$(m,n)$-Hyperideals in Ordered Semihypergroups

Document Type: Research Paper

Authors

1 Aligarh Muslim University

2 Yazd University

Abstract

In this paper, first we introduce the notions of an $(m,n)$-hyperideal and a generalized $(m,n)$-hyperideal in an ordered semihypergroup, and then, some properties of these hyperideals are studied. Thereafter, we characterize $(m,n)$-regularity, $(m,0)$-regularity, and $(0,n)$-regularity of an ordered semihypergroup in terms of its $(m,n)$-hyperideals, $(m,0)$-hyperideals and $(0,n)$-hyperideals, respectively. The relations ${_m\mathcal{I}}, \mathcal{I}_n, \mathcal{H}_m^n$, and $\mathcal{B}_m^n$ on an ordered semihypergroup are, then, introduced. We prove that $\mathcal{B}_m^n \subseteq \mathcal{H}_m^n$ on an ordered semihypergroup and provide a condition under which equality holds in the above inclusion. We also show that the $(m,0)$-regularity [$(0,n)$-regularity] of an element induce the $(m,0)$-regularity [$(0,n)$-regularity] of the whole $\mathcal{H}_m^n$-class containing that element as well as the fact that $(m,n)$-regularity and $(m,n)$-right weakly regularity of an element induce the $(m,n)$-regularity and $(m,n)$-right weakly regularity of the whole $\mathcal{B}_m^n$-class and $\mathcal{H}_m^n$-class containing that element, respectively.

Keywords


[1] Alimov, N.G., On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Math. 14 (1950), 569-576.
[2] Clifford, A.H., Naturally totally ordered commutative semigroups, Amer. J. Math. 76 (1954), 631-646.
[3] Clifford, A.H., Totally ordered commutative semigroups, Bull. Amer. Math. Soc. (N.S.) 64 (1958), 305-316.
[4] Clifford, A.H., Ordered commutative semigroups of the second kind, Proc. Amer. Math. Soc. 9 (1958), 682-687.
[5] Conrad, P., Ordered semigroups, Nagoya Math. J. 16 (1960), 51-64.
[6] Changphas, T. and Davvaz, B., Bi-hyperdeals and quasi-hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math. 35 (2015), 493-508.
[7] Changphas, T. and Davvaz, B., Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math. 33 (2014), 425-432.
[8] Davvaz, B., “Semihypergroup Theory”, Elsevier, 2016.
[9] Davvaz, B., Some results on congruences in semihypergroups, Bull. Malays. Math. Sci. Soc. 23 (2000), 53-58.
[10] Davvaz, B. and Leoreanu-Fotea, V., Binary relations on ternary semihypergroups, Comm. Algebra 38 (2010), 3621-3636.
[11] Hasankhani, A., Ideals in a semihypergroup and Green’s relations, Ratio Math. 13 (1999), 29-36.
[12] Hila, K., Davvaz, B., and Naka, K., On quasi-hyperideals in semihypergroups, Comm. Algebra 39 (2011), 4183-4194.
[13] Hion, Y.V., Ordered semigroups, Izv. Akad. Nauk SSSR Ser. Math. 21 (1957), 209- 222.
[14] Heidari, D. and Davvaz, B., On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73(2) (2011), 85-96.
[15] Kehayopulu, N., On regular, regular duo ordered semigroups, Pure Math. Appl., 5(2) (1994), 161-176.
[16] Lajos, S., Generalized ideals in semigroups, Acta Sci. Math. (Szeged) 22 (1961), 217-222.
[17] Lajos, S., Notes on (m; n)-ideals I, Proc. Japan Acad. Ser. A Math. Sci. 39 (1963), 419-421.
[18] Lajos, S., Notes on (m; n)-ideals II, Proc. Japan Acad. Ser. A Math. Sci. 40 (1964), 631-632.
[19] Lajos, S., Notes on (m; n)-ideals III, Proc. Japan Acad. Ser. A Math. Sci. 41 (1965), 383-385.
[20] Mahboob, A., Khan, N.M., and Davvaz, B., Structural properties for (m; n)-quasihyperideals in ordered semihypergroups, Tbilisi Math. J. 11(4) (2018), 145-163.
[21] Marty, F., Sur une generalization de la notion de group, Proceedings of the 8th Congress des Mathematiciens Scandinaves (1934), 45-49.
[22] Omidi, S. and Davvaz, B., A short note on the relation N in ordered semihypergroups, Gazi Univ. J. Sci. 29(3) (2016), 659-662.
[23] Pibaljommee, B. and Davvaz, B., On fuzzy bi-hyperideals in ordered semihypergroups, J. Intell. Fuzzy Syst. 28 (2015), 2141-2148.
[24] Pibaljommee, B., Wannatong, K., and Davvaz, B., An investigation on fuzzy hyperideals of ordered semihypergroups, Quasigroups Related Systems 23 (2015), 297-308.
[25] Tang, J., Davvaz, B., and Luo, Y.F., Hyperfilters and fuzzy hyperfilters of ordered semihypergroups, J. Intell. Fuzzy Syst. 29(1) (2015), 75-84.
[26] Tang, J., Davvaz, B., and Xie, X.Y., An investigation on hyper S-posets over ordered semihypergroups, Open Math. 15 (2017), 37-56.