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Action graph of a semigroup act & its
functorial connection

P. Mukherjee, R. Mukherjee, and S.K. Sardar∗

Abstract. In this paper we define C-induced action graph G(S, a, C;A)
corresponding to a semigroup act (S, a,A) and a subset C of S. This gener-
alizes many interesting graphs including Cayley Graph of groups and semi-
groups, Transformation Graphs (TRAG), Group Action Graphs (GAG), De-
rangement Action Graphs, Directed Power Graphs of Semigroups etc. We
focus on the case when C = S and name the digraph, so obtained, as Ac-
tion Graph of a Semigroup Act (S, a,A). Some basic structural properties of
this graph follow from algebraic properties of the underlying semigroup and
its action on the set. Action graph of a strongly faithful act is also studied
and graph theoretic characterization of a strongly faithful semigroup act as
well as that of idempotents in a semigroup are obtained. We introduce the
notion of strongly transitive digraphs and based on this we characterize ac-
tion graphs of semigroup acts in the class of simple digraphs. The simple
fact that morphism between semigroup acts leads to digraph homomorphism
between corresponding action graphs, motivates us to represent action graph
construction as a functor from the category of semigroup acts to the cate-
gory of certain digraphs. We capture its functorial properties, some of which
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signify previous results in terms of Category Theory.

1 Introduction

Graphs are very useful objects in both pure and applied Mathematics as
they have a natural geometric essence and can be easily used to model
several physical problems related to interactions between objects. In 1736
Graphs first came into being when famous mathematician Leonhard Euler
gave a logical solution for the Königsberg bridge problem [27]. From then
centuries have passed in the development of Graph theory. In modern times
Algebraic Graph Theory has opened up a new direction of studying graph
properties. It is unique in its own treatment where algebraic methods are
applied to study properties and problems about graphs. The literature of
algebraic graph theory has grown enormously since 1974 when the original
version of the book Algebraic Graph Theory [4] by Norman L. Biggs was
published. It can be considered as one of the two pioneer books on the
subject. The other one is Algebraic Graph Theory [15] by Chris Godsil
and Gordon Royle, first published in 2001.

In 1967, J. Dénes [7] focused on the interconnection between semigroups
and digraphs. In [8], Dénes considered graphical representation of a trans-
formation of degree n (which can be treated as an element of the transfor-
mation semigroup of a set of n elements) and obtained some combinatorial
results. This is undoubtedly a beginning in the study of action graphs. Ac-
tion (di)graphs have been considered by many authors by different names
like TRAG [2], GAG [2], Schreier Graph [14]. In 2002, A. Malnič [25] gave
a beautiful description of an action (di)graph as a combinatorial represen-
tation of a group acting on a set. In 1878 Arthur Cayley first considered
Cayley graphs of groups which is induced by the action of some suitably
chosen connection set known as Cayley set. The construction is nicely de-
scribed in [4], [15], [22]. Cayley graphs of groups have been extensively
studied and beautiful results have been obtained (see [4]). Cayley graphs
of semigroups was first considered by Zelinka [28] in 1981. Studying prop-
erties of Cayley graphs of different classes of semigroups and characteriz-
ing them have opened a separate branch of research among mathemati-
cians. A lot of works have been done in this area. For this, one is referred
to [13], [18], [20], [23], [26] and their references. Though several graphs have
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been constructed from semigroup acts (for example see [9], [10], [12]), but
so far possibly except in [2], [7], [17], [25] no attention has been paid to the
study of action graphs of semigroup acts (in [2] it is known as TRAG). The
reason may be that this study seems to be almost similar to the study of
graphs of group actions since as an algebraic structure semigroup general-
izes group. But it is well known that lack of inverses and possible existence
of idempotents other than identity in semigroups make their study interest-
ing. Moreover it is worth motivating how action graphs of semigroup acts
unify so many important classes of graphs including Group action graphs
([2], [25]), Derangement action digraphs ([17]) and Cayley graphs of groups
and semigroups. Also Power graph Pow(S) of a semigroup S ([5], [19]) can
be obtained as a loop free copy of action graph of the particular action of
N on S (cf. Remark 3.24). Thus investigation of properties and charac-
terization of action graphs of semigroup acts urges serious attention. This
motivates us to renew the study of action graphs initiated in different ways
by Dénes [7], Annexstein et al. [2] and Malnič [25].

In Section 2 we have stated the preliminary concepts. Section 3 has been
started by defining a left semigroup act (S, a,A) and morphism between
acts. After establishing that semigroup acts form a category, we have defined
C-induced action graph of a semigroup act (S, a,A) with respect to a subset
C of the semigroup S. Cayley graphs of groups and semigroups have been
exhibited as particular instances of this graph (cf. Example 3.7, 3.8). We
have mainly focused on the graph obtained by taking C = S, named it
as Action Graph of the Semigroup Act (S, a,A) and obtained some of its
structural properties (cf. Proposition 3.12). Action graph construction has
been presented as a functor (cf. Proposition 3.14) from the category of
semigroup acts to the category of particular digraphs. Section 4 has been
devoted to the study of strongly faithful semigroup acts and corresponding
action graphs. In this section along with other results we have given a
graph theoretic characterization (cf. Proposition 4.10) of strongly faithful
(finite) semigroup acts. In Section 5 we have asked the question, ‘When
a given digraph will be the action graph of some semigroup act?’ and
in the search of an answer, we have shown that every simple, transitive
digraph is isomorphic to the action graph of some semigroup act ignoring
loops (cf. Theorem 5.4). Further we have characterized action graphs of
semigroup acts in the class of simple digraphs (cf. Theorem 5.10, Corollary
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5.11) and identified the image of the previously defined functor. Some more
properties (cf. Theorem 6.7, Theorem 6.8) of this functor and its restriction
to the subcategory of strongly faithful acts have been investigated in Section
6. In this paper some results have been obtained (cf. Proposition 4.10,
Proposition 6.2) which can be seen as generalization of analogous results
studied for Cayley graphs of semigroups and Derangement action graphs
while some results have been derived (cf. Proposition 4.21, Theorem 5.4)
which have no satisfactory analogue in group action graphs.

Among other motivations as mentioned above, the relevant treatment of
Cayley graphs and other topics in the monograph [22] by Knauer et al. has
greatly inspired us in this work.

2 Preliminaries

Before going into the details, we mention some basic graph and semigroup
theoretic definitions which will be used throughout the paper. Some partic-
ular definitions are given later along with the context when necessary.

Definition 2.1. A digraph G is defined as a triple G = (V (G), h, E(G))
where V (G) and E(G) are sets and h : E(G) −→ V (G)× V (G) is a map.

The elements of V (G) and E(G) are respectively called vertices and
arcs of G. For any arc e ∈ E(G), the first vertex of the pair h(e) is called
the tail (or, source) and the second is the head (or, range) of the arc e.
If h is injective then G is called simple. In this case any arc e ∈ E(G)
can be represented by its image under h, that is by the ordered pair h(e)
and consequently E(G) can be identified by its image h(E(G)) (a subset
of V (G) × V (G)) and we represent e simply as an ordered pair of vertices
((tail,head)). Digraphs having finite sets of vertices and arcs are called
finite digraphs. A vertex is called isolated if it is not the head or tail of
any arc. Digraph which consists only of isolated vertices is called a null
graph. A sub-digraph of a digraph G = (V (G), h, E(G)) is a digraph H =
(V (H), h′, E(H)) such that V (H) ⊆ V (G), E(H) ⊆ E(G) and h|E(H) = h′.
If V (H) = V (G) then H is called a spanning sub-digraph of G. An x − y
path (precisely, directed path) in a digraph G is an alternating sequence of
distinct vertices and arcs {v1 = x, e1, v2, e2, ..., vn−1, en−1, vn = y} such that
head(ei) = vi+1, tail(ei) = vi for all i = 1, 2, ..., n − 1. A closed directed
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path (where v1 = vn) is called a directed cycle. The length of a directed path
or a cycle is the number of distinct arcs on the path or cycle. A digraph
G is called strongly connected if for any two distinct vertices x, y ∈ G there
exists a directed x− y path. It is called weakly connected if the underlying
undirected graph is connected. A maximal strongly (respectively, weakly)
connected sub-digraph is called a strong (respectively, weak) component of
G. The length of the shortest cycle (if exists) of G is called its girth and it
is denoted by gr(G). A simple digraph G is called complete if for any two
distinct vertices x, y in G there is an arc (x, y) in G. A subset W of V (G)
is called a clique if for any two distinct vertices x, y ∈W , (x, y) ∈ E(G). A
subset I of V (G) is called an independent set if there is no arc in G between
any two vertices of I. G is called bipartite if the set of vertices V (G) can be
partitioned into two disjoint sets A,B such that every arc connects a vertex
in A to a vertex in B or vice versa.

Definition 2.2. SupposeG1 = (V (G1), h1, E(G1)),G2 = (V (G2), h2, E(G2))
are two digraphs. A digraph homomorphism is defined by a pair (f, g) :
G1 −→ G2 such that f : V (G1) −→ V (G2), g : E(G1) −→ E(G2) are
morphisms in Set for which the following diagram commutes.

E(G1) E(G2)

V (G1)× V (G1) V (G2)× V (G2)

g

h1 h2

f×f

For simple digraphs G1 = (V (G1), h1, E(G1)) and G2 = (V (G2), h2, E(G2)),
any digraph homomorphism (f, g) : G1 −→ G2 is completely determined by
the map f : V (G1) −→ V (G2) in the sense that if (x, y) ∈ E(G1) then
(f(x), f(y)) ∈ E(G2). Digraphs together with digraph homomorphisms as
defined in Definition 2.2 form a category DGraph.

For any simple digraph G, the elements of the set N+
G (x) := {y ∈

V (G) | (x, y) ∈ E(G)} (respectively, N−
G (x) := {y ∈ V (G) | (y, x) ∈ E(G)})

are called the out-neighbours (respectively, in-neighbours) of x and the num-
ber of distinct out-neighbours (respectively, in-neighbours) is called the out-
degree (respectively, indegree) of x. A graph G is called k-out regular (re-
spectively, k-in regular) if outdegree(x) = k (respectively, indegree(x) = k)
for all x ∈ V (G).



48 P. Mukherjee, R. Mukherjee, S.K. Sardar

A nonempty set S together with an associative binary operation is called
a semigroup. For the definitions of identity in a semigroup, subsemigroup,
left ideal (respectively, right ideal), semigroup homomorphism and other
terminologies we refer to [16]. A semigroup can also be considered as a
semicategory (category without the requirement of identity morphisms on
each object) with only one object. Semigroups and their morphisms form a
category SemiGrp which is simultaneously complete and cocomplete (since
it is locally finitely presentable) which means that there is a small category
SSemiGrp such that the category Mod(SSemiGrp) consisting of functors from
SSemiGrp to Set which preserve small limits and the natural transformations
as morphisms is equivalent to the category SemiGrp. It is also interesting
to note that semigroups are naturally algebras for a monad on the category
Set since the following forgetful functor U is monadic

SemiGrp

Set

U

Let S be a semigroup. S is called left (respectively, right) simple if S
has no proper left (respectively, right) ideal. An element x ∈ S is called an
idempotent if xx = x2 = x. In this paper the set of all idempotents in S
is denoted by E(S). An element e ∈ S is said to be a right (respectively,
left) identity of S if se = s (respectively, es = s) for all s ∈ S. Suppose
s ∈ S. If the set {x ∈ N | (∃ y ∈ N) sx = sy;x ̸= y} is nonempty then its
least element exists by well ordering principle and is called the index of s.
If m is the index of s, then the set {x ∈ N | sm+x = sm} is also nonempty
and its least element denoted by t, is called the period of s. In this case,
we say that s is a periodic element with index m and period t. Let A be a
nonempty set and SA be the set of all finite nonempty words a1a2...am in the
‘alphabet’ A. Define a binary operation on SA by juxtaposition of words:
(a1a2...am)(b1b2...bn) := a1a2...amb1b2...bn. With respect to this operation,
SA becomes a semigroup and it is called the free semigroup on A. A is
called the generating set for SA. In terms of Category theory, F is called a
free semigroup on A if

(i) there exists a map α : A −→ F
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(ii) (universal property) for every semigroup S and every map ϕ : A −→ S,
there exists a unique semigroup homomorphism ψ : F −→ S making
the following diagram (Fig-2.1) commutative, that is ψ ◦ α = ϕ.

A F

S

α

ϕ
∃! ψ

Fig-2.1

3 Action graphs of semigroup acts

We start by defining a left semigroup act which is going to play a crucial
role in this work.

Definition 3.1. Let S be a semigroup and A be a nonempty set. S is said
to act on A from left if there exists a structural map a : S ×A −→ A such
that

(i) a(s, a(t, x)) = a(st, x) for all s, t ∈ S and x ∈ A;

(ii) if S contains identity 1 then a(1, x) = x for all x ∈ A.

We denote this by (S, a,A) and call it a left semigroup act.

Throughout the paper ‘semigroup act’ unless otherwise mentioned de-
notes a ‘left semigroup act’. When the structural map is clear from the
context (or there is no other action mentioned) we simply denote the image
of (s, x) ∈ S × A by sx instead of a(s, x). Now we describe morphisms
between semigroup acts.

Definition 3.2. Let (S, a,A), (T, b, B) be left semigroup acts. Suppose
µ : S −→ T is a semigroup homomorphism and f : A −→ B is a set
mapping, then a morphism of left semigroup acts is defined by the pair
of maps (µ, f) : (S, a,A) −→ (T, b, B) such that the following diagram
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commutes in the category Set of sets.

S ×A T ×B

A B

µ×f

a b

f

Lemma 3.3. Left semigroup acts together with morphisms of acts form a
category.

Proof. Suppose (S, a,A), (T, b, B), (U, c, C) are semigroup acts and (µ, f) :
(S, a,A) −→ (T, b, B), (η, g) : (T, b, B) −→ (U, c, C) are morphisms of acts.
We define (η, g) ◦ (µ, f) := (η ◦ µ, g ◦ f). Clearly η ◦ µ : S −→ U is a
semigroup homomorphism and g ◦ f : A −→ B is a mapping such that
(g◦f)(sx) = g(f(sx)) = g(µ(s)f(x)) = η(µ(s))g(f(x)) = (η◦µ)(s)(g◦f)(x)
for all s ∈ S and for all x ∈ A. Thus (η, g) ◦ (µ, f) is a morphism of
acts from (S, a,A) to (U, c, C). Clearly (IS , IA) plays the role of identity
morphism on (S, a,A), that is I(S,a,A) = (IS , IA). To check that the law
of composition of morphisms is associative, consider (µ, f) : (S, a,A) −→
(T, b, B), (η, g) : (T, b, B) −→ (U, c, C) and (γ, h) : (U, c, C) −→ (V, d,D).
Then (γ, h)◦ ((η, g)◦ (µ, f)) = (γ, h)◦ (η ◦µ, g ◦f) = (γ ◦ (η ◦µ), h◦ (g ◦f)) =
((γ ◦η)◦µ, (h◦g)◦f) = (γ ◦η, h◦g)◦ (µ, f) = ((γ, h)◦ (η, g))◦ (µ, f). Hence
the lemma follows.

We denote the category of left semigroup acts by SgrActl. The following
remark is in order.

Remark 3.4. If we fix a semigroup S then all left semigroup acts (S, a,A)
(cf. Definition 3.1) form a category whose morphisms are given by the
following commutative diagram in Set.

S ×A S ×A′

A A′

idS×f

a a′

f
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Drawing analogy with R-Mod, the category of all left R-modules for a given
ring R, we can denote this category by S-Mod. Clearly SgrActl and S-Mod
are not the same.

Now we are going to define a particular type of digraphs.

Definition 3.5. The (uncolored) C-induced action (di)graph corresponding
to a semigroup act (S, a,A) is a simple digraph

G(S, a, C;A) = (V (G(S, a, C;A)), E(G(S, a, C;A)))

such that the set of vertices V (G(S, a, C;A)) := A and the set of arcs
E(G(S, a, C;A)) := {(x, y) ∈ A×A : ∃ s ∈ C, y = a(s, x) = sx}.

In what follows, the term ‘action graph’ unless otherwise stated repre-
sents a digraph. The term ‘uncolored’ signifies that for more than one s ∈ C
with sx = y, the choice of s is immaterial for assigning the arc (x, y). Later
we will explore the case when there is only one s ∈ C for which sx = y;
accordingly we can color the arcs and obtain the colored C-induced action
graph.

Remark 3.6. By definition G(S, a, C;A) is a simple digraph. It may have
loops at some vertices. In fact loops in the C-induced action graph of a
semigroup act (S, a,A) correspond to the fixed points (cf. Definition 4.5)
of the elements of C and vice-versa.

Interestingly some special digraphs come as particular C-induced action
graphs.

Example 3.7. Consider the semigroup act (X, ∗, X) where (X, ∗) is a finite
group and the action is given by the multiplication ∗ of X. Then for any
nonempty subset C of X, the C-induced action digraph G(X, ∗, C;X) is the
well known Cayley digraph Cay(X,C) for the connection set C. Undirected
Cayley graph (also known as König graph) (see [4], [22]) can be obtained
just by imposing two extra conditions on the connection set C namely (i)
eX /∈ C where eX is the identity of the group X and (ii) whenever x ∈ C it
implies x−1 ∈ C.

Example 3.8. Let (S, ∗) be any semigroup and C ⊆ S. Then S acts on
itself via its multiplication ∗ and G(S, ∗, C;S) = Cay(S,C), the Cayley
graph of S relative to C given by left action of the elements of C (see [18]).
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In this paper we mainly focus on the particular C-induced action graph
of a semigroup act (S, a,A) namely when C = S, call it the action graph of a
semigroup act (S, a,A) and denote it by G(S, a,A), that is G(S, a, S;A) =
G(S, a,A). Note that for any C ⊆ S, G(S, a, C;A) is a spanning sub-
digraph of G(S, a,A). Before giving concrete examples, we here capture
some fundamental properties of action graph of a semigroup act. In order
to do this, we first need to define the following.

Definition 3.9. Let D = (V (D), h, E(D)) be a simple, uncolored digraph.
D is called strongly transitive if for any three vertices a, b, c (may not be
distinct), (a, b), (b, c) ∈ E(D) implies that (a, c) ∈ E(D).

Remark 3.10. For an arbitrary digraph (not necessarily simple and un-
colored) the above definition can be reformulated in the following way: A
digraph is called a 1-magma if

x y z
g f

are two adjacent arcs, then the following arc

x z
f◦g

exists. If the operation f ◦ g is associative then the 1-magma is called
a semicategory. Hence we can say that a digraph D = (V (D), h, E(D))
is strongly transitive if and only if it is equipped with a structure of a
semicategory.

Definition 3.11. A semigroup act (S, a,A) is said to be transitive if for
any two elements x, y ∈ A, there exists s ∈ S such that a(s, x) = sx = y.
In other words the action of S on A is said to be transitive if for any x ∈ A,
the map ax : S −→ A defined by ax(s) := a(s, x) is an epic (surjective map)
in the category Set of sets.

Proposition 3.12. Let (S, a,A) be a semigroup act where S is a semi-
group and A is a nonempty set. Then the following properties follow for the
digraph G(S, a,A).

(1) G(S, a,A) is a strongly transitive digraph and each of its strong com-
ponents is a complete sub-digraph.
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(2) The following are equivalent for the action graph G(S, a,A) where S
is a semigroup with 1.

(i) G(S, a,A) is a complete digraph with loops.

(ii) G(S, a,A) is strongly connected.

(iii) (S, a,A) is a transitive act.

(3) Every vertex of G(S, a,A) has positive out-degree. If A is finite then
G(S, a,A) must have a loop.

(4) If S is left simple then for all x ∈ A, N+
G(S,a,A)(x) forms a clique in

G(S, a,A).

Proof. (1) The first part follows from the relevant definitions. To prove the
second part, take any two distinct vertices x, y from any strong component
of G(S, a,A). Then there exists a directed path v0 = x→ v1 → v2 → ...→
vn = y in G(S, a,A). Since G(S, a,A) is strongly transitive this implies
(x, y) ∈ E(G(S, a,A)). So any strong component is a complete sub-digraph.

(2) (i) ⇒ (ii) This is trivial.

(ii) ⇒ (iii) Let x, y be any two distinct elements in A. There exists a
directed path v0 = x→ v1 → v2 → ...→ vn = y in G(S, a,A), that is there
exist si ∈ S; i = 1, 2, ..., n such that vi = sivi−1. Then y = vn = snvn−1 =
(snsn−1)vn−2 = ... = (snsn−1...s1)x. Again for any x ∈ A, x = 1x. So
(S, a,A) is a transitive act.

(iii) ⇒ (i) This holds from the definition of transitive act.

(3) For any s ∈ S and x ∈ A, (x, sx) ∈ E(G(S, a,A)). So outdegree(x) ⩾
1 for all x ∈ A. From the finiteness of A, it is evident thatG(S, a,A) contains
a directed cycle of length ⩾ 1 e.g., x→ sx→ ...→ sk−1x→ skx = x where
k ⩾ 1. Then (x, skx) is a loop at x.

(4) Let x ∈ A. Take y, z ∈ N+
G(S,a,A)(x). Then there exist s, t ∈ S

such that y = sx and z = tx. Now by left simplicity of S, there exists
u ∈ S such that us = t and so uy = u(sx) = (us)x = tx = z, that is
(y, z) ∈ E(G(S, a,A)). Hence N+

G(S,a,A)(x) forms a clique.

Proposition 3.13. If (µ, f) : (S, a,A) −→ (T, b, B) is a morphism of acts
then G(µ, f) : V (G(S, a, A)) −→ V (G(T, b, B)) defined by G(µ, f)(x) :=
f(x) for all x ∈ V (G(S, a,A)) = A is a digraph homomorphism from
G(S, a,A) to G(T, b, B).
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Proof. Let (x, y) ∈ E(G(S, a,A)). Then y = sx for some s ∈ S. There-
fore f(y) = f(sx) ⇒ f(y) = µ(s)f(x) ⇒ G(µ, f)(y) = µ(s)G(µ, f)(x) ⇒
(G(µ, f)(x), G(µ, f)(y)) ∈ E(G(T,B)). Hence G(µ, f) is a digraph homo-
morphism.

Let us denote by Simp-TDGraph, the full subcategory of DGraph con-
sisting of strongly transitive simple digraphs in which every vertex has pos-
itive out-degree. Interestingly we can represent action graph construction
as a functor from SgrActl to Simp-TDGraph. Such a functorial connection
can also be found in [23].

Proposition 3.14. Let (S, a,A), (T, b, B) be any two semigroup acts and
(µ, f) : (S, a,A) −→ (T, b, B) be any morphism of acts. Then

F : SgrActl −→ Simp− TDGraph

defined by F(S, a,A) := G(S, a,A), F(T, b, B) := G(T, b, B), and F(µ, f) :=
G(µ, f), is a functor.

SgrActl
F−→ Simp-TDgraph

(S, a,A) G(S, a,A)

(T, b, B) G(T, b, B)

(µ,f) G(µ,f)

Proof. It is evident from (1) and (3) of Proposition 3.12 that G(S, a,A) ∈
Obj(Simp-TDGraph) for all semigroup act (S, a,A).

(i) By Proposition 3.13, it follows that F(µ, f) is a digraph homomor-
phism of F(S, a,A) to F(T, b, B).

(ii) F(I(S,a,A)) = F(IS , IA) = G(IS , IA). Now for any x ∈ V (G(S, a,A)) =
A, G(IS , IA)(x) = IA(x) = x = IG(S,a,A)(x) and so F(I(S,a,A)) =
IF(S,a,A).

(iii) Let (µ, f) : (S, a,A) −→ (T, b, B) and (η, g) : (T, b, B) −→ (U, c, C) be
morphisms of acts. Then we can easily show that F((η, g) ◦ (µ, f)) =
F(η ◦µ, g ◦ f) = G(η ◦µ, g ◦ f) = G(η, g) ◦G(µ, f) = F(η, g) ◦F (µ, f).
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Hence F is a covariant functor.

The above functorial construction leads to the natural questions:

(i) Is F faithful?

(ii) Is F full?

(iii) Can we characterize the image of F?

In the subsequent sections we will try to answer these questions.

Example 3.15. Suppose S is any semigroup and A = {a, b}. There is a
trivial action of S on A defined by sa, sb := a for all s ∈ S. Corresponding
action graph is shown below (Fig-3.1).

a b

Fig-3.1

Example 3.16. Let S = N, the semigroup of all natural numbers under
usual multiplication and A be the cyclic group Z6. Corresponding to the
action ν of S on A, defined by ν(n, a) = na for all n ∈ S and for all a ∈ A,
the action graph is shown in Fig-3.2.

0

15

24

3

Fig-3.2

Observation 3.17. Suppose (S, a,A), (T, b, B) are semigroup acts. Then
(S, a,A×B), (T, b, A×B) and (S × T, a× b, A×B) are all semigroup acts
defined respectively as follows: a(s, (x, y)) := (sx, y), b(t, (x, y)) := (x, ty)
and (a × b)((s, t), (x, y)) := (sx, ty) for all s ∈ S, t ∈ T and for all (x, y) ∈
A×B.
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The definition of the action of S×T on A×B hints towards the monoidality
of the category SgrActl. In Section 6 we concentrate on this (cf. Lemma
6.5). For our next proposition we recall definitions of some binary graph
operations from [22, Chapter 4].

Definition 3.18. Let D1 = (V (D1), h1, E(D1)), D2 = (V (D2), h2, E(D2))
be two simple digraphs.

(i) If V (D1) = V (D2) = V , then the edge sum is denoted by D1 ⊕ D2

whose set of vertices is V and the set of arcs is E(D1) ∪ E(D2).
(ii) The cross product is denoted by D1 × D2 whose set of vertices is

V (D1) × V (D2) and ((x, y), (x′, y′)) ∈ E(D1 × D2) if (x, x′) ∈ E(D1) and
(y, y′) ∈ E(D2).

(iii) The box product is denoted by D1 2 D2 whose set of vertices is
V (D1) × V (D2) and ((x, y), (x′, y′)) ∈ E(D1 2 D2) if either x = x′ and
(y, y′) ∈ E(D2) or y = y′ and (x, x′) ∈ E(D1).

(iv) The boxcross product is denoted by D1 ⊠ D2 and defined to be
D1 ⊠D2 := (D1 ×D2)⊕ (D1 2 D2).

The next proposition can be easily proved by using Observation 3.17
and Definition 3.18.

Proposition 3.19. Let (S, a,A), (T, b, B) be two semigroup acts. Then
(i) G(S, a,A)×G(T, b, B) = G(S × T, a× b, A×B)
(ii) G(S, a,A) 2 G(T, b, B) = G(S, a,A×B)⊕G(T, b, A×B)
(ii) G(S, a,A) ⊠G(T, b, B) = G(S, a,A × B) ⊕G(T, b, A × B) ⊕G(S ×

T, a× b, A×B)

Remark 3.20. The categorical interpretation of Proposition 3.19 (i) is
given in Section 6 (cf. Theorem 6.7) via the functor F obtained in Propo-
sition 3.14.

Proposition 3.12 (2) characterizes strongly connectedness of G(S, a,A)
in terms of transitivity of the action of S on A. Now we are keen to know
about the weakly connectedness of G(S, a,A), that is the connectedness of
the underlying graph of G(S, a,A).

Definition 3.21. Let (S, a,A) be a semigroup act. Define an undirected
graph Γ(S, a,A) whose set of vertices is A and two vertices x, y are adjacent
if y = sx or x = ty for some s, t ∈ S. We call Γ(S, a,A), the undirected
action graph of (S, a,A).
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Remark 3.22. Actually Γ(S, a,A) is obtained from G(S, a,A) by replac-
ing each arc by an undirected edge and removing any resulting multiple
edges (keeping one copy). In this way Γ(S, a,A) is the underlying graph of
G(S, a,A).

Theorem 3.23. Let (S, a,A) be a semigroup act where S is a commutative
semigroup. Then the equivalence classes under the equivalence relation ϱ,
defined on A by xϱy if and only if there exist s, t ∈ S such that sx = ty, are
precisely the connected components of Γ(S, a,A).

Proof. It will be sufficient if we can prove that for x, y ∈ A, xϱy if and
only if x, y are connected by a path in Γ(S, a,A). If xϱy then sx = ty
for some s, t ∈ S. Let sx = ty = z. Then x–z–y is a path connecting x
and y. Conversely assume that x(= z0)–z1–z2–...–zk−1–y(= zk) is a path in
Γ(S, a,A) connecting x and y. Then zi−1ϱzi for all i = 1, 2, ..., k and since
ϱ is transitive this implies z0ϱzk, that is xϱy.

Remark 3.24. A part of Theorem 2.3 for undirected power graphs of semi-
groups in [5], follows from the above theorem when S = N, the semigroup of
natural numbers under usual multiplication, A is any finite semigroup and
the action is defined by na := an for all n ∈ N and for all a ∈ A.

Theorem 3.23 reflects the following.

Corollary 3.25. For a commutative semigroup S and a semigroup act
(S, a,A), G(S, a,A) is weakly connected if and only if any two distinct ver-
tices have a common out-neighbour.

The following example makes it clear that if we remove the commuta-
tivity of S in Theorem 3.23, the conclusion may not follow.

Example 3.26. Let S = {s, t} be a two element right zero semigroup and
A = {a, b, c, x, y}. Define an action of S on A by sa := b, sb := b, sc := c,
sx := b, sy := c and ta := c, tb := b and tc := c, tx := b, tx := c.
It is a matter of routine verification to show that it is a semigroup act.
The corresponding action graph is shown below (Fig-3.3). It can be easily
observed that x, y are not ϱ related although they are in the same connected
component of Γ(S, a,A).
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a

bc

xy

Fig-3.3

4 Strongly faithful acts and action graphs

A group action (G, a,A) is called free (or fixed point free) if for g ∈ G and
x ∈ A, gx = x implies that g = eG where eG is the identity of the group G.
Equivalently we can say that the action is free if gx = hx for g, h ∈ G and
x ∈ A implies that g = h. The semigroup analogue of this is given in the
following definition.

Definition 4.1. [21] Let (S, a,A) be a semigroup act. We say that the
action of S on A is strongly faithful if for s, t ∈ S and x ∈ A, sx = tx implies
that s = t or in other words if s ̸= t then sx ̸= tx for all x ∈ A. Categorically
the action is strongly faithful if for all x ∈ A, the map ax : S −→ A defined
by ax(s) := a(s, x) = sx is monic (injective) in the category Set.

In case of strongly faithful semigroup act, we can color the arcs of the
corresponding action graph. This is described in the following definition.

Definition 4.2. Suppose (S, a,A) is a strongly faithful act. Then the color
of an arc (x, y) ∈ E(G(S, a,A)) is denoted by col(x, y) and it is defined to
be the unique s ∈ S such that sx = y.

Example 4.3. Let R be an integral domain. Let S be any multiplicatively
closed subset of R not containing 0 and A = I∗ = I \ {0} for any ideal I of
R. Then S is a semigroup which acts on A form left by the multiplication
of R and we get a strongly faithful act.

Example 4.4. Any fixed point free group action can be seen as a strongly
faithful semigroup action by considering the group as a semigroup.

Definition 4.5. Let (S, a,A) be a left semigroup act. An element x ∈ A is
called a fixed point of s ∈ S if sx = x.



Action graph of a semigroup act & its functorial connection 59

We know that an action of a group G on a set is free if and only if the
identity of G is the only element having a fixed point. Similarly strongly
faithful (left) action of a semigroup has the following connection with right
identities of the semigroup.

Lemma 4.6. Let (S, a,A) be a strongly faithful semigroup act. Then s ∈ S
has a fixed point if and only if s is a right identity of S.

Proof. Suppose x ∈ A is a fixed point of s. Therefore for all t ∈ S, tsx = tx
which implies ts = t since (S, a,A) is a strongly faithful act. Hence s is
a right identity of S. Conversely if s is a right identity of S then for any
x ∈ A, s(sx) = (ss)x = sx which shows that sx is a fixed point of s.

Lemma 4.6 together with Proposition 3.12 (3) and Remark 3.6 gives the
following.

Proposition 4.7. If S is a semigroup which has no right identity then S
can not act strongly faithfully on a finite nonempty set A.

Remark 4.8. The above result appears to be a digression, but it is actually
a consequence of Proposition 3.12 (3), which is a graph theoretic result of
the present study.

Corollary 4.9. A right zero semigroup can not act strongly faithfully on a
finite set unless it is a one element trivial semigroup.

In the following result, strongly faithful (finite) semigroup action is char-
acterized by a graph theoretic property of the corresponding action graph.

Proposition 4.10. Let (S, a,A) be a semigroup act where S is a finite
semigroup. Then (S, a,A) is a strongly faithful act if and only if G(S, a,A)
is a |S|-out regular digraph.

Proof. Choose any vertex x in G(S, a,A). Define φx : S −→ N+
G(S,a,A)(x)

by φx(s) := sx for all s ∈ S. Since (S, a,A) is a strongly faithful act, so φx
is injective. By definition φx is surjective. Therefore φx is a bijection and
|N+

G(S,a,A)(x)| = |S|. Since this holds for all x ∈ V (G(S, a,A)), so G(S, a,A)

is |S|-out regular digraph. Conversely assume that G(S, a,A) is a |S|-out
regular digraph. The mapping φx defined above, is always surjective and
since |S| = |N+

G(S,a,A)(x)| for all x ∈ A, so φx is also injective. Therefore

(S, a,A) is a strongly faithful act.
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The following is a passing remark.

Remark 4.11. In case of strongly faithful action, for any x ∈ A, N+
G(S,a,A)(x)

enjoys a semigroup structure induced by the bijection φx, defined in the
proof of Proposition 4.10. A multiplication is defined on N+

G(S,a,A)(x) by

(sx)(tx) := (st)x which can be easily seen to be associative. Consequently
φx becomes a semigroup isomorphism and so for strongly faithful semigroup
act, N+

G(S,a,A)(x) is a semigroup isomorphic to S for all x ∈ A.

Suppose (S, a,A) and (T, b, B) are two strongly faithful semigroup acts.
In Proposition 3.13, we have seen that a morphism of actions induces a
digraph homomorphism. Now we are in a position to provide a counter
example to illustrate that the converse of Proposition 3.13 is not true.

Example 4.12. We consider the strongly faithful semigroup acts

(Z∗
3,×3,Z∗

3), (Z∗
5,×5,Z∗

5)

with the actions being usual multiplications modulo 3 and modulo 5 of
Z3 and Z5 respectively. The corresponding action graphs are shown below
(Fig-4.1).

1 2 1 2

34

G(Z∗
3,×3,Z∗

3) G(Z∗
5,×5,Z∗

5)
Fig-4.1

We do not mention the color of the arcs in the figures as they will make
the figures clumsy. Note that col(1, 2) = col(2, 1) = 2 in G(Z∗

3,×3,Z∗
3) and

col(1, 2) = 2, col(2, 1) = 3 in G(Z∗
5,×5,Z∗

5). Define a map

f : V (G(Z∗
3,×3,Z∗

3)) −→ V (G(Z∗
5,×5,Z∗

5))
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by f(1) := 1 and f(2) := 2. Clearly f is a digraph homomorphism. If
possible suppose µ : Z∗

3 −→ Z∗
5 is a semigroup homomorphism and g : Z∗

3 −→
Z∗

5 is a mapping such that (µ, g) is a morphism of acts and G(µ, g) = f .
Then by definition g = f . Now observe that, in (Z∗

3,×3,Z∗
3), 2 = 2 ×3 1

which implies that f(2) = g(2) = µ(2)×5 g(1) = µ(2)×5 f(1) and 1 = 2×3 2
which implies that f(1) = µ(2)×5f(2). Therefore in G(Z∗

5,×5,Z∗
5) it should

happen that col(f(1), f(2)) = col(f(2), f(1)) = µ(2), but this is not the
case as col(f(1), f(2)) = col(1, 2) = 2 and col(f(2), f(1)) = col(2, 1) = 3 in
G(Z∗

5,×5,Z∗
5). Thus f can’t be induced by any morphism of acts.

In order to obtain a restricted converse of Proposition 3.13, we introduce
the following notion.

Definition 4.13. Let (S, a,A), (T, b, B) be strongly faithful semigroup acts.
Let f : G(S, a, A) −→ G(T, b, B) be a digraph homomorphism. f is
called color sensitive if for any two arcs (x1, y1), (x2, y2) in E(G(S,A)),
col(x1, y1) = col(x2, y2) implies that col(f(x1), f(y1)) = col(f(x2), f(y2))

First we observe that in case of strongly faithful semigroup action, mor-
phisms of acts induce color sensitive homomorphisms.

Proposition 4.14. Let (µ, f) : (S, a,A) −→ (T, b, B) be a morphism of
acts where (S, a,A), (T, b, B) are strongly faithful semigroup acts. Then
G(µ, f) : G(S, a,A) −→ G(T, b, B) is a color sensitive homomorphism.

Proof. From Proposition 3.13, it is clear that G(µ, f) is a digraph homomor-
phism. To show that it is color sensitive, assume col(x1, y1) = col(x2, y2) =
s. Then G(µ, f)(y1) = f(y1) = µ(s)f(x1) = µ(s)G(µ, f)(x1) and sim-
ilarly G(µ, f)(y2) = µ(s)G(µ, f)(x2). So col(G(µ, f)(x1), G(µ, f)(y1)) =
col(G(µ, f)(x2), G(µ, f)(y2)) = µ(s). Thus G(µ, f) is a color sensitive ho-
momorphism.

The restricted converse of Proposition 3.13 is now presented below.

Theorem 4.15. Let (S, a,A), (T, b, B) be strongly faithful semigroup acts
and f : G(S, a,A) −→ G(T, b, B) be a color sensitive homomorphism. Then
there exists a semigroup homomorphism µ : S −→ T such that (µ, f) is a
morphism of acts and G(µ, f) = f .
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Proof. At first, we define a mapping

Colf : S −→ T, Colf (s) := col(f(x), f(sx))

(cf. Definition 4.2) for all s ∈ S and for any x ∈ A, that is Colf (s)f(x) =
f(sx) for all x ∈ A. Since f is color sensitive (cf. Definition 4.13), the choice
of x does not affect the definition of Colf . Let s, t ∈ S. Take any x ∈ A.
Then (x, tx), (tx, s(tx)) ∈ E(G(S,A)). So (f(x), f(tx)), (f(tx), f(s(tx))) ∈
E(G(T,B)) and f((st)x) = f(s(tx)) = Colf (s)f(tx) = Colf (s)Colf (t)f(x).
Again, f((st)x) = Colf (st)f(x). Hence using the fact that (T, b, B) is a
strongly faithful act, we obtain Colf (st) = Colf (s)Colf (t). So Colf is a
semigroup homomorphism. Since f(sx) = Colf (s)f(x), so (Colf , f) is a
morphism of acts and clearly G(Colf , f) = f .

In view of Proposition 4.14 and Theorem 4.15 we obtain the following.

Theorem 4.16. Let (S, a,A), (T, b, B) be strongly faithful semigroup acts
and f : G(S, a,A) −→ G(T, b, B) be a digraph homomorphism. f can be
induced by a morphism of acts from (S, a,A) to (T, b, B) if and only if f is
color sensitive.

Remark 4.17. Let SF-SgrActl be the full subcategory of SgrActl consisting
of all strongly faithful left semigroup acts. Then the functor F obtained in
Proposition 3.14 restricts to a functor:

SF-SgrActl
F−→ Simp-TDGraph

Proposition 4.14 tells us that the image of this restricted functor is not
a full subcategory of Simp-TDGraph as the restriction of F is not in general
full (see Example 4.12). In Section 6, we focus on this restricted functor in
more details.

In Proposition 3.12 (1), we have observed that the digraph G(S, a,A) is
always strongly transitive. But the C-induced action graph G(S, a, C;A) is
not necessarily strongly transitive (for example consider the Cayley graph
Cay(Z5, {1}) = G(Z5,+5, {1};Z5) (cf. Example 7.3.3, Page 146 of [22])).
In case of strongly faithful act, we precisely answer when G(S, a, C;A) is
strongly transitive.

Proposition 4.18. Let (S, a,A) be a strongly faithful semigroup act where
S is a semigroup and C is a nonempty subset of S. Then G(S, a, C;A) is a
strongly transitive digraph if and only if C is a subsemigroup of S.



Action graph of a semigroup act & its functorial connection 63

Proof. Let s, t ∈ C and x ∈ A. Then (x, sx), (sx, t(sx)) ∈ E(G(S, a, C;A)).
Since G(S, a, C; A) is strongly transitive, (x, t(sx)) ∈ E(G(S, a, C;A)), that
is, there exists c ∈ C such that t(sx) = cx which implies that ts = c since
(S, a,A) is a strongly faithful semigroup act. Hence C is a subsemigroup
of S. Converse follows verbatim from the proof of Proposition 3.12 (1) and
using the fact that C is closed under multiplication.

Suppose (S, a,A) is a semigroup act. For any s ∈ S, let us denote the
{s}-induced action graph of (S, a,A) by Hs(A) and call it the s-colored
action sub-digraph of G(S, a,A). The following is an easy observation.

Observation 4.19. Let (S, a,A) be a semigroup act and C( ̸= ∅) ⊆ S.
Then

G(S, a, C;A) =
⊕

c∈C
Hc(A)

where
⊕

denotes the edge sum of the digraphs as defined in Definition 3.18.

Definition 4.20. Let G be a digraph (with or without loops). The loop free
copy of G is a graph G∗, obtained from G just by removing (or ignoring)
all the loops of G (if exist) and if G has no loop then G∗ = G.

It is well known that idempotents play an important role in Semigroup
theory. The following graph theoretic result gives a characterization of
idempotents in a semigroup S, when it is acting strongly faithfully on a set
A.

Proposition 4.21. Let (S, a,A) be a strongly faithful semigroup act. Let
s ∈ S be an element such that sx0 ̸= x0 for some x0 ∈ A. Then s is an
idempotent in S if and only if the loop free copy of Hs(A), that is Hs(A)∗ is
bipartite with bipartition {H1, H2} where H1 = {x ∈ A | (x, y) ∈ E(Hs(A)∗)
for some y ∈ A} ∪ {x ∈ A | x is an isolated vertex in Hs(A)∗} and H2 =
{y ∈ A | (x, y) ∈ E(Hs(A)∗) for some x ∈ A}.

Proof. Suppose s ∈ E(S). Clearly V (Hs(A)∗) = H1 ∪ H2. Since there
exists x0 ∈ A such that sx0 ̸= x0 so (x0, sx0) ∈ E(Hs(A)∗). Then x0 ∈ H1,
sx0 ∈ H2 which shows that both H1, H2 are nonempty. Also observe that
H1 ∩ H2 = ∅ as if x ∈ H1 ∩ H2 then (x, y), (z, x) ∈ E(Hs(A)∗) for some
y, z ∈ A. But this implies y = sx = s2z = sz = x which is not possible as
Hs(A)∗ is loop free. Let x, y ∈ H1 such that (x, y) ∈ E(Hs(A)∗) then y ∈ H2



64 P. Mukherjee, R. Mukherjee, S.K. Sardar

which implies that y ∈ H1 ∩H2, a contradiction. So H1 is an independent
set. Similarly H2 is also independent. Thus {H1, H2} is a bipartition of
Hs(A)∗.

Conversely suppose Hs(A)∗ is bipartite with bipartition {H1, H2} where
H1, H2 are as mentioned in the statement. Let x ∈ A be a non-isolated
vertex in H1. Then (x, sx) ∈ E(Hs(A)∗) and if sx ̸= s2x then (sx, s2x) ∈
E(Hs(A)∗). Hence sx ∈ H1 ∩ H2 which contradicts that {H1, H2} is a
bipartition. So it follows that sx = s2x which implies that s = s2 as
(S, a,A) is a strongly faithful act.

The case where sx = x for all x ∈ A, is explored in the following
proposition. We omit the proof as the first part follows from Lemma 4.6
and the remaining part is self explanatory.

Proposition 4.22. Suppose (S, a,A) is a strongly faithful semigroup act
where |A| ⩾ 2 and s is an element of S which fixes every element of A.
Then s is idempotent and the graph Hs(A)∗ is a null graph, hence bipartite.

We conclude this section by finding an upper bound for the girth of the
s-colored action sub-digraph Hs(A) when s is a periodic element.

Theorem 4.23. Let (S, a,A) be a semigroup act and s ∈ S be a periodic
element with index m and period t. Then

(i) gr(Hs(A)) ⩽ t
(ii) gr(Hs(A)) | t

(iii) the length of any directed path in Hs(A) is ⩽ m+ t− 1

Proof. (i) For any x ∈ A, consider the set Px = {n ∈ N | sm+nx = smx}.
Px is nonempty as t ∈ Px. By well ordering principle, Px has a least
element. Let min(Px) = kx. Obviously kx ⩽ t. We claim that C : smx →
sm+1x → sm+2x → ... → sm+kx−1x → sm+kxx = smx is a directed cycle
in Hs(A). It suffices to show that there is no vertex repetition (other than
end vertices) in C. Suppose sm+ix = sm+jx where 0 ⩽ i < j ⩽ kx.
Now smx = sm+kxx = sm+j+kx−jx = skx−j(sm+jx) = skx−j(sm+ix) =
sm+kx−(j−i)x = sm+lx where l = kx − (j − i) < kx, which contradicts the
minimality of kx if l > 0. Hence l = 0 which is possible only if i = 0 and
j = kx. So C is a directed cycle of length kx. Therefore gr(Hs(A)) ⩽ kx ⩽ t.
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(ii) Let gr(Hs(A)) = n and x → sx → s2x → ... → sn−1x → snx = x
be a directed cycle of length n. From (i) it follows that n ⩽ t. By Euclid’s
division lemma, there exist nonnegative integers q, r such that t = nq + r
where 0 ⩽ r < n. Now smx = sm+tx = sm+nq+rx = sm+r(snqx) = sm+rx
since snx = x. If r > 0 then it follows that min(Px) = kx ⩽ r where
Px is as mentioned in the proof of (i) and so gr(Hs(A)) ⩽ kx ⩽ r < n, a
contradiction. Hence r = 0 and so gr(Hs(A)) | t.

(iii) Starting with any vertex x in A, we can obtain a directed walk
x → sx → s2x → ... → smx → sm+1x → sm+2x → ... → sm+t−1x →
sm+tx = smx with a vertex repetition occurring at smx. This happens
irrespective of the choice of the starting vertex x. Thus any directed path
must have length ⩽ m+ t− 1.

To show that the girth of Hs(A) actually attains the upper bound t
(period of s) in case of strongly faithful semigroup action, we present the
following Corollary.

Corollary 4.24. Let (S,A) be a strongly faithful semigroup act and s ∈ S be
a periodic element with index m and period t. Then m = 1 and gr(Hs(A)) =
t.

Proof. Let gr(Hs(A)) = n and x → sx → s2x → ... → sn−1x → snx = x
be a directed cycle of length n in Hs(A). Then sn+1x = sx. As the action
is strongly faithful so s1+n = s. By minimality of m and t, m ⩽ 1 and
t ⩽ n. Therefore m = 1. Now by Theorem 4.23 (i), n ⩽ t which implies
that gr(Hs(A)) = n = t.

5 The reverse question

In this section we pose the very question ‘Which digraphs can be the ac-
tion graph G(S, a,A) corresponding to some semigroup act (S, a,A)?’ This
question can be rephrased via the functor F obtained in Proposition 3.14:
‘What is the image of F?’ The property of being strongly transitive plays
a pivotal role in making a digraph, an action graph. Firstly we show that
(cf. Theorem 5.4) any simple, transitive digraph (cf. Definition 5.2) can be
seen as a spanning sub-digraph of the action graph of some semigroup act.
In fact we can get even more.
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In what follows all digraphs are considered to be finite.

Definition 5.1. Suppose D1, D2 are two digraphs. D1 is said to coincide
with D2 ‘except possibly at loops’ if D∗

1 is isomorphic to D∗
2 where D∗

i denotes
the loop free copy of Di for i = 1, 2.

Definition 5.2. [3] A simple, uncolored digraph D = (V (D), h, E(D)) is
called transitive if for any three distinct vertices a, b, c, (a, b), (b, c) ∈ E(D)
implies that (a, c) ∈ E(D).

Every strongly transitive digraph (cf. Definition 3.9) is clearly transitive.
So following remark is in order as a counterpart of Remark 3.10.

Remark 5.3. If a simple, uncolored digraph is a 1-magma (and conse-
quently equipped with a structure of a semicategory) then it is a transitive
digraph.

Theorem 5.4. Let D = (V (D), h, E(D)) be a simple, transitive digraph.
Then there exists a left semigroup act (S, a,A) for a semigroup S and a
nonempty set A such that G(S, a,A) coincides with D except possibly at
loops.

Proof. At first, we construct a semigroup from the digraph D. Consider the
free semigroup generated by the set of arcs E(D) of D and name it as SE(D)

(In [11] it is denoted by < D > and referred as ‘arc generated semigroup’).
Let A = V (D). Define an action of the generating set E(D) on A by a map
a : E(D)×A −→ A such that

a((i, j), x) = (i, j)x :=

{
j if x = i
x if x ̸= i

Clearly by universal property11 a can be extended to an action (for simplic-
ity we also denote this by a) of the free semigroup SE(D) on A by defining

((in+1, jn+1)(in, jn), ..., (i1, j1))(x) :=

11the action of E(D) on A gives rise to a mapping ψ : E(D) −→ Map(A) (the
semigroup of all self maps on A); the universal property of free semigroup guarantees the
existence of a unique semigroup homomorphism ϕ : SE(D) −→ Map(A), induced by ψ
which is nothing but an action of SE(D) on A.
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(in+1, jn+1)(((in, jn)(in−1, jn−1), ..., (i1, j1))(x))

for all n ∈ N and for all x ∈ A and so (SE(D), a, A) becomes a left semigroup
act. We claim that G(SE(D), a, A)∗ = D∗. It is evident that V (G(SE(D), a,
A)∗) = A = V (D∗).

Let (x, y) ∈ E(G(SE(D), a, A)∗). Then x ̸= y and by definition there
exists s = (i1, j1)(i2, j2)...(ik, jk) ∈ SE(D) such that y = sx, that is y =
((i1, j1)(i2, j2)...(ik, jk))x. Now in view of the action of E(D) on A, it follows
that either (x, y) ∈ {(i1, j1), (i2, j2), ..., (ik, jk)} or there exist arcs

(iα1 , y), (iα2 , iα1), (iα3 , iα2), ..., (iαm , iαm−1), (x, iαm)

∈ {(i1, j1), (i2, j2), ..., (ik, jk)}

with m ⩾ 1. In the first case, clearly (x, y) ∈ E(D∗) and in the later case,
since (iα1 , y), (iα2 , iα1), (iα3 , iα2), ..., (iαm , iαm−1), (x, iαm) ∈ E(D), so there
is a directed walk from x to y in D, containing a directed path from x to
y which together with the facts that D is a transitive digraph and x ̸= y,
implies that (x, y) ∈ E(D∗). So E(G(SE(D), a, A)∗) ⊆ E(D∗). On the other
hand if (x, y) ∈ E(D∗) then (x, y) ∈ SE(D). Since y = (x, y)x and x ̸= y, so
by definition (x, y) ∈ E(G(SE(D), a, A)∗) and E(D∗) ⊆ E(G(SE(D), a, A)∗).
Therefore G(SE(D), a, A)∗ = D∗ and D coincides with G(SE(D), a, A) except
possibly at loops.

Note 5.5. If E(D) contains at least two arcs with different tails then the
digraph G(SE(D), a, A), constructed in the proof of Theorem 5.4 has a loop
at each vertex. Therefore if D is a simple, transitive digraph with a loop at
each vertex then we can extend the proof of Theorem 5.4 to show that D
is always an action graph. But there also exists action graph which has no
loop at some vertex (see Example 3.15).

Definition 5.6. Let D = (V (D), h, E(D)) be a finite, simple digraph. A
vertex v is called a universal sink (see [6], Page 614) if all the other vertices
of D are in-neighbours of v and it has no out-neighbour. We say that v is
a looped universal sink if all vertices are in-neighbours of v and it has only
one out-neighbour which is v itself (that is, there is a loop at v).

Note that in Example 3.15, a is a looped universal sink. Also observe
that if universal sink or looped universal sink exists in a digraph then these
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are unique. In the next theorem, we present a class of digraphs which are
always action graphs of semigroup acts.

Theorem 5.7. Let D = (V (D), h, E(D)) be a strongly transitive, simple
digraph with a looped universal sink. Then D is the action graph of a semi-
group act.

Proof. Let ξ be the looped universal sink of D. Since D is simple, every
arc in D can be expressed as a unique ordered pair of vertices of D. We
adjoin an element θ with E(D) and denote the resulting set by S. Define a
multiplication on S as follows:

(a, b)(c, d) :=

{
(c, b) if d = a
θ if d ̸= a

θ(a, b) := (a, b)θ := θ for all (a, b) ∈ E(D)

θθ := θ

Since D is strongly transitive, this multiplication is well defined on S. To
show that this is associative let s, t, u ∈ S. If at least one of s, t and u is θ,
then clearly (st)u = s(tu). If none of them is θ then let s = (a, b), t = (c, d)
and u = (e, f). Four cases may arise namely Case-(i) f = c and d = a, Case-
(ii) f ̸= c and d = a, Case-(iii) f = c and d ̸= a and Case-(iv) f ̸= c and
d ̸= a. Now it is a matter of routine verification that (st)u = s(tu) in each
of these cases. Therefore S becomes a semigroup under this multiplication.
We define a left action of S on V (D) by a map ν : S×V (D) −→ V (D) such
that

ν((a, b), x) = (a, b)x :=

{
b if x = a
ξ if x ̸= a

ν(θ, x) = θx := ξ for all x ∈ V (D)

Now we show that this is actually a semigroup action. Let s, t ∈ S and
x ∈ V (D). If at least one of s, t is θ, then it is trivial. So let s = (a, b) and
t = (c, d).

Case-(i) d = a and c = x. Then (st)x = ((a, b)(c, d))x = (c, b)x = b and
s(tx) = (a, b)((c, d)x) = (a, b)d = b.

Case-(ii) d = a and c ̸= x. Then (st)x = ((a, b)(c, d))x = (c, b)x = ξ and
s(tx) = (a, b)((c, d)x) = (a, b)ξ = ξ since ξ is a looped universal sink.
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Case-(iii) d ̸= a and c = x. It follows that (st)x = ((a, b)(c, d))x = θx =
ξ and s(tx) = (a, b)((c, d)x) = (a, b)d = ξ.

Case-(iv) d ̸= a and c ̸= x. Then (st)x = ((a, b)(c, d))x = θx = ξ and
s(tx) = (a, b)((c, d)x) = (a, b)ξ = ξ since ξ is the looped universal sink.

Therefore (S, ν, V (D)) becomes a left semigroup act. We claim that
G(S, ν, V (D)) = D. Clearly both have same set of vertices. Let (x, y) ∈
E(G(S, ν, V (D))). If y = ξ then (x, y) = (x, ξ) ∈ E(D) since ξ is the looped
universal sink. If y ̸= ξ then y = sx for some s = (a, b) ∈ E(D). So x = a
and y = b whence (x, y)(= (a, b)) ∈ E(D). Conversely if (a, b) ∈ E(D) then
(a, b) ∈ S and since b = (a, b)a so (a, b) ∈ E(G(S, ν, V (D))). Hence both the
digraphs have same set of arcs which implies that D = G(S, ν, V (D)).

Remark 5.8. The semigroup constructed in the above proof is significant
in the sense that it is the opposite semigroup of a Brandt semigroup [20].

The question which immediately comes in mind is that, ‘Do the graphs
of Theorem 5.7 cover all action graphs of semigroup act?’ The answer is
‘No’ as illustrated by the following example.

Example 5.9. Let S = {s, t} be a two element right zero semigroup and
A = {a, b, c}. Define an action ν of S on A by ν(s, a) := b, ν(s, b) := b,
ν(s, c) := c and ν(t, a) := c, ν(t, b) := b and ν(t, c) := c. It can be verified
easily that (S, ν,A) is a semigroup act. The corresponding action graph is
shown below (Fig-5.1). Note that it has no looped universal sink.

a b

c

Fig-5.1

Now we try to refine the result obtained in Theorem 5.4, with the help
of the following observation. Note that for any semigroup act (S, a,A),
Proposition 3.12 assures that (i) the action graph G(S, a,A) is a strongly
transitive digraph, (ii) every vertex of G(S, a,A) has positive out-degree
and (iii) if A is finite then G(S, a,A) must have a loop. Therefore it is
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clear that digraphs which are not strongly transitive or has no loop or has
a vertex with out-degree 0 can not be an action graph. We establish below
that these obvious necessary conditions are also sufficient for a digraph to
be the action graph of a semigroup act.

Theorem 5.10. Let D = (V (D), h, E(D)) be a simple digraph. Then D is
the action graph of a semigroup act if and only if D is strongly transitive
and every vertex of D has positive out-degree.

Proof. Clearly the conditions are necessary. For the converse suppose D
is strongly transitive and every vertex has positive out-degree. Therefore
N+
D (x) ̸= ∅ for all x ∈ V (D). By axiom of choice, for every vertex x we can

select nx ∈ N+
D (x). Then (x, nx) ∈ E(D) for all x ∈ V (D). Now consider

the free semigroup SE(D) generated by E(D) and define an action of E(D)
on V (D) by a map a : E(D)× V (D) −→ V (D) such that

a((i, j), x) = (i, j)x :=

{
j if x = i
nx if x ̸= i

Clearly this can be extended to an action (which we denote by the same a)
of SE(D) on V (D) defined by

((i1, j1)(i2, j2)...(ik, jk))x := ((i1, j1)(i2, j2)...(ik−1, jk−1))(ik, jk)x.

Hence (SE(D), a, V (D)) is a left semigroup act. Both G(SE(D), a, V (D))
and D have same set of vertices. Let (x, y) ∈ E(G(SE(D), a, V (D))). Then
there exists s = (im, jm)(im−1, jm−1)...(i1, j1) ∈ SE(D) such that y = sx.
Let x0 := x and xk := (ik, jk)xk−1 for all k = 1, 2, ...,m. Then xm = y
and by definition of the action, it follows that (xk−1, xk) ∈ E(D) for all
k = 1, 2, ...,m. Therefore x = x0 → x1 → x2 → ... → xm−1 → xm = y
is a directed walk from x to y in D which assures that there is a directed
path from x to y in D. Since D is strongly transitive so (x, y) ∈ E(D).
Conversely if (x, y) ∈ E(D) then (x, y) ∈ SE(D) and since y = (x, y)x so
(x, y) ∈ E(G(SE(D), a, V (D))). Thus D = G(SE(D), a, V (D)).

Corollary 5.11. Let D = (V (D), h, E(D)) be a simple digraph. Then D is
equal to G(S, a, C;A) for a semigroup act (S, a,A) and a nonempty subset
C of S if and only if every vertex of D has positive out-degree.
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Proof. Clearly the condition is necessary. Conversely suppose every vertex
of D has positive out-degree. We consider the transitive closure22 of D
and denote it by D

t
. By the hypothesis we can choose nx ∈ N+

D (x) for all

x ∈ V (D
t
). Using these choices of out-neighbours of vertices and following

the proof of Theorem 5.10, we can show that G(S
E(D

t
)
, a, V (D

t
)) is equal

to D
t
. Let C = E(D) ⊆ S

E(D
t
)
. Then C is nonempty. Let (x, y) ∈

E(G(S
E(D

t
)
, a, C;V (D))). Then there exists c = (x′, y′) ∈ C such that

y = cx = (x′, y′)x. If x = x′ then y = y′ and so (x, y) = (x′, y′) ∈ C = E(D).
If x ̸= x′ then y = nx ∈ N+

D (x) and so (x, y) = (x, nx) ∈ E(D). Conversely
if (x, y) ∈ E(D) = C then (x, y) ∈ E(G(S

E(D
t
)
, a, C;V (D))) as y = (x, y)x.

Hence D = G(S
E(D

t
)
, a, C;V (D)).

Remark 5.12. Theorem 5.10 characterizes the image of the functor F
(cf. Proposition 3.14) on objects, precisely it shows that F is surjective
on objects. A functor F : C −→ D is called essentially surjective [24] or,
dense [22] if for every D ∈ Obj(D), there exists C ∈ Obj(C) such that F (C)
is isomorphic to D in D. The functor which are surjective on objects are
clearly dense. Therefore F is also a dense functor.

6 More functorial properties of action graph construction

This final section is devoted to the study of more properties of the functor
F : SgrActl −→ Simp-TDGraph and its restriction to the full subcategory
SF-SgrActl (cf. Remark 4.17). The categorical terminologies and results
used here are mainly taken from [1], [21] and [24].

We now recall the definitions of comorphism and strong homomorphism
in the category DGraph of digraphs.

Definition 6.1. [22] LetG1 = (V (G1), h1, E(G1)), G2 = (V (G2), h2, E(G2))
be simple, uncolored digraphs. A mapping f : V (G1) −→ V (G2) is called
a comorphism (continuous graph homomorphism) if (f(x), f(y)) ∈ E(G2)
implies that (x, y) ∈ E(G1). f is called a strong homomorphism if it

22the transitive closure of a simple digraph G is a digraph G′ such that V (G) = V (G′)
and (i, j) ∈ E(G′) if and only if there exists a directed path from i to j in G.
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preserves as well as reflects arcs that is, (x, y) ∈ E(G1) if and only if
(f(x), f(y)) ∈ E(G2).

At this point we may ask a natural question, ‘When will the functor F
produce strong homomorphism?’ Following proposition gives an answer.

Proposition 6.2. Let (µ, f) : (S, a,A) −→ (T, b, B) be a morphism of
acts such that µ is surjective and f is injective. Then F(µ, f) is a strong
homomorphism in DGraph.

Proof. We just need to show that F(µ, f) : F(S, a,A) −→ F(T, b, B) is a
comorphism. Assume that (F(µ, f)(x),F(µ, f)(y)) ∈ E(F(T, b, B)). Then
(f(x), f(y)) ∈ E(G(T, b, B)) which implies f(y) = tf(x) for some t ∈ T .
Since µ is surjective, there exists s ∈ S such that t = µ(s) and so f(y) =
µ(s)f(x) = f(sx). Finally applying injectivity of f we obtain y = sx.
Therefore (x, y) ∈ E(G(S, a,A)) = E(F(S, a,A)) and so F(µ, f) is a strong
homomorphism.

The conditions (i) µ is surjective, (ii) f is injective in Proposition 6.2
are sufficient but not necessary for F(µ, f) to be a strong homomorphism
in DGraph. This fact is illustrated in the following example.

Example 6.3. Consider the semigroup act (N, ν,Z6) of Example 3.16. We
define µ : N −→ N by µ(n) := n2 for all n ∈ N and f : Z6 −→ Z6 by
f(a) := a2 for all a ∈ Z6. Then µ is a semigroup homomorphism and
f(na) = (na)2 = n2a2 = µ(n)f(a) that is, (µ, f) is a morphism of acts. It
can be easily verified that F(µ, f) : F(N, ν,Z6) −→ F(N, ν,Z6) is a strong
endomorphism. But clearly µ is not surjective and f is not injective as
f(1) = f(5) = 1.

Definition 6.4. [24] A category C is called monoidal if it is equipped with
(i) a product (precisely a bifunctor) ⊗ : C×C −→ C which is associative

up to a natural isomorphism α;
(ii) an object I which is both left and right identity for ⊗ up to natural

isomorphisms λ and ρ respectively, such that all diagrams involving α, λ
and ρ commute.

For the most common example we refer Set which is a monoidal category
with cartesian product of sets playing the role of a bifunctor and any 1-
element set as an identity.
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Lemma 6.5. The category SgrActl is monoidal.

Proof. Define ⊗ : SgrActl × SgrActl −→ SgrActl by (S, a,A)⊗ (T, b, B) :=
(S×T, a× b, A×B) (cf. Observation 3.17). By [24, Proposition III.5.1] we
just need to show that ⊗ defines a product in the category SgrActl and there
is a terminal object in this category. Note that (πS , πA) and (πT , πB) are
projections from (S×T, a×b, A×b) onto (S, a,A) and (T, b, B) respectively
where πS , πT are respective projections of S × T onto S and T in SemiGrp
and πA, πB are projections of A×B on A and B respectively in the category
Set. Let (U, c, C) be any semigroup act and (µ, f) : (U, c, C) −→ (S, a,A),
(η, g) : (U, c, C) −→ (T, b, B) be any two morphisms of acts. Now it can be
easily shown that (µ × η, f × g) : (U, c, C) −→ (S × T, a × b, A × B) is the
unique morphism of acts for which the following diagram commutes.

(U, c, C)

(S, a,A) (S × T, a× b, A×B) (T, b, B)

(µ,f)
(µ×η,f×g)

(η,g)

(πS ,πA) (πT ,πB)

Hence ⊗ is a product in SgrActl. If 1S be the one element semigroup and
{x} be any singleton set then with respect to the trivial action ι of 1S on
{x}, (1S, ι, {x}) is a terminal object in the category SgrActl. Hence the
lemma follows.

We note that the category of digraphs DGraph as well as the full sub-
category Simp-TDGraph are also monoidal categories. The cross product
of digraphs ‘×’ (cf. Definition 3.18 (ii)) is easily seen to be a bifunctor and
associative on objects up to digraph isomorphisms and any digraph con-
taining one vertex and one directed loop, commonly known as rose with one
petal (R1), is a both sided identity for the cross product.

Definition 6.6. Let (C,⊗C, IC), (D,⊗D, ID) be two monoidal categories. A
monoidal functor between these categories is a functor F : C −→ D together
with

(i) a morphism ϵ : ID −→ F (IC) and
(ii) natural transformations µx,y : F (x) ⊗D F (y) −→ F (x ⊗C y) for all

x, y ∈ Obj(C) satisfying the following conditions:



74 P. Mukherjee, R. Mukherjee, S.K. Sardar

(1) For all objects x, y, z of C, the following diagram commutes.

(F (x)⊗D F (y))⊗D F (z) F (x)⊗D (F (y)⊗D F (z))

F (x⊗C y)⊗D F (z) F (x)⊗D F (y ⊗C z)

F ((x⊗C y)⊗C z) F (x⊗C (y ⊗C z))

∼=

µx,y⊗id id⊗µy,z

µx⊗Cy,z µx,y⊗Cz

∼=

(2) For all x ∈ Obj(C), the following diagrams commute.

ID ⊗D F (x) F (ID)⊗D F (x)

F (x) F (ID ⊗D x)

ϵ⊗id

∼= µID,x

∼=

and

F (x)⊗D ID F (x)⊗D F (ID)

F (x) F (x⊗D ID)

id⊗ϵ

∼= µx,ID

∼=

Moreover if ϵ and all µx,y are isomorphisms then F is called a strong
monoidal functor.

Theorem 6.7. Let (SgrActl,⊗, (1S,ι, {x})) and (Simp−TDGraph,×, R1)
be the respective monoidal categories. Then F is a strong monoidal functor.

Proof. Clearly F(1S,ι, {x})(= G(1S,ι, {x})) is a digraph with only one ver-
tex x and a loop on it. Hence it is isomorphic to R1, the identity with respect
to the bifunctor × in Simp-TDGraph. We denote this isomorphism by ϵ.
Suppose (S, a,A) and (T, b, B) are any two semigroup acts. Proposition
3.19 (i) implies that the digraphs F(S, a,A)×F(T, b, B) and F((S, a,A)⊗
(T, b, B)) are indeed isomorphic (in fact identical). The identity graph iso-
morphism between F(S, a,A)×F(T, b, B) and F((S, a,A)⊗ (T, b, B)) plays
the role of natural transformation µ(S,a,A),(T,b,B). Now it becomes a routine
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matter of verification to show that the diagrams of Definition 6.6 involving
ϵ and µ are commutative.

We conclude this section with some results on the restriction of the
functor F to the full subcategory SF-SgrActl. By virtue of Example 4.12
and Proposition 4.14 it is clear that the image of this restriction is not
a full subcategory of Simp-TDGraph. Let CS-TDGraph be the subcate-
gory of Simp-TDGraph whose objects are of the form F(S, a,A) for some
(S, a,A) ∈ Obj(SF-SgrActl) and morphisms are color sensitive digraph ho-
momorphisms (cf. Definition 4.13).

The graph theoretical result obtained in Theorem 4.16 is connected with
the functor F via the following result.

Theorem 6.8. The restricted functor F : SF-SgrActl −→ CS-TDGraph is
an equivalence of categories and hence these two categories are equivalent.

Proof. By definition of the category CS-TDGraph, F is surjective on objects.
We just need to show that it is faithful and full. Let (S, a,A), (T, b, B) be
any two strongly faithful semigroup acts and (µ, f), (η, g) : (S, a,A) −→
(T, b, B) be two morphism of acts such that F(µ, f) = F(η, g). This implies
f = g. Now for any s ∈ S and a ∈ A, µ(s)f(a) = f(sa) = g(sa) =
η(s)g(a) = η(s)f(a). Hence µ(s) = η(s) since (T, b, B) is a strongly faithful
act. Therefore (µ, f) = (η, g) and F is faithful. Finally from Theorem 4.16,
it follows that F is surjective on morphisms, that is a full functor.

Note 6.9. Since F is an equivalence between the categories SF-SgrActl
and CS-TDGraph hence by [24, Theorem IV.4.1] it follows that F is a
part of an adjoint equivalence and has a left adjoint namely the functor
G: CS-TDGraph −→ SF-SgrActl which maps each action graph to its cor-
responding strongly faithful semigroup act and each color sensitive digraph
homomorphism to the morphism of acts by which it is induced.

In Remark 5.12, we recalled the definition of essentially surjective (dense)
functors. Analogous to this notion, we can define a functor F : C −→ D
to be essentially injective3 if for any A,B ∈ Obj(C), F (A) ∼= F (B) in
D implies that A ∼= B in C. Example 3.15 indicates that in general the
functor F defined from SgrActl to Simp-TDGraph is not an essentially in-
jective functor. Suppose (S, a,A) and (T, b, B) are two strongly faithful
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semigroup acts such that the corresponding action graphs are isomorphic
in the category CS-TDGraph. Then there exist a color sensitive digraph
isomorphism f : G(S, a,A) −→ G(T, b, B). By Theorem 4.15, there is a
semigroup homomorphism µ : S −→ T such that (µ, f) is a morphism of
acts and G(µ, f) = f . Now Since the restricted functor F : SF-SgrActl −→
CS-TDGraph is fully faithful so by [1, Corollary 3.32] F reflects isomor-
phisms and hence (µ, f) : (S, a,A) −→ (T, b, B) is an isomorphism of acts.
We summarize this discussion in terms of the functor F in the following
result.

Proposition 6.10. The functor F : SF-SgrActl −→ CS-TDGraph is essen-
tially injective.

7 Concluding remarks

(1) In this paper we have studied some basic graph theoretic properties
of the action graph in connection with the algebraic properties of a
semigroup act. Vertex transitivity of the action graph of a semigroup
act can be an interesting topic for future study. Other symmetry
conditions like arc transitivity, distance transitivity may also lead to
further research. On the other hand various types of regular and
inverse semigroup acts and corresponding action graphs may provide
scope for interesting future study. In every section we have tried to
establish the categorical connection between the category of semigroup
acts and category of certain digraphs via several results (cf. Remark
5.12, Theorem 6.8). These interconnections may enrich each other’s
theory.

(2) A left semigroup act (S, a,A) gives rise to another directed graph
GC(S, a,A) in a canonical way whose set of vertices is A and the
set of arcs consists of triples (x, s, y) such that a(s, x) = y. This
graph may have multiple arcs and so may not be simple. To study
the relationship of semigroup act (S, a,A) and this canonical digraph
GC(S, a,A) can be a good direction for future work.

(3) A digraph can alternatively be represented as follows:
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Let G be the finite category with two objects:

0 1
s

t

the category of directed graphs is the category of set-valued presheaves
DGraph = [Gop, Set]; thus a digraph X is given by two sets: X0, the
set of vertices and X1, the set of arcs and two maps from X1 to X0:

X1

X0

ts

and a morphism of directed graphs is a natural transformation f =
(f0, f1)

X Y
f=(f0,f1)

which is described by a diagram in Set:

X1 Y1

X0 Y0

f1

ts ts

f0

such that s ◦ f1 = f0 ◦ s and t ◦ f1 = f0 ◦ t. This presentation of the
category DGraph of directed graphs has the advantage to show that
digraphs and their morphisms do form a Grothendieck topos and con-
sequently, in order to develop the theory of digraphs, one can apply all
the concepts related with topos . Moreover if we replace the category
Set by an elementary topos E , then a functor:

Gop EF

is an internal digraph in the topos E . It will be interesting to in-
vestigate as to how the present work can be applied in the study of
such an internal digraph. Keeping in mind this abstraction and the
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fact that fuzzy sets form a quasitopos (a category which is similar to
topos but need not be balanced), it is natural to ask if one can apply
some technologies of the present work to understand what are fuzzy
digraphs, what are semigroup acts for fuzzy sets etc.

(4) Though the category S-Mod (cf. Remark 3.4) and SgrActl are not
the same but both come from semigroup acts. So it is natural to
investigate the faithfulness, fullness, essentially surjectivity etc. for
the counterpart of the functor F (cf. Proposition 3.14) from S-Mod
to DGraph.

It is relevant to note here that S-Mod has some nice categorical prop-
erties viz., it is locally finitely presentable because there is a projective
sketch whose set-models are S-acts. Also there is a semimonad on Set
whose algebras are exactly the S-acts.
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