[1] Balbes, R., Free ternary algebras, Internat. J. Algebra Comput. 10 (2000), 739-749.
[2] Berman, J. and Mukaidono, M., Enumerating fuzzy switching functions and free Kleene algebras, Comput. Math. Appl. 10 (1984), 25-35.
[3] Bia lynicki-Birula, A., Remarks on quasi-Boolean algebras, (Russian summary) Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 615-619, LII-LIII.
[4] Bia lynicki-Birula, A. and Rasiowa, H., On the representation of quasi-Boolean algebras, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 259-261, XXII.
[5] Brignole, D. and Monteiro, A., Caractérisation des algèbres de Nelson par des égalités. I, II, (French) Proc. Japan Acad. 43 (1967), 279-283; 284-285.
[6] Brzozowski, J.A., Some applications of ternary algebras, Automata and formal languages, VIII (Salgótarján, 1996). Publ. Math. Debrecen 54 (1999), 583-599.
[7] Brzozowski, J.A., Lou, J.J., and Neglescu, R., A characterization of finite ternary algebras, Internat. J. Algebra Comput. 7 (1997), 713-721.
[8] Brzozowski, J.A. and Neglescu, R., Duality for three: ternary symmetry in process spaces, in “Theory Is Forever”, Lecture Notes in Comput. Sci. 3113 (2004), 1-14.
[9] Brzozowski, J.A. and Seger, C.H., “Asynchronous circuits”, Monographs in Computer Science, Springer, 1995.
[10] Burmeister, P., ConImp – Ein Programm zur Formalen Begriffsanalyse. In Stumme, G. and Wille, R. (Eds.), “Begriffliche Wissensverarbeitung. Methoden und Anwendungen”, Springer, 2000, 25-56.
[12] Cabrer, L.M. and Priestley, H.A., Coproducts of distributive lattice-based algebras, Algebra Universalis 72 (2014), 251-286.
[13] Clark, D.M. and Davey, B.A., “Natural dualities for the working algebraist”, Cambridge Studies in Advanced Mathematics 57, Cambridge University Press, 1998.
[14] Cornish, W.H. and Fowler, P.R., Coproducts of De Morgan algebras, Bull. Austral. Math. Soc. 16 (1977), 1-13.
[15] Cornish, W.H. and Fowler, P.R., Coproducts of Kleene algebras, J. Austral. Math. Soc. Ser. A. 27 (1979), 209-220.
[16] Craig, A.P.K., Davey, B.A., and Haviar, M., Expanding Belnap: dualities for a new class of default bilattices, Algebra Universalis 81(50) (2020).
[17] Davey, B.A., Free products of bounded distributive lattices, Algebra Universalis 4 (1974), 106-107.
[18] Davey, B.A. and Gair, A., Restricted Priestley dualities and discriminator varieties, Studia Logica 105 (2017), 843-872.
[19] Davey, B.A. and Priestley, H.A., Generalised piggyback dualities and applications to Ockham algebras, Houston J. Math. 13 (1987), 151-198.
[20] Davey, B.A. and Priestley, H.A., Optimal natural dualities. II: General theory, Trans. Amer. Math. Soc. 348 (1996), 3673-3711.
[21] Davey, B.A. and Priestley, H.A., “Introduction to Lattices and Order”, 2nd edn. Cambridge University Press, 2002.
[22] Davey, B.A. and Werner, H., Dualities and equivalences for varieties of algebras, in Huhn, A.P. and Schmidt, E.T. (Eds), “Contributions to Lattice Theory” (Szeged, 1980), Colloq. Math. Soc. János Bolyai 33, North-Holland, Amsterdam, 1983, 101-275.
[23] Ésik, Z., A Cayley Theorem for Ternary Algebras, Int. J. Algebra and Comput. 8 (1998), 31–316.
[24] Gaitán, H., Endomorphisms of finite regular Kleene lattices, Algebra Universalis 67 (2012), 189-204.
[25] Gotô, M., Application of three-valued logic to construct the theory of relay networks, Proceedings of the Joint Meeting of IEE, IECE, and I. of Illumination E. of Japan, 1948 (Japanese).
[26] Gotô, M., Application of logical mathematics to the theory of relay networks, Journal of the Institute of Electrical Engineers of Japan 69 (1949), 125-132 (Japanese).
[27] Kalman, J.A., Lattices with involution, Trans. Amer. Math Soc. 87 (1958), 485-491.
[28] Kleene, S.C., On notation for ordinal numbers, J. Symbolic Logic 3 (1938), 150-155.
[29] Kleene, S.C., “Introduction to Metamathematics”, Van Nostrand, 1952.
[31] Moisil, Gr.C., Recherches sur l’algèbre de la logique, Ann. Sci. Univ. Jassy 22 (1935), 1-118.
[32] Mukaidono, M., On the B-ternary logic function—A ternary logic considering ambiguity, Trans. IECE, Japan, 55-D(6) (1972), 355-362. English translation in Systems, Computer, Controls 3 (1972), 27-36.
[33] Mukaidono, M., Regular ternary logic functions—ternary logic functions suitable for treating ambiguity, IEEE Trans. on Computers C-35 (1986), 179-183.
[34] Muller, D.E., Treatment of transition signals in electronic switching circuits by algebraic methods, IRE Trans. on Eletronic Computers EC-8 (1959), 401.
[35] Negulescu, R., Process spaces, Research Report CS-95-48, University of Waterloo, Waterloo, December 1995.
[36] Negulescu, R., Process Spaces, CONCUR 2000–Concurrency theory (University Park, PA), Lecture Notes in Comput. Sci., 1877 (2000), 199-213.
[37] Preparata, F.P. and Yeh, R.T., Continuously valued logic, J. Comput. System Sci. 6 (1972), 397-418.
[38] Priestley, H.A., Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.
[39] Priestley, H.A., Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507-530.
[40] Ganter, B. and Wille, R., “Formal Concept Analysis: Mathematical Foundations”, translated by C. Franzke, Springer, 1999.
[41] Yoeli, M. and Rinon, S., Application of ternary algebra to the study of static hazards, J. ACM 11 (1964), 84-97.