Banaschewski, B., Hager, A. (2018). Representation of $H$-closed monoreflections in archimedean $\ell$-groups with weak unit. Categories and General Algebraic Structures with Applications, 9(1), 1-13.

Bernhard Banaschewski; Anthony W. Hager. "Representation of $H$-closed monoreflections in archimedean $\ell$-groups with weak unit". Categories and General Algebraic Structures with Applications, 9, 1, 2018, 1-13.

Banaschewski, B., Hager, A. (2018). 'Representation of $H$-closed monoreflections in archimedean $\ell$-groups with weak unit', Categories and General Algebraic Structures with Applications, 9(1), pp. 1-13.

Banaschewski, B., Hager, A. Representation of $H$-closed monoreflections in archimedean $\ell$-groups with weak unit. Categories and General Algebraic Structures with Applications, 2018; 9(1): 1-13.

Representation of $H$-closed monoreflections in archimedean $\ell$-groups with weak unit

^{1}Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L85 4K1, Canada.

^{2}Department of Mathematics and CS, Wesleyan University, Middletown, CT 06459.

Abstract

The category of the title is called $\mathcal{W}$. This has all free objects $F(I)$ ($I$ a set). For an object class $\mathcal{A}$, $H\mathcal{A}$ consists of all homomorphic images of $\mathcal{A}$-objects. This note continues the study of the $H$-closed monoreflections $(\mathcal{R}, r)$ (meaning $H\mathcal{R} = \mathcal{R}$), about which we show ({\em inter alia}): $A \in \mathcal{A}$ if and only if $A$ is a countably up-directed union from $H\{rF(\omega)\}$. The meaning of this is then analyzed for two important cases: the maximum essential monoreflection $r = c^{3}$, where $c^{3}F(\omega) = C(\RR^{\omega})$, and $C \in H\{c(\RR^{\omega})\}$ means $C = C(T)$, for $T$ a closed subspace of $\RR^{\omega}$; the epicomplete, and maximum, monoreflection, $r = \beta$, where $\beta F(\omega) = B(\RR^{\omega})$, the Baire functions, and $E \in H\{B(\RR^{\omega})\}$ means $E$ is {\em an} epicompletion (not ``the'') of such a $C(T)$.

[BH89] Ball, R.N. and Hager, A.W., Characterization of epimorphisms in Archimedean lattice-ordered groups and vector lattices, In: “Lattice-Ordered Groups”, Math. Appl. 48, Kluwer Academic Publisher, 1989, 175-205. [BH90] Ball, R.N. and Hager, A.W., Epicompletion of Archimedean `-groups and vector lattices with weak unit, J. Austral. Math. Soc. Ser. A 48(1) (1990), 25-56. [BHW-W15] Ball, R.N., Hager, A.W., and Walters-Wayland, J., Pointfree pointwise suprema in unital archimedean `-groups, J. Pure Appl. Algebra 219(11) (2015), 4793-4815. [B05] Banaschewski, B., On the function ring functor in pointfree topology, Appl. Categ. Structures 13 (2005), 305-328.

[B08] Banaschewski, B., On the function rings of pointfree topology, Kyungpook Math. J. 48(2) (2008), 195-206. [B14] Banaschewski, B. On the characterization of the function rings in pointfree topology, Lecture in the conference: Aspects of Contemporary Topology V, Vrije Universiteit Brussels, September 2014. [E89] Engelking, R. “General Topology”, Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, 1989. [GJ76] Gillman, L. and Jerison, M., “Rings of Continuous Functions”, Graduate Texts in Mathematics 43, Springer-Verlag, 1976. [H85] Hager, A.W. Algebraic closures of `-groups of continuous functions, In: “Rings of Continuous Functions” (C.E. Aull, eds.). Dekker Notes 95, 1985, 165-194. [HM85] Hager, A.W. and Madden, J., Essential reflections versus minimal embeddings, J. Pure Appl. Algebra 37(1) (1985), 27-32. [HM16] Hager, A.W. and Madden, J., The H-closed monoreflections, implicit operations, and countable composition, in archimedean lattice-ordered groups with weak unit, Appl. Categ. Structures 24(5) (2016), 605-617. [HR77] Hager, A.W. and Robertson, L.C., Representing and ringifying a Riesz space, Symposia Mathematica XXI, Academic Press (1977), 411-431. [HIJ61] Henriksen, M., Isbell, J., and Johnson, D., Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1961), 107-117. [I64] Isbell, J., “Uniform Spaces”, Math. Surveys 12, American Math. Society, 1964. [P65] Pasynkov, B.A., On the spectral decomposition of topological spaces, Mat. Sb. 66(108) (1965), 35-79, and Amer. Math. Soc. Translations Series 2 (74) (1968), 87-134. [S69] Sikorski, R. “Boolean Algebras”, Third Edition, Springer, 1969.