Prest, M., Zieglar spectrum of tame hereditary algebras, J. Algebra 207 (1998), 146- 164.
[37] Ringel, C.M., The Zieglar spectrum of a tame hereditary algebra, Colloq. Math. 76 (1998), 106-115.
[38] Simson, D., “Linear representations of partially ordered sets and vector space categories”, Algebra, Logic and Applications, Vol. 4. Switzerland-Australia: Gordon and Breach Science Publisher, 1992.
[39] Simson, D. and Skowroński, A., “Elements of the Representation Theory of Associative Algebras”, Vol. 3. Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge University Press, 2007.
[40] Simson, D., Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), 31-68.
[41] Warfield, R.B., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
[42] Wiseman, A.N., Projective modules over pullback rings, Math. Proc. Cambridge Philos. Soc. 97 (1985), 399-406.
[43] Yassine, A., Nikmehr, M.J., Nikandish, R., On 1-Absorbing Prime Ideals of Commutative Rings, J. Algebra Appl. 20(10) (2020), 2150175.