# $(m, n)$-Hyperideals in ordered semihypergroups 

A. Mahboob*, N.M. Khan, and B. Davvaz


#### Abstract

In this paper, first we introduce the notions of an $(m, n)$ hyperideal and a generalized ( $m, n$ )-hyperideal in an ordered semihypergroup, and then, some properties of these hyperideals are studied. Thereafter, we characterize ( $m, n$ )-regularity, $(m, 0)$-regularity, and $(0, n)$-regularity of an ordered semihypergroup in terms of its ( $m, n$ )-hyperideals, ( $m, 0$ )-hyperideals and $(0, n)$-hyperideals, respectively. The relations ${ }_{m} \mathcal{I}, \mathcal{I}_{n}, \mathcal{H}_{m}^{n}$, and $\mathcal{B}_{m}^{n}$ on an ordered semihypergroup are, then, introduced. We prove that $\mathcal{B}_{m}^{n} \subseteq \mathcal{H}_{m}^{n}$ on an ordered semihypergroup and provide a condition under which equality holds in the above inclusion. We also show that the ( $m, 0$ )-regularity $[(0, n)$ regularity] of an element induce the ( $m, 0$ )-regularity [ $(0, n)$-regularity] of the whole $\mathcal{H}_{m}^{n}$-class containing that element as well as the fact that $(m, n)$ regularity and $(m, n)$-right weakly regularity of an element induce the $(m, n)$ regularity and $(m, n)$-right weakly regularity of the whole $\mathcal{B}_{m}^{n}$-class and $\mathcal{H}_{m}^{n}{ }^{-}$ class containing that element, respectively.


[^0]
## 1 Introduction and preliminaries

By an ordered semigroup, we mean an algebraic structure ( $S, \cdot \leq$ ), which satisfies the following conditions: (1) $S$ is a semigroup with respect to the multiplication "."; (2) $S$ is a partially ordered set by $\leq$; (3) if $a$ and $b$ are elements of $S$ such that $a \leq b$, then $a c \leq b c$ and $c a \leq c b$ for all $c \in S$. Many authors, especially Alimov [1], Clifford [2-4], Hion [13], Conrad [5], and Kehayopulu [15] studied such semigroups with some restrictions.

In 1934, Marty [21] introduced the concept of a hyperstructure and defined hypergroup. Later on several authors studied hyperstructure in various algebraic structures such as rings, semirings, semigroups, ordered semigroups, $\Gamma$-semigroups and Ternary semigroups, etc. The concept of a semihypergroup is a generalization of the concept of a semigroup and many classical notions such as of ideals, quasi-ideals and bi-ideals defined in semigroups and regular semigroups have been generalized to semihypergroups (see $[8,9]$ for other related notions and results on semihypergroups). In [14], Heidari and Davvaz introduced the notion of an ordered semihypergroup as a generalization of the notion of an ordered semigroup. Davvaz et al. in $[6,7,14,22,23,25,26]$ studied some properties of hyperideals and bihyperideals in ordered semihypergroups. Lajos [16] introduced the concept of ( $m, n$ )-ideals in semigroups (see also [17-19]). In [12], the authors defined the notion of an ( $m, n$ )-quasi-hyperideal in a semihypergroup and investigated several properties of these $(m, n)$-quasi-hyperideals.

A hyperoperation on a non-empty set $H$ is a map $\circ: H \times H \rightarrow \mathcal{P}^{*}(H)$ where $\mathcal{P}^{*}(H)=\mathcal{P}(H) \backslash\{\emptyset\}$ (the set of all non-empty subsets of $H$ ). In such a case, $H$ is called a hypergroupoid. Let $H$ be a hypergroupoid and $A, B$ be any non-empty subsets of $H$. Then

$$
A \circ B=\bigcup_{a \in A, b \in B} a \circ b
$$

We shall write, in whatever follows, $A \circ x$ instead of $A \circ\{x\}$ and $x \circ A$ instead of $\{x\} \circ A$, for any $x \in H$. Also, for simplicity, throughout the paper, we shall write $A^{n}$ for $A \circ A \circ \cdots \circ A(n-$ copies of $A)$ for any $n \in \mathbb{Z}^{+}$. Also the integers $m, n$ will stand for positive integers throughout the paper until and unless otherwise specified. Moreover, the hypergroupoid $H$ is called a semihypergroup if, for all $x, y, z \in H$,

$$
(x \circ y) \circ z=x \circ(y \circ z)
$$

that is,

$$
\bigcup_{u \in x \circ y} u \circ z=\bigcup_{v \in y \circ z} x \circ v
$$

A non-empty subset $T$ of a semihypergroup $H$ is called a subsemihypergroup of $H$ if $T \circ T \subseteq T$.

Let $H$ be a non-empty set, the triplet $(H, \circ, \leq)$ is called an ordered semihypergroup if $(H, \circ)$ is a semihypergroup and $(H, \leq)$ is a partially ordered set such that

$$
x \leq y \Rightarrow x \circ z \leq y \circ z \text { and } z \circ x \leq z \circ y
$$

for all $x, y, z \in H$. Here, if $A$ and $B$ are non-empty subsets of $H$, then we say that $A \leq B$ if for every $a \in A$ there exists $b \in B$ such that $a \leq b$.

Let $H$ be an ordered semihypergroup. For a non-empty subset $A$ of $H$, we denote $(A]=\{x \in H \mid x \leq a$ for some $a \in A\}$. A non-empty subset $A$ of $H$ is called idempotent if $A=(A \circ A]$. A non-empty subset $A$ of $H$ is called left (right)-hyperideal [7] of $H$ if $H \circ A \subseteq A(A \circ H \subseteq A)$ and $(A] \subseteq A$. A non-empty subset $J$ of $H$ is called a hyperideal of $H$ if $J$ is both a left hyperideal and a right hyperideal of $H$. A subsemihypergroup (nonempty subset) $B$ of an ordered semihypergroup $H$ is called a bi-hyperideal (generalized bi-hyperideal) of $H$ if $B \circ H \circ B \subseteq B$ and $(B] \subseteq B$. An ordered semihypergroup $H$ is called regular (left-regular, right-regular) [7] if for each $x \in H, x \in(x \circ H \circ x](x \in(H \circ x \circ x], x \in(x \circ x \circ H])$.

Lemma 1.1. [7] Let $H$ be an ordered semihypergroup and $A, B$ be any non-empty subsets of $H$. Then the following conditions hold:
(i) $A \subseteq(A]$;
(ii) $A \subseteq B \Rightarrow(A] \subseteq(B]$;
(iii) $(A] \circ(B] \subseteq(A \circ B]$;
(iv) $((A] \circ(B]]=(A \circ B]$;
(v) $(A] \cup(B]=(A \cup B]$.

## 2 ( $m, 0$ )-hyperideals, ( $0, n$ )-hyperideals and ( $m, n$ )-hyperideals in ordered semihypergroups

In this section, the notions of $(m, n)$-hyperideals and generalized $(m, n)$ hyperideals in ordered semihypergroups are introduced. Moreover, important some properties of these hyperideals are studied.

Definition 2.1. Let $H$ be an ordered semihypergroup and $m, n$ be the positive integers. Then a subsemihypergroup (respectively, non-empty subset) $A$ of $H$ is called an (respectively, generalized) $(m, n)$-hyperideal of $H$ if
(i) $A^{m} \circ H \circ A^{n} \subseteq A$; and
(ii) $(A] \subseteq A$.

Note that in Definition 2.1, if $m=1=n$, then $A$ is called a (generalized) bi-hyperideal of $H$. Moreover, a (generalized) bi-hyperideal of an ordered semihypergroup $H$ is an (generalized) $(m, n)$-hyperideal of $H$ for all positive integers $m$ and $n$. It is clear that, for positive integers $m$ and $n$, the notion of (generalized) $(m, n)$-hyperideal of $H$ is a generalization of the notion of (generalized) bi-hyperideal of $H$. The following example shows that a generalized $(m, n)$-hyperideal of $H$ need not be an $(m, n)$-hyperideal and generalized bi-hyperideal of $H$.

Example 2.2. Let $H=\{a, b, c, d\}$. Define the hyperoperation $\circ$ and order $\leq$ on $H$ as follows:

| $\circ$ | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | $\{a\}$ | $\{a\}$ | $\{a\}$ | $\{a\}$ |
| $b$ | $\{a\}$ | $\{a\}$ | $\{a\}$ | $\{a\}$ |
| $c$ | $\{a\}$ | $\{a\}$ | $\{a\}$ | $\{a, b\}$ |
| $d$ | $\{a\}$ | $\{a\}$ | $\{a, b\}$ | $\{a, b, c\}$ |
| $\leq:=\{(a, a),(b, b),(c, c),(d, d),(a, b)\}$. |  |  |  |  |

The covering relation $\prec$ and the figure of $H$ are as follows:


Then $H$ is an ordered semihypergroup. The subset $\{a, d\}$ of $H$ is a generalized $(m, n)$-hyperideal of $H$ for all integers $m, n \geq 2$ which is neither an ( $m, n$ )-hyperideal nor a generalized bi-hyperideal of $H$.

Definition 2.3. [20] Let $H$ be an ordered semihypergroup and $m, n$ be positive integers. Then a subsemihypergroup $A$ of $H$ is called an $(m, 0)$ hyperideal (respectively, $(0, n)$-hyperideal) of $H$ if
(i) $A^{m} \circ H \subseteq A$ (respectively, $H \circ A^{n} \subseteq A$ ); and
(ii) $(A] \subseteq A$.

In Definition 2.3, if $m=1=n$, then $A$ is called a right hyperideal (left hyperideal) of $H$. Clearly, each right hyperideal (respectively, left hyperideal) of $H$ is an ( $m, 0$ )-hyperideal for each positive integer $m$ (respectively, $(0, n)$-hyperideal for each positive integer $n$ ), that is, the notion of an ( $m, 0$ )-hyperideal $((0, n)$-hyperideal) of $H$ is a generalization of the notion of a right hyperideal (respectively, left hyperideal) of $H$. Conversely, an ( $m, 0$ )-hyperideal (respectively, $(0, n)$-hyperideal) of $H$ need not be a right hyperideal (respectively, left hyperideal) of $H$. We illustrate it by the following example.

Example 2.4. Let $H=\{a, b, c, d\}$. Define the hyperoperation $\circ$ and order $\leq$ on $H$ as follows:

| $\circ$ | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | $\{a\}$ | $\{a\}$ | $\{a\}$ | $\{a\}$ |
| $b$ | $\{a\}$ | $\{a\}$ | $\{a\}$ | $\{a\}$ |
| $c$ | $\{a\}$ | $\{a\}$ | $\{a, b\}$ | $\{a, b\}$ |
| $d$ | $\{a\}$ | $\{a\}$ | $\{a, b\}$ | $\{a\}$ |

$$
\leq:=\{(a, a),(b, b),(c, c),(d, d),(a, b),(a, c)\}
$$

The covering relation $\prec$ and the figure of $H$ are as follows:

$$
\prec:=\{(a, b),(a, c)\}
$$



Then $H$ is an ordered semihypergroup. It is easy to verify that the subset $A=\{a, d\}$ of $H$ is an $(m, 0)$-hyperideal and a $(0, n)$-hyperideal of $H$ for all integers $m, n \geq 2$, but it is neither a right hyperideal nor a left hyperideal of $H$.

Remark 2.5. Let $H$ be an ordered semihypergroup, $m \geq 2$ be any positive integer and $B$ be any non-empty subset of $H$. Then $\left(B^{m} \cup B \circ H \circ B^{m}\right.$ ) is a (generalized) bi-hyperideal of $H$. Indeed, $\left(B^{m} \cup B \circ H \circ B^{m}\right] \circ\left(B^{m} \cup B \circ H \circ\right.$ $\left.B^{m}\right] \subseteq\left(\left(B^{m} \cup B \circ H \circ B^{m}\right) \circ\left(B^{m} \cup B \circ H \circ B^{m}\right)\right]=\left(B^{m} \circ B^{m} \cup B^{m} \circ B \circ H \circ B^{m} \cup\right.$ $\left.B \circ H \circ B^{m} \circ B^{m} \cup B \circ H \circ B^{m} \circ B \circ H \circ B^{m}\right] \subseteq\left(B \circ H \circ B^{m}\right] \subseteq\left(B^{m} \cup B \circ H \circ B^{m}\right]$ and $\left(B^{m} \cup B \circ H \circ B^{m}\right] \circ H \circ\left(B^{m} \cup B \circ H \circ B^{m}\right] \subseteq\left(B^{m} \circ H \cup B \circ H \circ B^{m} \circ\right.$ $H] \circ\left(B^{m} \cup B \circ H \circ B^{m}\right] \subseteq\left(B^{m} \circ H \circ B^{m} \cup B^{m} \circ H \circ B \circ H \circ B^{m} \cup B \circ H \circ B^{m} \circ\right.$ $\left.H \circ B^{m} \cup B \circ H \circ B^{m} \circ H \circ B \circ H \circ B^{m}\right] \subseteq\left(B \circ H \circ B^{m}\right] \subseteq\left(B^{m} \cup B \circ H \circ B^{m}\right]$.

Note that in Remark 2.5, if $m=1$, then $(B \cup B \circ H \circ B)$ is a generalized bi-hyperideal of $H$ which is not a bi-hyperideal of $H$. Thus $\left(B^{m} \cup B \circ H \circ B^{m}\right)$ is a generalized bi-hyperideal of $H$ for each positive integer $m$.

Theorem 2.6. Let $B$ be a non-empty subset of an ordered semihypergroup $H$ and let $m \geq 2$ be any positive integer. Then the following are equivalent:
(i) $B$ is a $(1, m)$-hyperideal of $H$;
(ii) $B$ is a left hyperideal of some bi-hyperideals of $H$;
(iii) $B$ is a bi-hyperideal of some left hyperideals of $H$;
(iv) $B$ is a $(0, m)$-hyperideal of some right hyperideals of $H$;
(v) $B$ is a right hyperideal of some $(0, m)$-hyperideals of $H$.

Proof. (i) $\Rightarrow$ (ii) Let $B$ be a $(1, m)$-hyperideal of $H$. So $B \circ B \subseteq B,(B] \subseteq B$ and $B \circ H \circ B^{m} \subseteq B$. Therefore, $\left(B^{m} \cup B \circ H \circ B^{m}\right] \circ B=\left(B^{m} \cup B \circ H \circ\right.$ $\left.B^{m}\right] \circ(B] \subseteq\left(B^{m+1} \cup B \circ H \circ B^{m+1}\right] \subseteq\left(B^{m+1} \cup B \circ H \circ B^{m}\right] \subseteq(B]=B$. If $b \in B$, then $h \in\left(B^{m} \cup B \circ H \circ B^{m}\right]$ such that $h \leq b$. As $h \in H$ and $B$ is a $(1, m)$-hyperideal of $H, h \in B$. Hence, $B$ is a left hyperideal of the bi-hyperideal $\left(B^{m} \cup B \circ S \circ B^{m}\right]$ of $H$.
(ii) $\Rightarrow$ (iii) Let $B$ be a left hyperideal of a bi-hyperideal $A$ of $H$. So $B \subseteq A, A \circ B \subseteq B$ and $A \circ H \circ A \subseteq A$. Therefore, $B \circ B \subseteq A \circ B \subseteq B$ and $B \circ(B \cup H \circ B] \circ B=(B] \circ(B \cup H \circ B] \circ(B] \subseteq(B \circ(B \cup H \circ B)] \circ(B] \subseteq$ $(B \circ(B \cup H \circ B) \circ B] \subseteq\left(B^{3} \cup B^{2} \circ H \circ B^{2}\right] \subseteq\left(A^{2} \circ B \cup A \circ A \circ H \circ A \circ B\right] \subseteq$ $(A \circ B \cup A \circ A \circ B] \subseteq(B \cup A \circ B] \subseteq(B]=B$. Let $b \in B, h \in(B \cup H \circ B]$ such that $h \leq b$. As $b \in B \subseteq A, b \in A$. So $h \in A$. Thus $h \in B$. Hence, $B$ is a bi-hyperideal of the left hyperideal $(B \cup H \circ B]$ of $H$.
(iii) $\Rightarrow$ (iv) Let $B$ be a bi-hyperideal of a left hyperideal $L$ of $H$. Then $B \subseteq L, B \circ L \circ B \subseteq B$ and $H \circ L \subseteq L$. Therefore, $(B \cup B \circ H] \circ B^{m} \subseteq$ $(B \cup B \circ H] \circ\left(B^{m}\right] \subseteq\left(B^{m+1} \cup B \circ H \circ B^{m}\right] \subseteq\left(B \cup B \circ\left(H \circ B^{m-2}\right) \circ L \circ B\right] \subseteq$ $(B \cup B \circ H \circ L \circ B]=(B \cup B \circ(H \circ L) \circ B] \subseteq(B \cup B \circ L \circ B]=(B]=B$. Let $b \in B, h \in(B \cup B \circ H]$ such that $h \leq b$. As $B \subseteq L, b \in L$. So $h \in L$ and, thus, $h \in B$. Hence, $B$ is a $(0, m)$-hyperideal of the right hyperideal $(B \cup B \circ H]$ of $H$.
(iv) $\Rightarrow$ (v) Let $B$ be a ( $0, m$ )-hyperideal of a right hyperideal $R$ of $H$. So $B \subseteq R, R \circ B^{m} \subseteq B$ and $R \circ H \subseteq R$. Therefore, $B \circ\left(B \cup H \circ B^{m}\right] \subseteq(B] \circ(B \cup$ $\left.H \circ B^{m}\right] \subseteq\left(B^{2} \cup B \circ H \circ B^{m}\right] \subseteq\left(B \cup R \circ H \circ B^{m}\right] \subseteq\left(B \cup R \circ B^{m}\right]=(B]=B$. Let $b \in B, h \in\left(B \cup H \circ B^{m}\right]$ be such that $h \leq b$. As $B \subseteq R, b \in R$. So $h \in R$ which implies that $h \in B$. Hence, $B$ is a right hyperideal of the ( $0, m$ )-hyperideal $\left(B \cup H \circ B^{m}\right.$ ] of $H$.
(v) $\Rightarrow$ (i) Let $B$ be a right hyperideal of a ( $0, m$ )-hyperideal $A$ of $H$. Thus $B \subseteq A, B \circ A \subseteq B$ and $H \circ A^{m} \subseteq A$. Therefore, $B \circ H \circ B^{m} \subseteq$ $B \circ H \circ A^{m} \subseteq B \circ A \subseteq B$. Let $b \in B, h \in H$ be such that $h \leq b$. As $B \subseteq R$, we have $b \in R$. Therefore, $h \in R$ and, thus, $h \in B$. Hence, $B$ is a $(1, m)$-hyperideal of $H$.

Definition 2.7. Let $H$ be an ordered semihypergroup, $m, n$ be positive integers and $A$ be any (generalized) ( $m, n$ )-hyperideal of $H$. Then $A$ is said to be a minimal (generalized) $(m, n)$-hyperideal of $H$ if for every (generalized) ( $m, n$ )-hyperideal $B$ of $H, B \subseteq A$ implies $B=A$.

Similarly, a minimal $(m, 0)$-hyperideal and a minimal $(0, n)$-hyperideal of $H$ may be defined.

Lemma 2.8. Let $H$ be an ordered semihypergroup, $m \geq 2$ be any positive integer and $B$ be a non-empty subset of $H$. Then $B$ is a minimal (generalized) $(m, m-1)$-hyperideal of $H$ if and only if $B$ is a minimal (generalized) bi-hyperideal of $H$.

Proof. Let $H$ be an ordered semihypergroup and $B$ be a minimal ( $m, m-1$ )hyperideal of $H$. Since $\left(B^{m} \circ H \circ B^{m-1}\right] \circ\left(B^{m} \circ H \circ B^{m-1}\right] \subseteq\left(B^{m} \circ H \circ\right.$ $\left.\left.B^{m-1}\right],\left(\left(B^{m} \circ H \circ B^{m-1}\right]\right)^{m} \circ H \circ\left(\left(B^{m} \circ H \circ B^{m-1}\right]\right)^{m-1}\right] \subseteq\left(B^{m} \circ H \circ B^{m-1}\right]$ and $\left(\left(B^{m} \circ H \circ B^{m-1}\right]\right] \subseteq\left(B^{m} \circ H \circ B^{m-1}\right]$. Therefore, $\left(B^{m} \circ H \circ B^{m-1}\right]$ is a ( $m, m-1$ )-hyperideal of $H$ such that $\left(B^{m} \circ H \circ B^{m-1}\right] \subseteq B$. So by minimality of $(m, m-1)$-hyperideal $B$ of $H,\left(B^{m} \circ H \circ B^{m-1}\right]=B$. Now $B \circ B=$
$\left(B^{m} \circ H \circ B^{m-1}\right] \circ\left(B^{m} \circ H \circ B^{m-1}\right] \subseteq\left(\left(B^{m} \circ H \circ B^{m-1}\right) \circ\left(B^{m} \circ H \circ B^{m-1}\right)\right] \subseteq$ $\left(B^{m} \circ H \circ B^{m-1}\right]=B$ and $B \circ H \circ B=\left(B^{m} \circ H \circ B^{m-1}\right] \circ H \circ\left(B^{m} \circ H \circ B^{m-1}\right] \subseteq$ $\left(B^{m} \circ H \circ B^{m-1}\right]=B$. Therefore, $B$ is bi-hyperideal of $H$. It remains to show that $B$ is a minimal bi-hyperideal of $H$, so assume that $A$ is any bi-hyperideal of $H$ contained in $B$. Therefore, $A$ is $(m, m-1)$-hyperideal of $H$. Since $B$ is a minimal $(m, m-1)$-hyperideal of $H, B=A$. Hence, $B$ is a minimal bihyperideal of $H$. For the converse, assume that $B$ is a minimal bi-hyperideal of $H$. As $B^{m} \circ H \circ B^{m-1}=B \circ\left(B^{m-1} \circ H \circ B^{m-2}\right) \circ B \subseteq B \circ H \circ B \subseteq B, B$ is an $(m, m-1)$-hyperideal of $H$. To show that $B$ is a minimal $(m, m-1)$ hyperideal of $H$, let $A$ be any $(m, m-1)$-hyperideal of $H$ such that $A \subseteq B$. As $\left(A^{m} \circ H \circ A^{m-1}\right] \circ\left(A^{m} \circ H \circ A^{m-1}\right] \subseteq\left(\left(A^{m} \circ H \circ A^{m-1}\right) \circ\left(A^{m} \circ H \circ\right.\right.$ $\left.\left.A^{m-1}\right)\right]=\left(A^{m} \circ\left(H \circ A^{m-1} \circ A^{m} \circ H\right) \circ A^{m-1}\right] \subseteq\left(A^{m} \circ H \circ A^{m-1}\right]$ and $\left(A^{m} \circ H \circ A^{m-1}\right] \circ H \circ\left(A^{m} \circ H \circ A^{m-1}\right] \subseteq\left(\left(A^{m} \circ H \circ A^{m-1}\right) \circ H \circ\left(A^{m} \circ\right.\right.$ $\left.\left.H \circ A^{m-1}\right)\right]=\left(A^{m} \circ\left(H \circ A^{m-1} \circ H \circ A^{m} \circ H\right) \circ A^{m-1}\right] \subseteq\left(A^{m} \circ H \circ A^{m-1}\right]$, $\left(A^{m} \circ H \circ A^{m-1}\right.$ ] is a bi-hyperideal of $H$. Since $B$ is a minimal bi-hyperideal of $H$ and $\left(A^{m} \circ H \circ A^{m-1}\right] \subseteq B,\left(A^{m} \circ H \circ A^{m-1}\right]=B$. As $\left(A^{m} \circ H \circ A^{m-1}\right] \subseteq A$, $B \subseteq A$. Now, as $A \subseteq B$, we have $A=B$. Hence, $B$ is a minimal $(m, m-1)$ hyperideal of $H$.

Theorem 2.9. Let $H$ be an ordered semihypergroup and $\left\{A_{i} \mid i \in I\right\}$ be a set of $(m, n)$-hyperideals of $H$. If $\bigcap_{i \in I} A_{i} \neq \emptyset$, then $\bigcap_{i \in I} A_{i}$ is an $(m, n)$-hyperideal of $H$.

Proof. Assume that $\bigcap_{i \in I} A_{i} \neq \emptyset$. Let $x, y \in \bigcap_{i \in I} A_{i}$. Then, $x, y \in A_{i}$ for each $i \in I$. As for each $i \in I, A_{i}$ is an $(m, n)$-hyperideal, $x \circ y \subseteq A_{i}$. Therefore, $x \circ y \subseteq \bigcap_{i \in I} A_{i}$. Thus, $\bigcap_{i \in I} A_{i}$ is a subsemihypergroup of $H$. Next we show that $\left(\bigcap_{i \in I} A_{i}\right)^{m} \circ H \circ\left(\bigcap_{i \in I} A_{i}\right)^{n} \subseteq \bigcap_{i \in I} A_{i}$. We have

$$
\begin{aligned}
& \left(\bigcap_{i \in I} A_{i}\right)^{m} \circ H \circ\left(\bigcap_{i \in I} A_{i}\right)^{n} \\
& \subseteq\left(A_{i}\right)^{m} \circ H \circ\left(A_{i}\right)^{n} \quad\left(\text { as } \bigcap_{i \in I} A_{i} \subseteq A_{i}, \forall i \in I\right) \\
& \subseteq A_{i} \quad\left(\text { as } A_{i} \text { 's are }(m, n) \text {-hyperideals }\right)
\end{aligned}
$$

Thus $\left(\bigcap_{i \in I} A_{i}\right)^{m} \circ H \circ\left(\bigcap_{i \in I} A_{i}\right)^{n} \subseteq \bigcap_{i \in I} A_{i}$. Finally, we show that $\left(\bigcap_{i \in I} A_{i}\right] \subseteq \bigcap_{i \in I} A_{i}$.
Let $a \in \bigcap_{i \in I} A_{i}, h \in H$ such that $h \leq a$. As $a \in A_{i}$ for each $i \in I$ and $A_{i}$ 's
are ( $m, n$ )-hyperideals, $h \in A_{i}$ for each $i \in I$. Therefore, $h \in \bigcap_{i \in I} A_{i}$, as required.

Theorem 2.10. [20] Let $H$ be an ordered semihypergroup. Then the following conditions hold:
(i) Let $\left\{L_{i} \mid i \in I\right\}$ be a set of $(m, 0)$-hyperideals of $H$. If $\bigcap_{i \in I} L_{i} \neq \emptyset$, then $\bigcap_{i \in I} L_{i}$ is an $(m, 0)$-hyperideal of $H$.
(ii) Let $\left\{R_{i} \mid i \in I\right\}$ be a set of $(0, n)$-hyperideals of $H$. If $\bigcap_{i \in I} R_{i} \neq \emptyset$, then $\bigcap_{i \in I} R_{i}$ is a $(0, n)$-hyperideal of $H$.

Let $H$ be an ordered semihypergroup and $A$ be any non-empty subset of $H$. We denote $\mathcal{P}=\{J \mid J$ is an $(m, n)$-hyperideal of $H$ containing $A\}$. Clearly, $\mathcal{P} \neq \emptyset$ since $H \in \mathcal{P}$. Let $[A]_{m, n}=\bigcap_{J \in \mathcal{P}} J$. As $A \subseteq J$ for each $J \in \mathcal{P},[A]_{m, n} \neq \emptyset$. By Theorem 1.9, $[A]_{m, n}$ is an $(m, n)$-hyperideal of $H$ containing $A$. The $(m, n)$-hyperideal $[A]_{m, n}$ is called the $(m, n)$-hyperideal of $H$ generated by $A$. Similarly, $[A]_{m, 0}$ and $[A]_{0, n}$ are called ( $m, 0$ )-hyperideal and $(0, n)$-hyperideal of $H$ generated by $A$, respectively.

Theorem 2.11. Let $H$ be an ordered semihypergroup and $A$ be a non-empty subset of $H$. Then

$$
[A]_{m, n}=\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]
$$

for any positive integers $m, n$.
Proof. Clearly $\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \neq \emptyset$. Now we have

$$
\begin{align*}
& \left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \circ\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right) \circ\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right)\right] \\
& =\left(\left(\bigcup_{i=1}^{m+n} A^{i}\right) \circ\left(\bigcup_{i=1}^{m+n} A^{i}\right) \cup\left(\bigcup_{i=1}^{m+n} A^{i}\right) \circ A^{m} \circ H \circ A^{n} \cup\left(A^{m} \circ H \circ A^{n}\right) \circ\left(\bigcup_{i=1}^{m+n} A^{i}\right)\right. \\
& \left.\cup\left(A^{m} \circ H \circ A^{n}\right) \circ\left(A^{m} \circ H \circ A^{n}\right)\right] \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} A^{i}\right) \circ\left(\bigcup_{i=1}^{m+n} A^{i}\right) \cup A^{m} \circ H \circ A^{n}\right] \tag{1}
\end{align*}
$$

Let $x \in\left(\bigcup_{i=1}^{m+n} A^{i}\right) \circ\left(\bigcup_{i=1}^{m+n} A^{i}\right)$. Then, $x \in z_{1} \circ z_{2}$ for some $z_{1}, z_{2} \in$
$\bigcup_{i=1}^{m+n} A^{i}$. Then, $z_{1}=A^{p}, z_{2}=A^{q}$ for some $1<p, q \leq m+n$. There are two cases arising. If $p+q \leq m+n$, then $z_{1} \circ z_{2} \subseteq \bigcup_{i=1}^{m+n} A^{i}$. If $m+n \leq p+q$, then $z_{1} \circ z_{2} \subseteq A^{m} \circ H \circ A^{n}$. Therefore, in both cases $z_{1} \circ z_{2} \subseteq \bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}$. As $x \in z_{1} \circ z_{2}, x \in \bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}$. Thus, $\left(\bigcup_{i=1}^{m+n} A^{i}\right) \circ\left(\bigcup_{i=1}^{m+n} A^{i}\right) \subseteq \bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}$. Therefore, from (1), $\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \circ\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]$. Hence, $\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right.$ ] is a subsemihypergroup of $H$ containing $A$. We have

$$
\begin{aligned}
& \left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m} \circ H \\
& \left.=\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-1} \circ\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \circ H \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-1} \circ\left(\bigcup_{i=1}^{m+n} A^{i} \circ H \cup A^{m} \circ H \circ A^{n} \circ H\right] \\
& \left.\subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-1} \circ(A \circ H] \\
& \left.=\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-2} \circ\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \circ(A \circ H] \\
& \left.\subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-2} \circ\left(\bigcup_{i=1}^{m+n} A^{i} \circ A \circ H \cup A^{m} \circ H \circ A^{n} \circ A \circ H\right] \\
& \left.\subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-1} \circ\left(A^{2} \circ H\right] \\
& \vdots \\
& =\left(A^{m} \circ H\right] .
\end{aligned}
$$

Similarly, $H \circ\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{n} \subseteq\left(H \circ A^{n}\right]$. Therefore, we have

$$
\begin{aligned}
& \left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m} \circ H \circ\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{n} \\
& \subseteq\left(A^{m} \circ H \circ A^{n}\right] \\
& \subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] .
\end{aligned}
$$

Also $\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right] \subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]$. Therefore, $\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]$ is an $(m, n)$-hyperideal of $H$ containing $A$. It follows that $[a]_{m, n} \subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]$. For the reverse inclusion, let $x \in\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]$, that is, there exist $z \in \bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}$
such that $x \leq z$. If $z \in \bigcup_{i=1}^{m+n} A^{i}$, then $z=A^{p}$ for some $1 \leq p \leq m+n$. Therefore, $x \in[A]_{m, n}$. If $z \in A^{m} \circ H \circ A^{n}$, then

$$
A^{m} \circ H \circ A^{n} \subseteq\left([A]_{m, n}\right)^{m} \circ H \circ\left([A]_{m, n}\right)^{n} \subseteq[A]_{m, n}
$$

Therefore, $z \in[A]_{m, n}$ implies $x \in[A]_{m, n}$. Hence, $[A]_{m, n}=\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ\right.$ $\left.H \circ A^{n}\right]$, as required.

Theorem 2.12. [20] Let $H$ be an ordered semihypergroup and $A$ be any non-empty subset of $H$. Then:
(i) $[A]_{m, 0}=\left(\bigcup_{i=1}^{m} A^{i} \cup A^{m} \circ H\right]$;
(ii) $[A]_{0, n}=\left(\bigcup_{i=1}^{n} A^{i} \cup H \circ A^{n}\right]$.

Theorem 2.13. Let $H$ be an ordered semihypergroup and $A$ be a non-empty subset of $H$. Then

$$
\left(\left([A]_{m, n}\right)^{m} \circ H \circ\left([A]_{m, n}\right)^{n}\right]=\left(A^{m} \circ H \circ A^{n}\right]
$$

for any positive integers $m, n$.
Proof. We have
$\left([A]_{m, n}\right)^{m} \circ H$
$=\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m} \circ H$
$=\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-1} \circ\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \circ H$
$\left.\subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-1} \circ\left(\bigcup_{i=1}^{m+n} A^{i} \circ H \cup A^{m} \circ H \circ A^{n} \circ H\right]$
$\left.\subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-1} \circ(A \circ H]$
$\left.=\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-2} \circ\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right] \circ(A \circ H]$
$\left.\subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-2} \circ\left(\bigcup_{i=1}^{m+n} A^{i} \circ A \circ H \cup A^{m} \circ H \circ A^{n} \circ A \circ H\right]$
$\left.\subseteq\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} \circ H \circ A^{n}\right]\right)^{m-1} \circ\left(A^{2} \circ H\right]$
$\vdots$
$=\left(A^{m} \circ H\right]$.
Similarly, $H \circ\left([A]_{m, n}\right)^{n} \subseteq H \circ A^{n}$. Therefore, $\left(\left([A]_{m, n}\right)^{m} \circ H \circ\left([A]_{m, n}\right)^{n}\right] \subseteq$ $\left(A^{m} \circ H \circ A^{n}\right]$. The reverse inclusion is obvious, that is, $\left(A^{m} \circ H \circ A^{n}\right] \subseteq$ $\left(\left([A]_{m, n}\right)^{m} \circ H \circ\left([A]_{m, n}\right)^{n}\right]$. Hence, $\left(\left([A]_{m, n}\right)^{m} \circ H \circ\left([A]_{m, n}\right)^{n}\right]=\left(A^{m} \circ H \circ\right.$ $A^{n}$ ].

Theorem 2.14. [20] Let $H$ be an ordered semihypergroup and $A$ be a nonempty subset of $H$. Then
(i) $\left(\left([A]_{m, 0}\right)^{m} \circ H\right]=\left(A^{m} \circ H\right]$ for any positive integer $m$.
(ii) $\left(H \circ\left([A]_{(0, n)}\right)^{n}\right]=\left(H \circ A^{n}\right]$ for any positive integer $n$.

## 3 ( $m, n$ )-regularity in ordered semihypergroups

In this section, we characterize $(m, n)$-regular, $(m, 0)$-regular and $(0, n)$ regular ordered semihypergroup in terms of its $(m, n)$-hyperideals, $(m, 0)$ hyperideals and ( $0, n$ )-hyperideals.

Definition 3.1. Let $H$ be an ordered semihypergroup and $m, n$ be nonnegative integers. An element a of $H$ is said to be an $(m, n)$-regular element if $a \in\left(a^{m} \circ H \circ a^{n}\right]$. The ordered semihypergroup $H$ is said to be $(m, n)$ regular if each element of $H$ is $(m, n)$-regular, equivalently, for each subset $A$ of $H$ we have $A \subseteq\left(A^{m} \circ H \circ A^{n}\right]$. Here, $A^{0} \circ H=H \circ A^{0}=H$.

It is clear from Definition 3.1 that, for each non-negative integers $m$ and $n$ every $(m, n)$-regular ordered semihypergroup is $(r, s)$-regular $(r \leq$ $m, s \leq n$ are non-negative integers). In particular, for any positive integers $m$ and $n$, an ( $m, n$ )-regular ordered semihypergroup is regular. Indeed, $a \in\left(a^{m} \circ H \circ a^{n}\right] \subseteq(a \circ H \circ a]$. On the other hand, for each positive integer $m$, an $(m, 0)$-regular ordered semihypergroup need not be a regular ordered semihypergroup.

Proposition 3.2. Let $H$ be an ( $m, n$ )-regular ordered semihypergroup and $A$ be a generalized ( $m, n$ )-hyperideal of $H$ for any positive integers $m, n$. Then $A$ is an $(m, n)$-hyperideal of $H$.

Proof. Let $a, b \in A$. Since $H$ is an $(m, n)$-regular ordered semihypergroup, there exist $x, y \in H$ such that $a \leq a^{m} \circ x \circ a^{n}, b \leq b^{m} \circ y \circ b^{n}$. Therefore, $a \circ b \leq a^{m} \circ x \circ a^{n} \circ b^{m} \circ y \circ b^{n}=a^{m} \circ\left(x \circ a^{n} \circ b^{m} \circ y\right) \circ b^{n} \subseteq A^{n} \circ H \circ A^{m} \subseteq A$ whence $a \circ b \subseteq(A]=A$. Thus $A$ is a subsemihypergroup of $H$. Hence, $A$ is an ( $m, n$ )-hyperideal of $H$.

Theorem 3.3. Let $H$ be an ordered semihypergroup and $m, n$ be non-negative integers. The set of all $(m, 0)$-hyperideals, $(0, n)$-hyperideals, and $(m, n)$ hyperideals will be denoted by $I_{(m, 0)}, I_{(0, n)}$ and $I_{(m, n)}$, respectively. Then, we have
(i) $H$ is $(m, 0)$-regular if and only if $I_{(m, 0)}$ is $(m, 0)$-regular;
(ii) $H$ is $(0, n)$-regular if and only if $I_{(0, n)}$ is $(0, n)$-regular;
(iii) $H$ is $(m, n)$-regular if and only if $I_{(m, n)}$ is $(m, n)$-regular.

Proof. (i) When $m=0$, the statement holds trivially because $H$ is the only ( 0,0 )-hyperideal of $H$. So, let $m \neq 0$ and $A \in I_{(m, 0)}$. Therefore $\left(A^{m} \circ H\right] \subseteq A$. As $S$ is $(m, 0)$-regular, $A \subseteq\left(A^{m} \circ H\right]$. Thus, $A=\left(A^{m} \circ H\right]$. Since $H \in I_{(m, 0)}, A$ is a $(m, 0)$-regular element of $I_{(m, 0)}$. Hence $I_{(m, 0)}$ is ( $m, 0$ )-regular. For the converse, assume that $I_{(m, 0)}$ is ( $m, 0$ )-regular. Take any $a \in S$. As $[a]_{m, 0}$ is in $I_{(m, 0)}$ and $I_{(m, 0)}$ is ( $m, 0$ )-regular, there exists $B \in I_{(m, 0)}$ such that $[a]_{m, 0}=\left([a]_{m, 0}\right)^{m} \circ B \subseteq\left([a]_{m, 0}\right)^{m} \circ H \subseteq\left(\left([a]_{m, 0}\right)^{m} \circ H\right]$. By Theorem 2.14, $\left.\left([a]_{m, 0}\right)^{m} \circ H\right]=\left(a^{m} \circ H\right]$. As $\{a\} \subseteq[a]_{m, 0}$, we have $a \in\left(a^{m} \circ H\right]$. Hence $H$ is $(m, 0)$-regular.
(ii) On the similar lines to (i), we may prove (ii).
(iii) If $m=n=0$, then the statement is true because $I_{(0,0)}=\{H\}$. If $m \neq 0$ and $n=0$ or $m=0$ and $n \neq 0$, then the statement follows by (i) and (ii), respectively. So, let $m \neq 0, n \neq 0$ and $A \in I_{(m, n)}$. Therefore $\left(A^{m} \circ H \circ A^{n}\right] \subseteq A$. As $H$ is $(m, n)$-regular, $A \subseteq\left(A^{m} \circ H \circ A^{n}\right]$. Thus, $A=\left(A^{m} \circ H \circ A^{n}\right]$. Since $H \in I_{(m, n)}, A$ is an $(m, n)$-regular element of $I_{(m, n)}$. Hence, $I_{(m, n)}$ is $(m, n)$-regular. For the converse, assume that $I_{(m, n)}$ is $(m, n)$-regular and $a \in H$. As $[a]_{m, n}$ is in $I_{(m, n)}$ and $I_{(m, n)}$ is $(m, n)$ regular, there exists $B \in I_{(m, n)}$ such that $[a]_{m, n}=\left([a]_{m, n}\right)^{m} \circ B \circ\left([a]_{m, n}\right)^{n} \subseteq$ $\left([a]_{m, n}\right)^{m} \circ H \circ\left([a]_{m, n}\right)^{n} \subseteq\left(\left([a]_{m, n}\right)^{m} \circ H \circ\left([a]_{m, n}\right)^{n}\right]$. By Theorem 4.1, we have $\left(\left([a]_{m, n}\right)^{m} \circ H \circ\left([a]_{m, n}\right)^{n}\right]=\left(a^{m} \circ H \circ a^{n}\right]$. As $\{a\} \subseteq[a]_{m, n}, \quad a \in$ $\left(a^{m} \circ H \circ a^{n}\right.$. This implies that $a$ is an $(m, n)$-regular element of $H$. Hence, $H$ is $(m, n)$-regular.

Lemma 3.4. [20] Let $H$ be an ordered semihypergroup. If the sets of all $(m, 0)$-hyperideals and $(0, n)$-hyperideals are denoted by $I_{(m, 0)}$ and $I_{(0, n)}$ respectively, then
(i) $H$ is $(m, 0)$-regular if and only if $R=\left(R^{m} \circ H\right]\left(\forall R \in I_{(m, 0)}\right)$, where $m$ is any positive integer;
(ii) $H$ is $(0, n)$-regular if and only if $L=\left(H \circ L^{n}\right]\left(\forall L \in I_{(0, n)}\right)$, where $n$ is any positive integer.

Theorem 3.5. Let $H$ be an ordered semihypergroup and $m, n$ be non-negative integers. The set of all $(m, n)$-hyperideals will be denoted by $I_{(m, n)}$. Then $H$ is $(m, n)$-regular if and only if $A=\left(A^{m} \circ H \circ A^{n}\right]$ for all $A \in I_{(m, n)}$.

Proof. If $m=n=0$, then the statement is true because $I_{(0,0)}=\{H\}$. If $m \neq 0$ and $n=0$ or $m=0$ and $n \neq 0$, then the statement follows by Lemma 3.4. So, let $m \neq 0, n \neq 0$ and $A \in I_{(m, n)}$. Then, by definition of $(m, n)$ regularity, we have $A \subseteq\left(A^{m} \circ H \circ A^{n}\right]$ and, by definition of ( $m, n$ )-hyperideal, we have $\left(A^{m} \circ H \circ A^{n}\right] \subseteq(A]=A$. Hence, $A=\left(A^{m} \circ H \circ A^{n}\right]$.

For the converse, assume that $A=\left(A^{m} \circ H \circ A^{n}\right]$ for each $A \in I_{(m, n)}$. Take any $a \in H$, so $[a]_{m, n} \in I_{(m, n)}$. From Theorem 4.1 and by the assumption, $\left.[a]_{m, n}=\left(\left([a]_{m, n}\right)^{m} \circ H \circ[a]_{m, n}\right)^{n}\right]=\left(a^{m} \circ H \circ a^{n}\right]$. As $\{a\} \subseteq[a]_{m, n}$, $a \in\left(a^{m} \circ H \circ a^{n}\right]$. Hence, $H$ is $(m, n)$-regular.

Theorem 3.6. Let $H$ be an ordered semihypergroup and $m$, $n$ be nonnegative integers. Then, $H$ is $(m, n)$-regular if and only if $L \cap R=\left(R^{m} \circ L^{n}\right]$ for each $(m, 0)$-hyperideal $R$ and for each $(0, n)$-hyperideal $L$ of $H$.

Proof. The statement is trivially true for $m=0=n$. If $m=0$ and $n \neq 0$ or $m \neq 0$ and $n=0$, then the result follows by Lemma 3.4. So, let $m \neq 0, n \neq$ $0, R$ be any $(m, 0)$-hyperideal and $L$ be any $(0, n)$-hyperideal of $H$. Therefore $\left(R^{m} \circ L^{n}\right] \subseteq\left(R^{m} \circ H\right] \subseteq(R]=R$ and $\left(R^{m} \circ L^{n}\right] \subseteq\left(H \circ L^{n}\right] \subseteq(L]=L$. Therefore, $\left(R^{m} \circ L^{n}\right] \subseteq R \cap L$. As $H$ is $(m, n)$-regular, we have
$(R \cap L)$
$\subseteq\left((R \cap L)^{m} \circ H \circ(R \cap L)^{n}\right]$
$\subseteq\left(R^{m} \circ H \circ L^{n}\right]$
$\subseteq\left(R^{m} \circ H \circ L^{n-1} \circ\left(L^{m} \circ H \circ L^{n}\right]\right] \quad($ as $H$ is $(m, n)$-regular $)$
$=\left(R^{m} \circ H \circ L^{n-1} \circ L^{m} \circ H \circ L^{n}\right] \quad$ (by Lemma 1.1)
$\subseteq\left(R^{m} \circ H \circ L^{n-1} \circ L^{m-1} \circ\left(L^{m} \circ H \circ L^{n}\right] \circ H \circ L^{n}\right] \quad($ as $H$ is $(m, n)$-regular $)$ $\subseteq\left(R^{m} \circ H \circ L^{n-1} \circ L^{m-1} \circ\left(L^{m} \circ H \circ L^{n}\right] \circ\left(H \circ L^{n}\right]\right]\left(\right.$ as $\left.H \circ L^{n} \subseteq\left(H \circ L^{n}\right]\right)$

Therefore, $L \cap R=\left(R^{m} \circ L^{n}\right]$.
Conversely, assume that $L \cap R=\left(R^{m} \circ L^{n}\right.$ ] for each ( $m, 0$ )-hyperideal $R$ and for each $(0, n)$-hyperideal $L$ of $H$. Let $a \in S$. As $[a]_{m, 0}$ is an $(m, 0)$ hyperideal and $H$ is a $(0, n)$-hyperideal of $H$, we have

$$
[a]_{m, 0}=[a]_{m, 0} \cap H=\left(\left([a]_{m, 0}\right)^{m} \circ H^{n}\right]
$$

$$
\subseteq\left(\left([a]_{m, 0}\right)^{m} \circ H\right]=\left(a^{m} \circ H\right] \quad \text { (by Theorem 2.14) }
$$

Similarly, $[a]_{0, n} \subseteq\left(H \circ a^{n}\right]$. As $\left(a^{m} \circ H\right]$ and $\left(H \circ a^{n}\right]$ are an ( $\left.m, 0\right)$-hyperideal and $(0, n)$-hyperideal of $H$, by hypothesis we get

$$
\begin{aligned}
\{a\} & \subseteq[a]_{m, 0} \cap[a]_{0, n} \subseteq\left(a^{m} \circ H\right] \cap\left(H \circ a^{n}\right] \\
& =\left(\left(\left(a^{m} \circ H\right]\right)^{m} \circ\left(\left(H \circ a^{n}\right]\right)^{n}\right] \quad \text { (by hypothesis) } \\
& \subseteq\left(a^{m} \circ H \circ a^{n}\right] .
\end{aligned}
$$

Hence, $H$ is $(m, n)$-regular.
Theorem 3.7. Let $H$ be an ordered semihypergroup and $m, n$ be positive integers (either $m \geq 2$ or $n \geq 2$ ). Then, the following are equivalent:

$$
\begin{aligned}
& \subseteq\left(R^{m} \circ H \circ L^{n-1} \circ L^{m-1} \circ\left(L^{m} \circ H \circ L^{n} \circ H \circ L^{n}\right]\right] \quad(\text { by Lemma 1.1) } \\
& \subseteq\left(R^{m} \circ H \circ L^{n-1} \circ L^{m-1} \circ L^{m} \circ H \circ L^{n} \circ H \circ L^{n}\right] \quad(\text { by Lemma 1.1) } \\
& \subseteq\left(R^{m} \circ H \circ L^{n-1} \circ L^{m-1} \circ L^{m-1} \circ\left(L^{m} \circ H \circ L^{n}\right] \circ H \circ L^{n} \circ H \circ L^{n}\right] \\
& \subseteq(R^{m} \circ H \circ L^{n-1} \circ \underbrace{L^{m-1} \circ L^{m-1} \circ \cdots \circ L^{m-1}}_{n-1 \text {-times }} \circ\left(L^{m} \circ H \circ L^{n}\right) \\
& \circ \underbrace{H \circ L^{n} \circ H \circ L^{n} \circ \cdots \circ H \circ L^{n}}_{n-1 \text {-times }}] \\
& =(R^{m} \circ H \circ L^{n-1} \circ\left(L^{m-1}\right)^{n-1} \circ L^{m} \circ \underbrace{H \circ L^{n} \circ H \circ L^{n} \circ \cdots \circ H \circ L^{n}}_{n \text {-times }}] \\
& =(R^{m} \circ H \circ\left(L^{n-1} \circ L^{m n-m-n+1} \circ L^{m}\right) \circ \underbrace{H \circ L^{n} \circ H \circ L^{n} \circ \cdots \circ H \circ L^{n}}_{n \text {-times }}] \\
& =(R^{m} \circ\left(H \circ L^{m n}\right) \circ \underbrace{H \circ L^{n} \circ H \circ L^{n} \circ \cdots \circ H \circ L^{n}}_{n \text {-times }}] \\
& \subseteq(R^{m} \circ H \circ \underbrace{H \circ L^{n} \circ H \circ L^{n} \circ \cdots \circ H \circ L^{n}}_{n \text {-times }}] \\
& \subseteq(R^{m} \circ \underbrace{H \circ L^{n} \circ H \circ L^{n} \circ \cdots \circ H \circ L^{n}}_{n \text {-times }}] \\
& \subseteq\left(R^{m} \circ\left(H \circ L^{n}\right)^{n}\right] \\
& \subseteq\left(R^{m} \circ L^{n}\right] \text {. }
\end{aligned}
$$

(i) Each $(m, n)$-hyperideal of $H$ is idempotent;
(ii) For each $(m, n)$-hyperideals $A, B$ of $H, A \cap B \subseteq\left(A^{m} \circ B^{n}\right]$;
(iii) $[a]_{m, n} \cap[b]_{m, n} \subseteq\left(\left([a]_{m, n}\right)^{m} \circ\left([b]_{m, n}\right)^{n}\right] \forall a, b \in H$;
(iv) $[a]_{m, n} \subseteq\left(\left([a]_{m, n}\right)^{m} \circ\left([a]_{m, n}\right)^{n}\right] \forall a \in H$;
(v) $H$ is $(m, n)$-regular.

Proof. (i) $\Rightarrow$ (ii) Assume that each $(m, n)$-hyperideal of $H$ is idempotent. Let $A$ and $B$ be any $(m, n)$-hyperideals of $H$. As $A \cap B$ is an $(m, n)$ hyperideal of $H$, we have

$$
\begin{aligned}
A \cap B & =\left((A \cap B)^{2}\right]=\left((A \cap B) \circ((A \cap B])^{2}\right] \\
& =\left((A \cap B)^{3}\right]=\cdots=\left((A \cap B)^{m+n}\right] \\
& =\left((A \cap B)^{m} \circ(A \cap B)^{n}\right] \subseteq\left(A^{m} \circ B^{n}\right] .
\end{aligned}
$$

(ii) $\Rightarrow$ (iii) and (iii) $\Rightarrow$ (iv) are obvious.
(iv) $\Rightarrow$ (v) Take any $a \in A$. Then, by (iv), we have
$[a]_{m, n} \subseteq\left(\left([a]_{m, n}\right)^{m} \circ\left([a]_{m, n}\right)^{n}\right]$
$\subseteq\left(\left([a]_{m, n}\right)^{m} \circ\left([a]_{m, n}\right)^{n-1} \circ\left(\left([a]_{m, n}\right)^{m} \circ\left([a]_{m, n}\right)^{n}\right]\right]$
$=\left(\left([a]_{m, n}\right)^{m} \circ\left([a]_{m, n}\right)^{n-1} \circ\left([a]_{m, n}\right)^{m} \circ\left([a]_{m, n}\right)^{n}\right] \quad($ by Lemma 1.1 $)$
$\subseteq\left(\left([a]_{m, n}\right)^{m} \circ H \circ\left([a]_{m, n}\right)^{n}\right]$
$=\left(\left(\left([a]_{m, n}\right)^{m} \circ H\right] \circ\left([a]_{m, n}\right)^{n}\right] \quad($ by Lemma 1.1)
$=\left(\left(a^{m} \circ H\right] \circ\left([a]_{m, n}\right)^{n}\right] \quad($ by Theorem 4.1)
$=\left(a^{m} \circ H \circ\left([a]_{m, n}\right)^{n}\right] \quad($ by Lemma 1.1 $)$
$=\left(a^{m} \circ\left(H \circ\left([a]_{m, n}\right)^{n}\right]\right] \quad($ by Lemma 1.1)
$=\left(a^{m} \circ\left(H \circ a^{n}\right]\right] \quad($ by Theorem 4.1)
$=\left(a^{m} \circ H \circ a^{n}\right] \quad$ (by Lemma 1.1)
As $\{a\} \subseteq[a]_{m, n}, a \in\left(a^{m} \circ H \circ a^{n}\right]$. Hence $H$ is ( $m, n$ )-regular.
(v) $\Rightarrow$ (i) Take any $(m, n)$-hyperideal $A$ of $H$. As $H$ is $(m, n)$-regular and $A$ is an $(m, n)$-hyperideal, $A=\left(A^{m} \circ H \circ A^{n}\right]$. Now

$$
(A \circ A]=\left(\left(A^{m} \circ H \circ A^{n}\right] \circ\left(A^{m} \circ H \circ A^{n}\right)\right] \subseteq\left(A^{m} \circ H \circ A^{n}\right]=A
$$

and

$$
\begin{aligned}
A= & \left(A^{m} \circ H \circ A^{n}\right]=\left(\left(\left(A^{m} \circ H \circ A^{n}\right]\right)^{m} \circ H \circ A^{n}\right] \\
& =(\underbrace{\left.A^{m} \circ H \circ A^{n}\right] \circ \cdots \circ\left(A^{m} \circ H \circ A^{n}\right]}_{m-\text { times }} \circ H \circ A^{n}] \\
& =\left(\left(A^{m} \circ H \circ A^{n}\right] \circ\left(A^{m} \circ H \circ A^{n}\right] \circ\right.
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\left.\left(A^{m} \circ H \circ A^{n}\right] \circ \cdots \circ\left(A^{m} \circ H \circ A^{n}\right] \circ H \circ A^{n}\right]}_{(m-2) \text {-times }} \\
& \subseteq\left(\left(A^{m} \circ H \circ A^{n}\right) \circ\left(A^{m} \circ H \circ A^{n}\right] \circ H \circ H \circ A^{n}\right] \\
& \subseteq\left(\left(A^{m} \circ H \circ A^{n}\right] \circ\left(A^{m} \circ H \circ A^{n}\right] \circ H \circ A^{n}\right] \\
& \subseteq\left(\left(A^{m} \circ H \circ A^{n}\right] \circ\left(A^{m} \circ H \circ A^{n}\right] \circ\left(H \circ A^{n}\right]\right] \\
& \subseteq\left(\left(A^{m} \circ H \circ A^{n}\right] \circ\left(A^{m} \circ H \circ A^{n} \circ H \circ A^{n}\right]\right] \\
& \subseteq\left(\left(A^{m} \circ H \circ A^{n}\right] \circ\left(A^{m} \circ H \circ A^{n}\right]\right] \\
& =(A \circ A] .
\end{aligned}
$$

Therefore, $A=(A \circ A]$. Hence, each $(m, n)$-hyperideal of $H$ is an idempotent.

The following example shows that the condition $m \geq 2$ or $n \geq 2$ in Theorem 3.7 is necessary.

Example 3.8. [24] Let $H=\{a, b, c, d, e\}$. Define a hyperoperation $\circ$ on $H$ by the table

| $\circ$ | $a$ | $b$ | $c$ | $d$ | $e$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | $\{a\}$ | $\{a\}$ | $\{a\}$ | $\{a\}$ | $\{a\}$ |
| $b$ | $\{a\}$ | $\{a, b\}$ | $\{a\}$ | $\{a, d\}$ | $\{a\}$ |
| $c$ | $\{a\}$ | $\{a, e\}$ | $\{a, c\}$ | $\{a, c\}$ | $\{a, e\}$ |
| $d$ | $\{a\}$ | $\{a, b\}$ | $\{a, d\}$ | $\{a, d\}$ | $\{a, b\}$ |
| $e$ | $\{a\}$ | $\{a, e\}$ | $\{a\}$ | $\{a, c\}$ | $\{a\}$ |

and the order $\leq$ on $H$ as $\leq:=\{(a, a),(b, b),(c, c),(d, d),(e, e),(a, b),(a, c)$, $(a, d),(a, e)\}$. The covering relation $\prec$ and the figure of $H$ are as

$$
\prec:=\{(a, b),(a, c),(a, d),(a, e)\}
$$



Now, $(H, \circ, \leq)$ is a regular ordered semihypergroup. One may easily check that $A=\{a, e\}$ is a bi-hyperideal of $H$, but $A \neq\left(A^{2}\right]$.

## 4 Relations $\mathcal{I}_{n},{ }_{m} \mathcal{I}, \mathcal{H}_{m}^{n}$ and $\mathcal{B}_{m}^{n}$ on ordered semihypergroups

In this section, the relations $\mathcal{I}_{n},{ }_{m} \mathcal{I}, \mathcal{H}_{m}^{n}$ and $\mathcal{B}_{m}^{n}$ on an ordered semihypergroup are introduced. Then, some related properties of these relations are studied.

Definition 4.1. Let $H$ be an ordered semihypergroup and $m, n$ be positive integers. We define the relations $\mathcal{I}_{n},{ }_{m} \mathcal{I}, \mathcal{H}_{m}^{n}$ and $\mathcal{B}_{m}^{n}$ as

$$
\begin{aligned}
\mathcal{I}_{n} & =\left\{(a, b) \in S \times S \mid[a]_{0, n}=[b]_{0, n}\right\} \\
m \mathcal{I} & =\left\{(a, b) \in S \times S \mid[a]_{m, 0}=[b]_{m, 0}\right\} \\
\mathcal{H}_{m}^{n} & ={ }_{m} \mathcal{I} \cap \mathcal{I}_{n} \\
\mathcal{B}_{m}^{n} & =\left\{(a, b) \in S \times S \mid[a]_{m, n}=[b]_{m, n}\right\}
\end{aligned}
$$

Clearly, all the relations defined above are equivalence relations on $H$.
Lemma 4.2. Let $H$ be an ordered semihypergroup and $a, b \in H$ be ${ }_{m} \mathcal{I}$ related (respectively, $\mathcal{I}_{n}$-related). Then, $\left(a^{m} \circ H\right]=\left(b^{m} \circ H\right]$ (respectively, $\left.\left(H \circ a^{n}\right]=\left(H \circ b^{n}\right]\right)$.

Proof. Suppose that $(a, b) \in{ }_{m} \mathcal{I}$. Then, by definition, $[a]_{m, 0}=[b]_{m, 0}$, i.e. $\left(\bigcup_{i=1}^{m} a^{i} \cup a^{m} \circ H\right]=\left(\bigcup_{i=1}^{m} b^{i} \cup b^{m} \circ H\right]$. Therefore, $\{a\} \subseteq\left(\bigcup_{i=1}^{m} b^{i} \cup b^{m} \circ H\right]$ and $\{b\} \subseteq\left(\bigcup_{i=1}^{m} a^{i} \cup a^{m} \circ H\right]$. Thus, $\left(a^{m} \circ H\right] \subseteq\left(\left(\left(\bigcup_{i=1}^{m} b^{i} \cup b^{m} \circ H\right]\right)^{m} \circ H\right]=\left(\left(b^{m} \circ\right.\right.$ $H]]=\left(b^{m} \circ H\right]$ (by Theorem 4.1). Similarly, from $\{b\} \subseteq\left(\bigcup_{i=1}^{m} a^{i} \cup a^{m} \circ H\right]$, we have $\left(b^{m} \circ H\right] \subseteq\left(a^{m} \circ H\right]$. Hence $\left(a^{m} \circ H\right]=\left(b^{m} \circ H\right]$. Similarly, we may show that $(a, b) \in \mathcal{I}_{n}$ implies $\left(H \circ a^{n}\right]=\left(H \circ b^{n}\right]$.

Lemma 4.3. Let $H$ be an ordered semihypergroup and $a, b \in H$ be $\mathcal{H}_{m}^{n}$ related. Then, $\left(a^{m} \circ H\right]=\left(b^{m} \circ H\right],\left(H \circ a^{n}\right]=\left(H \circ b^{n}\right]$ and $\left(a^{m} \circ H \circ a^{n}\right]=$ ( $b^{m} \circ H \circ b^{n}$.

Proof. Suppose that $(a, b) \in \mathcal{H}_{m}^{n}$. Then, by definition, $(a, b) \in{ }_{m} \mathcal{I}$ and $(a, b) \in \mathcal{I}_{n}$. By Lemma 4.1, $\left(a^{m} \circ H\right]=\left(b^{m} \circ H\right]$ and $\left(H \circ a^{n}\right]=\left(H \circ b^{n}\right]$. Therefore, we have $\left(a^{m} \circ H \circ a^{n}\right]=\left(\left(a^{m} \circ H\right] \circ a^{n}\right]=\left(\left(b^{m} \circ H\right] \circ a^{n}\right]=$ $\left(b^{m} \circ H \circ a^{n}\right]=\left(b^{m} \circ\left(H \circ a^{n}\right]\right]=\left(b^{m} \circ\left(H \circ b^{n}\right]\right]=\left(b^{m} \circ H \circ b^{n}\right]$.

Lemma 4.4. Let $H$ be an ordered semihypergroup. Then, $\mathcal{B}_{m}^{n} \subseteq \mathcal{H}_{m}^{n}$.

Proof. Let $(a, b) \in \mathcal{B}_{m}^{n}$. Then, $[a]_{m, n}=[b]_{m, n}$, i.e. $\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ\right.$ $\left.a^{n}\right]=\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n}\right]$. So $a^{i} \subseteq\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n}\right]$ and $b^{i} \subseteq$ $\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{n}\right.$ ] for each $i \in\{1,2, \ldots, m+n\}$. It follows that $\bigcup_{i=1}^{m} a^{i} \subseteq\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n}\right]$ and $\bigcup_{i=1}^{m} b^{i} \subseteq\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{n}\right]$. Now $\left(a^{m} \circ H\right] \subseteq\left(\left(\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n}\right]\right)^{m} \circ H\right]$ and $\left(b^{m} \circ H\right] \subseteq\left(\left(\left(\bigcup_{i=1}^{m+n} b^{i} \cup\right.\right.\right.$ $\left.\left.\left.b^{m} \circ H \circ b^{n}\right]\right)^{m} \circ H\right]$. Therefore, by Theorem 4.1, $\left(a^{m} \circ H\right] \subseteq\left(b^{m} \circ H\right]$ and $\left(b^{m} \circ H\right] \subseteq\left(a^{m} \circ H\right]$. Now

$$
\begin{aligned}
& {[a]_{m, 0}=\left(\bigcup_{i=1}^{m} a^{i} \cup a^{m} \circ H\right]} \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n}\right] \cup a^{m} \circ H\right] \quad\left(\text { since } \bigcup_{i=1}^{m} a^{i} \subseteq\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n}\right]\right) \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n}\right] \cup\left(a^{m} \circ H\right]\right] \quad\left(\text { as } a^{m} \circ H \subseteq\left(a^{m} \circ H\right]\right) \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n}\right] \cup\left(b^{m} \circ H\right]\right] \quad\left(\text { as }\left(a^{m} \circ H\right] \subseteq\left(b^{m} \circ H\right]\right) \\
& =\left(\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n} \cup b^{m} \circ H\right]\right] \quad(\text { by Lemma 1.1 }) \\
& =\left(\bigcup_{i=1}^{m+n} b^{i} \cup b^{m} \circ H \circ b^{n} \cup b^{m} \circ H\right] \quad(\text { by Lemma } 1.1) \\
& \subseteq\left(\bigcup_{i=1}^{m} b^{i} \cup b^{m} \circ H \cup b^{m} \circ H \circ b^{n} \cup b^{m} \circ H\right] \quad\left(\text { since } \bigcup_{i=1}^{m+n} b^{i} \subseteq \bigcup_{i=1}^{m} b^{i} \cup b^{m} \circ H\right) \\
& =\left(\bigcup_{i=1}^{m} b^{i} \cup b^{m} \circ H\right]\left(\text { as } b^{m} \circ H \circ b^{n} \subseteq b^{m} \circ H\right) \\
& =[b]_{m, 0} ;
\end{aligned}
$$

and

$$
\begin{aligned}
& {[b]_{m, 0}^{m}} \\
& =\left(\bigcup_{i=1}^{m} b^{i} \cup b^{m} \circ H\right] \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{m}\right] \cup b^{m} \circ H\right] \quad\left(\text { since } \bigcup_{i=1}^{m} b^{i} \subseteq\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{n}\right]\right) \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{m}\right] \cup\left(b^{m} \circ H\right]\right] \quad\left(\text { as } b^{m} \circ H \subseteq\left(b^{m} \circ H\right]\right) \\
& \subseteq\left(\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{m}\right] \cup\left(a^{m} \circ H\right]\right] \quad\left(\text { as }\left(b^{m} \circ H\right] \subseteq\left(a^{m} \circ H\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{m} \cup a^{m} \circ H\right]\right] \quad(\text { by Lemma 1.1 }) \\
& =\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{m} \cup a^{m} \circ H\right] \quad(\text { by Lemma 1.1 }) \\
& \subseteq\left(\bigcup_{i=1}^{m} a^{i} \cup a^{m} \circ H \cup a^{m} \circ H \circ a^{n} \cup a^{m} \circ H\right] \quad\left(\text { since } \bigcup_{i=1}^{m+n} a^{i} \subseteq \bigcup_{i=1}^{m} a^{i} \cup a^{m} \circ H\right) \\
& \subseteq\left(\bigcup_{i=1}^{m} a^{i} \cup a^{m} \circ H\right]\left(\text { as } a^{m} \circ H \circ a^{n} \subseteq a^{m} \circ H\right) \\
& =[a]_{m, 0} .
\end{aligned}
$$

Therefore, $[a]_{m, 0}=[b]_{m, 0}$. Similarly, one can show that $[a]_{0, n}=[b]_{0, n}$. Thus, $(a, b) \in \mathcal{H}_{m}^{n}$. Hence, $\mathcal{B}_{m}^{n} \subseteq \mathcal{H}_{m}^{n}$.

Theorem 4.5. Let $H$ be an ( $m, n$ )-regular ordered semihypergroup. Then, $\mathcal{B}_{m}^{n}=\mathcal{H}_{m}^{n}$ 。

Proof. Let $(a, b) \in \mathcal{H}_{m}^{n}$. Therefore, by Lemma 4.2, $\left(a^{m} \circ H \circ a^{n}\right]=\left(b^{m} \circ\right.$ $\left.H \circ b^{n}\right]$. As $S$ is $(m, n)$-regular, $a \in\left(a^{m} \circ H \circ a^{m}\right]$ and $b \in\left(b^{m} \circ H \circ b^{n}\right]$. So $a^{i} \subseteq\left(a^{m} \circ H \circ a^{m}\right]$ for each $i \in\{1,2, \ldots, m+n\}$, it follows that $\bigcup_{i=1}^{m+n} a^{i} \subseteq$ $\left(a^{m} \circ H \circ a^{m}\right]$. Thus, $[a]_{m, n}=\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{m}\right]=\left(a^{m} \circ H \circ a^{m}\right]$ and similarly $[b]_{m, n}=\left(b^{m} \circ H \circ b^{n}\right]$. Thus, $[a]_{m, n}=[b]_{m, n}$, i.e. $(a, b) \in \mathcal{B}_{m}^{n}$. This implies that $\mathcal{H}_{m}^{n} \subseteq \mathcal{B}_{m}^{n}$. Hence, by Lemma 4.3, $\mathcal{B}_{m}^{n}=\mathcal{H}_{m}^{n}$.

Lemma 4.6. If $B_{x}$ and $B_{y}$ are two $(m, n)$-regular $\mathcal{B}_{m}^{n}$-classes contained in the same $\mathcal{H}_{m}^{n}$-class of ordered semihypergroup $H$, then $B_{x}=B_{y}$.

Proof. As $x$ and $y$ are $(m, n)$-regular elements of $H, x \in\left(x^{m} \circ H \circ x^{n}\right]$ and $y \in\left(y^{m} \circ H \circ y^{n}\right],\{x\}^{i} \subseteq\left(x^{m} \circ H \circ x^{n}\right]$ and $\{y\}^{i} \subseteq\left(y^{m} \circ H \circ y^{n}\right]$ for each $i \in\{1,2, \ldots, m+n\}$. It follows that $\bigcup_{i=1}^{m+n} x^{i} \subseteq\left(x^{m} \circ H \circ x^{m}\right]$ and $\bigcup_{i=1}^{m+n} y^{i} \subseteq\left(y^{m} \circ H \circ y^{m}\right]$. Therefore, $[x]_{m, n}=\left(x^{m} \circ H \circ x^{n}\right]$ and $[y]_{m, n}=\left(y^{m} \circ H \circ y^{n}\right]$. Since $x$ and $y$ are contained in the same $\mathcal{H}_{m}^{n}$-class, by Lemma 4.2, $\left(x^{m} \circ H \circ x^{n}\right]=\left(y^{m} \circ H \circ y^{n}\right]$. So $[x]_{m, n}=[y]_{m, n}$. Therefore, $x \mathcal{B}_{m}^{n} y$. Hence, $B_{x}=B_{y}$.

## 5 ( $m, 0$ )-regularity [ $(0, n)$-regularity] and ( $m, n$ )-right weakly regularity of a $\mathcal{B}_{m}^{n}$-class, $\mathcal{Q}_{m}^{n}$-class and $\mathcal{H}_{m}^{n}$-class

In this section, the $(m, 0)$-regular, $(0, n)$-regular, $(m, n)$-regular and $(m, n)$ right weakly regular class of the relations $\mathcal{H}_{m}^{n}$ and $\mathcal{B}_{m}^{n}$ are studied.

Lemma 5.1. An $\mathcal{H}_{m}^{n}$-class $H$ of an ordered semihypergroup is ( $m, 0$ )-regular $[(0, n)$-regular $]$ if it contains an $(m, 0)$-regular $[(0, n)$-regular $]$ element.

Proof. Let $a$ be an ( $m, 0$ )-regular element and $c$ be an element of $\mathcal{H}_{m}^{n}$-class $H$. This implies $[b]_{m, 0}=[a]_{m, 0}$ and $a \in\left(a^{m} \circ H\right]$. Therefore, $\{a\}^{i} \subseteq\left(a^{m} \circ H\right]$ for each $i \in\{1,2, \ldots, m\}$. Then $\bigcup_{i=1}^{m} a^{i} \subseteq\left(a^{m} \circ H\right]$ implies $\left(\bigcup_{i=1}^{m} a^{i}\right] \subseteq$ $\left(\left(a^{m} \circ H\right]\right]=\left(a^{m} \circ H\right]$. Thus, $[b]_{m, 0}=[a]_{m, 0}=\left(\bigcup_{i=1}^{m} a^{i} \cup a^{m} \circ H\right]=$ $\left(\bigcup_{i=1}^{m} a^{i}\right] \cup\left(a^{m} \circ H\right]=\left(a^{m} \circ H\right]$. By Lemma 4.2, $\left(a^{m} \circ H\right]=\left(b^{m} \circ H\right]$. This implies that $[b]_{m, 0} \subseteq\left(b^{m} \circ H\right]$. Hence, $b \in\left(b^{m} \circ H\right]$. So $b$ is an $(m, 0)$-regular element of $\mathcal{H}_{m}^{n}$-class $H$. Hence, the $\mathcal{H}_{m}^{n}$-class $H$ is $(m, 0)$-regular. The dual statement follows on the similar lines.

Lemma 5.2. An $\mathcal{H}_{m}^{n}$-class $H$ of an ordered semihypergroup is $(m, n)$-regular if it contains an $(m, n)$-regular element.

Proof. The proof is similar to the proof of Lemma 5.1.
Lemma 5.3. $A \mathcal{B}_{m}^{n}$-class $B$ of an ordered semihypergroup is $(m, n)$-regular if it contains an ( $m, n$ )-regular element.

Proof. Let $a \in B$ be an ( $m, n$ )-regular element and $b \in B$. Then, $a \in$ $\left(a^{m} \circ H \circ a^{n}\right]$ so that $\{a\}^{i} \subseteq\left(a^{m} \circ H \circ a^{n}\right]$ for each $i \in\{1,2, \ldots, m+n\}$, so $\bigcup_{i=1}^{m+n} a^{i} \subseteq\left(a^{m} \circ H \circ a^{n}\right]$ implies $\left(\bigcup_{i=1}^{m} a^{i}\right] \subseteq\left(\left(a^{m} \circ H \circ a^{n}\right]\right]=\left(a^{m} \circ H \circ a^{n}\right]$. Since $a, b \in B,[b]_{m, n}=[a]_{m, n}=\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{n}\right]=\left(\bigcup_{i=1}^{m+n} a^{i}\right] \cup\left(a^{m} \circ\right.$ $\left.H \circ a^{n}\right]=\left(a^{m} \circ H \circ a^{n}\right]$. By Lemmas 4.3 and 4.2, we have $\left(a^{m} \circ H \circ a^{n}\right]=$ $\left(b^{m} \circ H \circ b^{n}\right]$. This implies that $[b]_{m, n} \subseteq\left(b^{m} \circ H \circ b^{n}\right]$. So $b \in\left(b^{m} \circ H \circ b^{n}\right]$. Thus, $b$ is an $(m, n)$-regular element of $B$. Hence, $B$ is $(m, n)$-regular.

Definition 5.4. Let $H$ be an ordered semihypergroup and $m, n$ be positive integers. An element $a$ of $H$ is said to be an $(m, n)$-right weakly regular element if $a \in\left(a^{m} \circ H \circ a^{n} \circ H\right]$. The ordered semihypergroup $H$ is said to be $(m, n)$-right weakly regular if each element of $H$ is $(m, n)$-right weakly regular, equivalently, for each subset $A$ of $H, A \subseteq\left(A^{m} \circ H \circ A^{n} \circ H\right]$.

Lemma 5.5. $A \mathcal{B}_{m}^{n}$-class $B$ of an ordered semihypergroup $H$ is $(m, n)$-right weakly regular if it contains an $(m, n)$-right weakly regular element.

Proof. Let $a \in B$ be an $(m, n)$-right weakly regular element and $b \in B$. Then, $a \in\left(a^{m} \circ H \circ a^{n} \circ H\right]$. This implies that $\{a\}^{i} \subseteq\left(a^{m} \circ H \circ a^{n} \circ H\right]$
for each $i \in\{1,2, \ldots, m+n\}$, so $\bigcup_{i=1}^{m+n} a^{i} \subseteq\left(a^{m} \circ H \circ a^{n} \circ H\right]$ implies $\left(\bigcup_{i=1}^{m} a^{i}\right] \subseteq\left(\left(a^{m} \circ H \circ a^{n} \circ H\right]\right]=\left(a^{m} \circ H \circ a^{n} \circ H\right]$. So, $\left(a^{m} \circ H \circ a^{n}\right] \subseteq$ $\left(\left(\left(a^{m} \circ H \circ a^{n} \circ H\right]\right) \circ H \circ\left(\left(a^{m} \circ H \circ a^{n} \circ H\right]\right)\right] \subseteq\left(a^{m} \circ H \circ a^{n} \circ H\right]$. Since $a, b \in B,[b]_{m, n}=[a]_{m, n}=\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H \circ a^{n}\right]=\left(\bigcup_{i=1}^{m+n} a^{i}\right] \cup\left(a^{m} \circ H \circ\right.$ $\left.a^{n}\right] \subseteq\left(\bigcup_{i=1}^{m+n} a^{i}\right] \cup\left(a^{m} \circ H \circ a^{n} \circ H\right]=\left(a^{m} \circ H \circ a^{n} \circ H\right]$ (since $\left(\bigcup_{i=1}^{m+n} a^{i}\right] \subseteq$ $\left.\left(a^{m} \circ H \circ a^{n} \circ H\right]\right)$. By Lemmas 4.3 and $4.2,\left(a^{m} \circ H \circ a^{n}\right]=\left(b^{m} \circ H \circ b^{n}\right]$. This implies that $[b]_{m, n} \subseteq\left(a^{m} \circ H \circ a^{n} \circ H\right]=\left(\left(a^{m} \circ H \circ a^{n}\right] \circ H\right]=$ $\left(\left(b^{m} \circ H \circ b^{n}\right] \circ H\right]=\left(b^{m} \circ H \circ b^{n} \circ H\right]$. So $b \in\left(b^{m} \circ H \circ b^{n} \circ H\right]$. Thus, $b$ is an $(m, n)$-right weakly regular element of $B$. Hence, $B$ is $(m, n)$-right weakly regular.

Corollary 5.6. An ordered semihypergroup $H$ is ( $m, n$ )-regular ( $(m, n)$-right weakly regular) if and only if each $\mathcal{B}_{m}^{n}$-class of $H$ contains an ( $m, n$ )-regular $((m, n)$-right weakly regular) element.

Lemma 5.7. An $\mathcal{H}_{m}^{n}$-class $H$ of an ordered semihypergroup is $(m, n)$-right weakly regular if it contains an $(m, n)$-right weakly regular element.

Proof. Let $a$ be an ( $m, n$ )-right weakly regular element and $b$ be an element of $\mathcal{H}_{m}^{n}$-class $H$. Then, $a \in\left(a^{m} \circ H \circ a^{n} \circ H\right]$. This gives that $\{a\}^{i} \subseteq\left(a^{m} \circ\right.$ $\left.H \circ a^{n} \circ H\right]$ for each $i \in\{1,2, \ldots, m+n\}$, and so $\bigcup_{i=1}^{m+n} a^{i} \subseteq\left(a^{m} \circ H \circ a^{n} \circ H\right]$ implies $\left(\bigcup_{i=1}^{m+n} a^{i}\right] \subseteq\left(\left(a^{m} \circ H \circ a^{n} \circ H\right]\right]=\left(a^{m} \circ H \circ a^{n} \circ H\right]$. Therefore, $\left(a^{m} \circ H\right] \subseteq\left(\left(a^{m} \circ H \circ a^{n} \circ H\right] \circ H\right]=\left(a^{m} \circ H \circ a^{n} \circ H \circ H\right] \subseteq\left(a^{m} \circ H \circ a^{n} \circ H\right]$. Since $a, b \in H,[b]_{m, 0}=[a]_{m, 0}=\left(\bigcup_{i=1}^{m+n} a^{i} \cup a^{m} \circ H\right]=\left(\bigcup_{i=1}^{m+n} a^{i}\right] \cup\left(a^{m} \circ H\right]=$ $\left(a^{m} \circ H\right] \subseteq\left(a^{m} \circ H \circ a^{n} \circ H\right]$. So, by Lemma 4.2, $\left(a^{m} \circ H \circ a^{n}\right]=\left(b^{m} \circ H \circ b^{n}\right]$. This implies that $[b]_{m, 0} \subseteq\left(a^{m} \circ H \circ a^{n} \circ H\right]=\left(\left(a^{m} \circ H \circ a^{n}\right] \circ H\right]=$ $\left(\left(b^{m} \circ H \circ b^{n}\right] \circ H\right]=\left(b^{m} \circ H \circ b^{n} \circ H\right]$. Therefore, $b \in\left(b^{m} \circ H \circ b^{n} \circ H\right]$ and thus, $b$ is an $(m, n)$-right weakly regular element of $\mathcal{H}_{m}^{n}$-class $H$. Hence, $H$ is $(m, n)$-right weakly regular.

Corollary 5.8. An ordered semihypergroup $H$ is (respectively, ( $m, 0$ )-regular, ( $0, n$ )-regular, $(m, n)$-regular $)(m, n)$-right weakly regular if and only if each $\mathcal{H}_{m}^{n}$-class of $H$ contains a (respectively, ( $m, 0$ )-regular, $(0, n)$-regular, $(m, n)$ regular) ( $m, n$ )-right weakly regular element.

## 6 Conclusion

The main purpose of the present paper is to introduce the equivalence relations ${ }_{m} \mathcal{I}, \mathcal{I}_{n}, \mathcal{B}_{m}^{n}$ and $\mathcal{H}_{m}^{n}$ on an ordered semihypergroup and enhance the un-
derstanding of different classes of ordered semihypergroups ( $(m, n)$-regular, ( $m, 0$ )-regular, $(0, n)$-regular, $(m, n)$-right weakly regular) by considering the structural influence of the equivalence relations ${ }_{m} \mathcal{I}, \mathcal{I}_{n}, \mathcal{B}_{m}^{n}$, and $\mathcal{H}_{m}^{n}$. In particular, if we take $m=1=n$, the equivalence relations ${ }_{m} \mathcal{I}, \mathcal{I}_{n}$ and $\mathcal{H}_{m}^{n}$ are reduced to the equivalence relations $\mathcal{R}, \mathcal{L}$ and $\mathcal{H}$ in ordered semihypergroup, respectively, which mimic the definition of the usual Green's relations $\mathcal{R}, \mathcal{L}$ and $\mathcal{H}$ in plain semihypergroups [11]. Also when we take $m=1=n$ in Theorems 1.9, 1.11, 4.1, 3.6, and 4.2, and Lemmas 4.1, 4.2, 4.3, 4.3, 5.1, and 5.2 , then we obtain all the results for bi-hyperideals in an ordered semihypergroup and some characterizations of regular ordered semihypergroups, which is the main application of the results presented in this paper.

## References

[1] Alimov, N.G., On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Math. 14 (1950), 569-576.
[2] Clifford, A.H., Naturally totally ordered commutative semigroups, Amer. J. Math. 76 (1954), 631-646.
[3] Clifford, A.H., Totally ordered commutative semigroups, Bull. Amer. Math. Soc. (N.S.) 64 (1958), 305-316.
[4] Clifford, A.H., Ordered commutative semigroups of the second kind, Proc. Amer. Math. Soc. 9 (1958), 682-687.
[5] Conrad, P., Ordered semigroups, Nagoya Math. J. 16 (1960), 51-64.
[6] Changphas, T. and Davvaz, B., Bi-hyperdeals and quasi-hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math. 35 (2015), 493-508.
[7] Changphas, T. and Davvaz, B., Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math. 33 (2014), 425-432.
[8] Davvaz, B., "Semihypergroup Theory", Elsevier, 2016.
[9] Davvaz, B., Some results on congruences in semihypergroups, Bull. Malays. Math. Sci. Soc. 23 (2000), 53-58.
[10] Davvaz, B. and Leoreanu-Fotea, V., Binary relations on ternary semihypergroups, Comm. Algebra 38 (2010), 3621-3636.
[11] Hasankhani, A., Ideals in a semihypergroup and Green's relations, Ratio Math. 13 (1999), 29-36.
[12] Hila, K., Davvaz, B., and Naka, K., On quasi-hyperideals in semihypergroups, Comm. Algebra 39 (2011), 4183-4194.
[13] Hion, Y.V., Ordered semigroups, Izv. Akad. Nauk SSSR Ser. Math. 21 (1957), 209222.
[14] Heidari, D. and Davvaz, B., On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73(2) (2011), 85-96.
[15] Kehayopulu, N., On regular, regular duo ordered semigroups, Pure Math. Appl., 5(2) (1994), 161-176.
[16] Lajos, S., Generalized ideals in semigroups, Acta Sci. Math. (Szeged) 22 (1961), 217-222.
[17] Lajos, S., Notes on ( $m, n$ )-ideals I, Proc. Japan Acad. Ser. A Math. Sci. 39 (1963), 419-421.
[18] Lajos, S., Notes on ( $m, n$ )-ideals II, Proc. Japan Acad. Ser. A Math. Sci. 40 (1964), 631-632.
[19] Lajos, S., Notes on $(m, n)$-ideals III, Proc. Japan Acad. Ser. A Math. Sci. 41 (1965), 383-385.
[20] Mahboob, A., Khan, N.M., and Davvaz, B., Structural properties for $(m, n)$-quasihyperideals in ordered semihypergroups, Tbilisi Math. J. 11(4) (2018), 145-163.
[21] Marty, F., Sur une generalization de la notion de group, Proceedings of the 8th Congress des Mathematiciens Scandinaves (1934), 45-49.
[22] Omidi, S. and Davvaz, B., A short note on the relation $\mathcal{N}$ in ordered semihypergroups, Gazi Univ. J. Sci. 29(3) (2016), 659-662.
[23] Pibaljommee, B. and Davvaz, B., On fuzzy bi-hyperideals in ordered semihypergroups, J. Intell. Fuzzy Syst. 28 (2015), 2141-2148.
[24] Pibaljommee, B., Wannatong, K., and Davvaz, B., An investigation on fuzzy hyperideals of ordered semihypergroups, Quasigroups Related Systems 23 (2015), 297-308.
[25] Tang, J., Davvaz, B., and Luo, Y.F., Hyperfilters and fuzzy hyperfilters of ordered semihypergroups, J. Intell. Fuzzy Syst. 29(1) (2015), 75-84.
[26] Tang, J., Davvaz, B., and Xie, X.Y., An investigation on hyper $S$-posets over ordered semihypergroups, Open Math. 15 (2017), 37-56.

Ahsan Mahboob Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Email: khanahsan56@gmail.com
Noor Mohammad Khan Department of Mathematics, Aligarh Muslim University, Aligarh202002, India.
Email: nm_khan123@yahoo.co.in
Bijan Davvaz Department of Mathematics, Yazd University, Yazd, Iran.
Email: davvaz@yazd.ac.ir


[^0]:    * Corresponding author

    Keywords: Ordered semihypergroups, ( $m, n$ )-hyperideals, ( $m, 0$ )-hyperideals, $(0, n)$ hyperideals.
    Mathematics Subject Classification [2010]: 20N20.
    Received: 5 April 2019, Accepted: 12 June 2019.
    ISSN: Print 2345-5853, Online 2345-5861.
    (C) Shahid Beheshti University

