[1] Adamek, J., Herrlich, H., and Strecker, G.E., “Abstract and Concrete Categroies: The Joy of Cats”, Wiley, 1990.
[2] Annexstein, F., Baumslag, M., and Rosenberg, A.L., Group action graphs and parallel architectures, SIAM J. Comput. 19 (1990), 544-569.
[3] Bang-Jensen, J. and Huang, J., Quasi-transitive digraphs, J. Graph Theory 20(2) (1995), 141-161.
[4] Biggs, N.L., “Algebraic Graph Theory”, Cambridge University Press, 1996.
[5] Chakrabarty, I., Ghosh, S., and Sen, M.K., Undirected power graphs of semigroups, Semigroup Forum 78 (2009), 410-426.
[6] Cormen et al., “Introduction to Algorithms”, Third Edition, The MIT Press, 2009.
[7] Dénes, J., Connections between transformation semigroups and graphs, Theory of Graphs, 93-101, Gordon and Breach, (1967).
[8] Dénes, J., Some combinatorial properties of transformations and their connections with the theory of graphs, J. Combin. Theory 9 (1969), 108-116.
[9] Delfan, A., Rasouli, H., and Tehranian, A., On the inclusion graphs of S-acts, J. Math. Computer Sci. 18 (2018), 357–363.
[10] Delfan, A., Rasouli, H., and Tehranian, A., Intersection graphs associated with semi- group acts, Categ. Gen. Algebr. Struct. Appl. 11 (2019), 131-148.
[11] East, J., Gadouleau, M., and Mitchell, J.D., Structural aspects of semigroups based on digraphs, Algebr. Comb. 2(5) (2019), 711–733.
[12] Estaji, A.A., Haghdadi, T., and Estaji, A.As., Zero divisor graphs for S-Act, Lobachevskii J. Math. 36(1) (2015), 1–8.
[13] Fan, S. and Zeng, Y., On Cayley graphs of bands, Semigroup Forum 74 (2007), 99–105.
[14] Fedorova, M., Faithful group actions and Schreier graphs, Carpathian Math. Publ. 9(2) (2017), 202–207.
[15] Godsil, G. and Royle, G., “Algebraic Graph Theory”, Springer, 2001.
[16] Howie, J.M., “Fundamentals of Semigroup Theory”, Clarendon Press, 1995.
[17] Iradmusa, M.N. and Praeger, C.E., Derangement action digraphs and graphs, Euro- pean J. Combin. 80 (2019), 361–372.
[18] Kelarev, A.V. and Praeger, C.E., On transitive Cayley graphs of groups and semi- groups, European J. Combin. 24 (2003), 59-72.
[19] Kelarev, A.V. and Quinn, S.J., Directed graphs and combinatorial properties of semi- groups, J. Algebra 251 (2002), 16-26.
[20] Khosravi, B. and Khosravi, B., A characterization of Cayley graphs of Brandt semi- groups, Bull. Malays. Math. Sci. Soc. (2) 35(2) (2012), 399-410.
[21] Kilp, M., Knauer, U., and Mikhalev, A., “Monoids, Acts and Categories”, Walter de Gruyter, 2000.
[22] Knauer, U. and Knauer, K., “Algebraic Graph Theory”, De Gruyter Studies, 2nd Edition, 2019.
[23] Knauer, U., Wang, Y., and Zhang, X., Functorial properties of Cayley constructions, Acta Comment. Univ. Tartu. Math. 10 (2006), 17–29.
[24] Mac Lane, S., “Categories for the Working Mathematicians”, 2nd Edition, Springer, 1997.
[25] Malnič, A., Action graphs and coverings, Discrete Math. 244 (2002), 299–322.
[26] Panma, S., Knauer, U., and Arworn, Sr., On transitive Cayley graphs of strong semilattices of right (left) groups, Discrete Math. 309 (2009), 5393–5403.
[27] West, D.B., “Introduction to Graph Theory”, Prentice Hall, 2001.
[28] Zelinka, B., Graphs of semigroups, Časopis pro p̌estovánímatematiky 106(4) (1981), 407-408.