Representation of H-closed monoreflections in archimedean ℓ-groups with weak unit

Bernhard Banaschewski and Anthony W. Hager

Communicated by Themba Dube

Abstract. The category of the title is called \mathcal{W}. This has all free objects $F(I)$ (I a set). For an object class \mathcal{A}, $H\mathcal{A}$ consists of all homomorphic images of \mathcal{A}-objects. This note continues the study of the H-closed monoreflections (\mathcal{R}, r) (meaning $HR = \mathcal{R}$), about which we show (inter alia): $A \in \mathcal{A}$ if and only if A is a countably up-directed union from $H\{rF(\omega)\}$. The meaning of this is then analyzed for two important cases: the maximum essential monoreflection $r = c^3$, where $c^3F(\omega) = C(\mathbb{R}^\omega)$, and $C \in H\{c(\mathbb{R}^\omega)\}$ means $C = C(T)$, for T a closed subspace of \mathbb{R}^ω; the epicomplete, and maximum, monoreflection, $r = \beta$, where $\beta F(\omega) = B(\mathbb{R}^\omega)$, the Baire functions, and $E \in H\{B(\mathbb{R}^\omega)\}$ means E is an epicompletion (not “the”) of such a $C(T)$.

1 Introduction

\mathcal{W} is the category of archimedean ℓ-groups G with distinguished weak order unit e_G, and morphisms $G \xrightarrow{\varphi} H$ the ℓ-group homomorphisms with $\varphi(e_G) =$
eH. We compress the discussion in §1 of [11], which see for more detail. “A ≤ B” means A is a W-subobject of B.

The forgetful functor \(\mathcal{W} \to \text{Sets} \) has the left adjoint \(F \). An \(F(I) \) is the free object on the set \(I \), and this is the \(\mathcal{W} \)-subobject of \(\mathbb{R}^I \) generated by the constant function 1, and all projections \(\pi_i : \mathbb{R}^I \to \mathbb{R} \) (\(i \mapsto \pi_i \) is the “insertion of generators” \(I \hookrightarrow F(I) \)).

A full subcategory \(\mathcal{R} \) of \(\mathcal{W} \) is monoreflective if \(\forall A \in \mathcal{W} \exists \text{monic } A \overset{r_A}{\to} rA, rA \in \mathcal{R} \), with the property: \(\forall A \overset{\varphi}{\to} R, R \in \mathcal{R}, \exists! rA \overset{\varphi r_A}{\to} R \) with \(\varphi r_A = \varphi \). We usually write \(A \leq rA \) for the \(rA \).

We abuse language and notation by saying as convenient \((\mathcal{R}, r)\) or \(\mathcal{R} \), or \(r \), is a monoreflection.

The class of monoreflections is ordered by: \(r \leq s \) means \(\forall A \exists \text{monic } f \) with \(sf = fr \).

“\(\omega \)” stands for the natural numbers, or any countable set, or the ordinal or cardinal.

Theorem 1.1 ([11], 2.7). Suppose \((\mathcal{R}, r)\) is an \(H \)-closed monoreflection. Then \(\mathcal{R} = \text{inj} \{ F(\omega) \leq rF(\omega) \} \).

Theorem 1.1 is one of the main results of [11] and is the cornerstone of that paper. It devolves from categorical generalities, and many special features of \(\mathcal{W} \), some of which we describe below, and some later when needed.

Another main result of [11] is the characterization of the \(rF(\omega) \) in Theorem 1.1. Namely, 3.6 there says these are exactly the \(S \) with \(F(\omega) \leq S \leq B(\mathbb{R}^\omega) \) (\(B \) the Baire functions), with \(\sigma \) epic and \(S \circ S^\omega = S \) (that is, \(\forall s \) and countable \(\{s_n\} \) from \(S \), the function \(\mathbb{R}^\omega \overset{(s_n)}{\to} \mathbb{R}^\omega \overset{\sigma}{\to} \mathbb{R} \) lies in \(S \)). The cases for \(c^3 \) and \(\beta \) are mentioned in the Abstract, and will be deployed below.

Let \(\biguplus \) denote a countably up-directed union, in Sets or in \(\mathcal{W} \). For \(A \subseteq \text{Sets or } \mathcal{W} \), \(A \in \biguplus A \) means there is a family \(A' \) of \(A \)-subobjects of \(A \) with \(A = \biguplus A' \).

For \(I \in \text{Sets} \), let \(\mathcal{P}_0(I) = \{ J \subseteq I \mid |J| \leq \omega \} \). Then \(I = \biguplus \mathcal{P}_0(I) \). For \(A \in \mathcal{W} \), \(A = \biguplus \{ B \leq A \mid |B| \leq \omega \} \). From the form of the \(F(I) \), and the fact that any \(f \in C(\mathbb{R}^I) \) factors through a countable subproduct, we have \(F(I) = \biguplus \{ F(J) \mid J \in \mathcal{P}_0(I) \} \).
A crucial ingredient to what we have said so far, and necessary later, is the Yosida representation of W-objects:

\mathbb{R} is the real numbers, and $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm\infty\}$ under the obvious topology and order. For X a topological space, $D(X) = \{ f \in C(X, \overline{\mathbb{R}}) \mid f^{-1}\mathbb{R}$ dense in $X\}$. This is a lattice containing $C(X)$, but has only partly defined \oplus. For $A \in W$, $A \leq D(X)$ means $A \cong A' \subseteq D(X)$, where A' is closed under the partly defined data required to make $A' \in W$.

The Yosida representation of $A \in W$ (see [12]) says:

1. $A \leq D(YA)$ for a unique compact Hausdorff YA for which A separates the points.

2. For $A \stackrel{φ}{\rightarrow} B \in W$, there is a unique continuous $YA \stackrel{φ}{\leftarrow} YB$ for which $φ(a) = a \circ φ \forall a \in A$. If $φ$ is onto, then $φ$ is an embedding, $YA \leftrightarrow YB$.

The Yosida representation of $C(X)$, X Tychonoff, is Čech-Stone extension $C(X) \ni f \mapsto βf \in D(βX)$.

2 Main Theorem

We expand on Theorem 1.1.

Theorem 2.1. Suppose (\mathcal{R}, r) is an H-closed monoreflection in W. For $A \in W$, the following are equivalent:

1. $A \in \mathcal{R}$.
2. There is I with a surjection $rF(I) \rightarrow A$.
3. $A \in \text{inj} \{ F(\omega) \leq rF(\omega) \}$.
4. Each countable $B \leq A$ (i_B labels the inclusion) has the property

 $$\text{there is } rB \xrightarrow{i_B} A \text{ with } i_B rB = i_B. \quad (*)$$

5. $A \in \bigcup_{\omega} H\{rF(\omega)\}$.
6. $A \in \bigcup \mathcal{R}$.

Proof. (1)\Leftrightarrow(2) is quite general: For (1) \implies (2), take $F(I) \rightarrow A$. We have $rF(I) \xrightarrow{φ} A$ with $φ rF(I) = φ$ because $A \in \mathcal{R}$, and $φ$ is a surjection.
(2) \implies (1) because \(\mathcal{R} = H\mathcal{R} \).
(1) \iff (3) is exactly Theorem 1.1.
(1) \implies (2) is obvious (in fact, for any \(B \leq A \)).
(4) \implies (5). We isolate two steps of the proof, just assuming \((\mathcal{R}, r)\) monoreflective (not assuming \((H\mathcal{R} = \mathcal{R})\). Proofs of these items are obvious.

Step (i). Suppose \(B \in \mathcal{W} \) and \(|B| \leq \omega \). Take any \(F(\omega) \xrightarrow{\varphi} B \). We then take \(\varphi \) as shown
\[
\begin{array}{c}
F(\omega) \leq rF(\omega) \\
\varphi \\
B \\
rB
\end{array}
\]
commuting, so \(B \leq \varphi(rF(\omega)) \leq rB \).

Step (ii). Suppose \(A = \bigcup \alpha B_\alpha \), where each \(B_\alpha \leq A \) has the property (*) in (4), with corresponding \(\tilde{r}_B \). Then \(A = \bigcup \alpha \tilde{r}_B \tilde{r}B_\alpha \).

Now suppose \(H\mathcal{R} = \mathcal{R} \). In Step (i), we then have \(\varphi(rF(\omega)) \in \mathcal{R} \), thus \(\overline{\varphi}_R(rF(\omega)) = rB \), because the embedding \(B \leq rB \) is “minimal to \(\mathcal{R} \)” (see [10]). This makes \(rB \in H\{rF(\omega)\} \).

Finally: Write \(A = \bigcup \alpha \{ B \mid B \leq A, |B| \leq \omega \} \). By (4), step (ii) applies and \(A = \bigcup \alpha \{ \tilde{r}_B(rB) \mid B \leq A, |B| \leq \omega \} \). Since each \(rB \in H\{rF(\omega)\} \), also each \(\tilde{r}_B(rB) \in H\{rF(\omega)\} \). Thus, (5).

(5) \implies (6) because \(H\mathcal{R} = \mathcal{R} \).

(6) \implies (3) This amounts to showing that \(\text{inj} \{ F(\omega) \leq rF(\omega) \} \) is closed under \(\bigcup \), since we already noted (3) \iff (1). So suppose \(A = \bigcup \alpha R_\alpha \), \(R_\alpha = \text{inj} \{ F(\omega) \leq rF(\omega) \} \), and take \(F(\omega) \xrightarrow{\varphi} A \). Since \(|F(\omega)| = \omega \), also \(|\varphi(F(\omega))| \leq \omega \), and \(\varphi(F(\omega)) \leq \text{some } R_\alpha \). So there is \(rF(\omega) \xrightarrow{\varphi} R_\alpha \in A \) extending \(\varphi \).

We now examine 2.1 for the important cases \(r = c^3 \) and \(r = \beta \).

3 \quad c^3 (Closed under countable composition)

"c^3" stands for “closed under countable composition”, originally studied in [13]. The definition goes as follows.

Each \(A \in \mathcal{W} \) has its Yosida representation \(A \leq D(\mathcal{Y}A) \). A sequence \(a_1, a_2, \ldots \) from \(A \) has \(\bigcap a^{-1}_i \mathcal{R} \) dense in \(\mathcal{Y}A \) (Baire Category Theorem) and
let \(\langle a_n \rangle = \bigcap_n a_n^{-1}\mathbb{R} \to \mathbb{R}^\omega \) be the function defined by \(\pi_j(\langle a_n \rangle(x)) = a_j(x) \) \(\forall j \). For \(f \in C(\mathbb{R}^\omega) \), we have the composition \(\bigcap_m a_n^{-1}(\mathbb{R}) \overset{\langle a_n \rangle}{\to} \mathbb{R}^\omega \overset{f}{\to} \mathbb{R} \). \(A \) is \(c^3 \) if each such \(f \circ \langle a_n \rangle \) extends over \(\mathcal{Y} \) to an element of \(A \).

\(c^3 \) will denote either the object class, or reflections \(A \leq c^3 A \). We assemble known facts.

Theorem 3.1. (Each item without specific reference can be located in [11] §1, with reference to original sources.)

(a) ([13]). \(A \) is \(c^3 \) if and only if \(A = \bigcup \{ C(\bigcap_n a_n^{-1}\mathbb{R}) \mid a_1, a_2, \cdots \in A \} \) if and only if there is a Tychonoff space \(X \) and a surjection \(C(X) \to A \).

(b) \(A \) is \(c^3 \) if and only if \(A \approx C(\mathcal{L}) \), \(\mathcal{L} \) a locale (aka, the \(f \)-ring of real-valued continuous functions on a frame \(\mathcal{L} \)).

(c) \(c^3 \) is monoreflective, with reflections \(A \leq c^3 A = \lim\{ C(\bigcap_n a_n^{-1}\mathbb{R}) \mid a_1, a_2, \cdots \in A \} \), and is an essential monoreflection (meaning that \(A \leq c^3 A \) is a essential monic).

The class \(c^3 \) is \(H \)-closed.

(d) \(c^3 \) is the largest essential monoreflection (with the smallest class of objects).

(e) \(\forall \) set \(I \), \(c^3 F(I) = C(\mathbb{R}^I) = \bigcup \{ C(\mathbb{R}^J) \mid J \in \mathcal{P}_0(I) \} \).

We consider the meaning of 2.1 (4) for \(r = c^3 \).

A Tychonoff space \(X \) is called Čech-complete if \(X \) is \(G_\delta \) in \(\beta X \) (see [7]). We abbreviate “Lindelöf and Čech-complete” to “LČ”.

Theorem 3.2. If \(X \) is LČ, then \(H\{C(X)\} = \{C(T) \mid T \text{ closed in } X \} \).

Proof. First note: For any Tychonoff space \(X \) and \(T \subseteq X \), the restriction \(C(X) \ni f \mapsto f|T \in C(T) \) defines a \(W \)-homomorphism \(C(X) \overset{\rho_T}{\to} C(T) \), and \(\rho_T \) is onto if and only if \(T \) is \(C \)-embedded in \(X \) (which entails the closure \(\overline{T} \) is \(C \)-embedded.) (See [8].)

Now suppose \(X \) is LČ. Then \(X \) is normal, so any closed \(T \) is \(C \)-embedded, thus \(C(T) \in H\{C(X)\} \).

For the converse, we shall use details of the Yosida representation; see §1. Any \(A \overset{\varphi}{\to} B \) has the quasi-dual embedding \(\mathcal{Y} A \leftarrow \mathcal{Y} B \) for which \(\varphi(a) = a|\mathcal{Y} B \) \(\forall a \in A \). This entails \(a^{-1}\mathbb{R} \cap \mathcal{Y} B \) dense in \(\mathcal{Y} B \), and thus \(\forall a_1, a_2, \cdots \in A \), \(\bigcap_n a_n^{-1}(\mathbb{R}) \) \(\cap \mathcal{Y} B = \bigcap_n (a_n^{-1}\mathbb{R} \cap \mathcal{Y} B) \) dense in \(\mathcal{Y} B \) (Baire Category Theorem).
Now, the Yosida representation of a $C(X)$ is extension over Čech-Stone compactification βX, as $C(X) \approx \{ \beta a \mid a \in C(X) \}$. And X is LČ if and only if $\exists a_1, a_2, \cdots \in C(X)$ with $X = \bigcap_n (\beta a_n)^{-1} \mathbb{R}$.

Suppose X is LČ, and $C(X) \xrightarrow{\varphi} B$ with Yosida dual embedding $\beta X \hookrightarrow \mathcal{Y}B$. Take $\{a_n\} \subseteq C(X)$ with $X = \bigcap_n (\beta a_n)^{-1} \mathbb{R}$ as above. Then $T = X \cap \mathcal{Y}B = \bigcap_n (\beta a_n)^{-1} \mathbb{R} \cap \mathcal{Y}B$ is dense in $\mathcal{Y}B$. (So we can view $B \leq C(T)$), and closed in the normal X (thus C-embedded) so $B = C(T)$. \hfill \Box

Summing up, we interpret Theorem 2.1 for c^3 through Theorem 3.2 and some of Theorem 3.1.

Corollary 3.3. For $A \in \mathcal{W}$, the following are equivalent:

1. $A \in c^3$.
2. There is I with a surjection $C(\mathbb{R}^I) \twoheadrightarrow A$.
3. $A \in \text{inj}\{ F(\omega) \leq C(\mathbb{R}^\omega) \}$.
4. For any countable $B \leq A$, also $c^3 B \leq A$.
5. $A \subset \bigcup \{ C(T) \mid T \text{ closed in } \mathbb{R}^\omega \}$.
6. $A \in \bigcup c^3$.

Proof. This is all quite immediate. We just note: (4) is just Theorem 2.1(5), using Theorem 3.2 for $X = \mathbb{R}^\omega$.

(4) is the statement that in Theorem 2.1(4) the 7_B are one-to-one. This follows solely from the essentiality of the reflection maps $B \leq c^3 B$. \hfill \Box

Remark 3.4.

(a) $A \subset \bigcup c^3 \iff A \subset \bigcup c^3$. An example is $A = \{ f \in C(\mathbb{R}^\omega) \mid \exists \text{ finite } F \subseteq \omega \text{ s.t. } f = \overline{f} \circ \pi_F \}$.

(b) Corollary 3.3 (3) and (5) are to be compared with Theorem 3.1(a). The X in Theorem 3.1(a) is $\mathcal{Y}A \times \mathbb{N}$.

(c) We note [7], p. 74: T is (\approx) a closed subspace of \mathbb{R}^ω if and only if T is completely metrizable and separable.

(d) In Corollary 3.3 (5), the $A = \bigcup C(T)$’s is a countably directed direct limit, $A = \operatorname{lim}_{\leftarrow \omega} C(T)$’s. The Yosida functor converts this to an inverse limit $\mathcal{Y}A = \operatorname{lim}_{\leftarrow \omega} \beta T$’s. Using $A = C(X)$ with X real compact, and a little fiddling yields $X = \operatorname{lim}_{\leftarrow \omega} T$’s, and if X is compact, so are the T’s. This is more or less a result of Pasynkov [15]. See also [7], p. 220.

(e) An essential reflection (\mathcal{R}, r) has $r \leq c^3$ (Theorem 3.1 (d)), and if $\mathcal{R} = H\mathcal{R}$, Corollary 3.3 holds mutatis mutandis. For $r F(\omega) = S$ (see
the second paragraph after Theorem 1.1), we have $F(\omega) \leq S \leq C(\mathbb{R}^\omega)$, and “$\sigma$ epic” is automatic. Examples of this are: $\mathcal{R} = \text{“rings”}$ (\mathcal{W}-objects A with a compatible f-ring multiplication with identity the \mathcal{W}-unit e_A), vector lattices, algebras, For example: for rings, $rF(\omega)$ is the sub-f-ring of $C(\mathbb{R}^\omega)$ generated by $F(\omega)$. In Corollary 3.3 (4), each $C(T)$ is to be replaced by the set of restrictions $rF(\omega)|T$. An additional feature of any essential r is that $rF(\omega)|T = r(F(\omega)|T)$.

(f) The present paper began with an analysis of a version of Corollary 3.3 and some related matters, in the view of a c^2-object as the f-ring of real-valued continuous functions on a frame. As such, it was reported in [6]: where c^2 was taken as condition 3.3(3), thus avoiding a reference to the Yosida representation and the reflection is then given an explicit frame-theoretic form. See [4] for details.

4 β (Epicomplete)

E is called epicomplete if $E \xrightarrow{\varphi} \bullet$ monic and epic implies φ an isomorphism. The class of epicomplete objects is denoted EC.

Recall that, for a Tychonoff space X, $B(X)$ denotes the \mathcal{W}-object of real-valued Baire functions on X.

We summarize known features of EC, prior to the interpretation of Theorem 2.1 for $\mathcal{R} = EC$.

Theorem 4.1. (Each item without specific reference can be located in [11], with reference to original sources.)

(a) $E \in EC$ if and only if E is σ-complete both conditionally, and laterally if and only if $E \approx D(X)$ with X basically disconnected (the X is $\mathcal{Y}E$). Thus, any $B(X) \in EC$.

(b) ([3]). $E \approx C(\mathcal{P})$ with \mathcal{P} a P-locale. (Such a \mathcal{P} is the localic intersection of $\{S \mid S$ is dense cozero in $\mathcal{Y}E\}$.)

(c) EC is monoreflective, thus the maximum monoreflection. The reflection of A is $\beta A = B(\mathcal{Y}A)/N$, for a certain σ-ideal N.

EC is H-closed, thus $EC = H\{B(K) \mid K$ compact$\}$.

(d) If X is Lindelöf and Čech-complete, then $\beta C(X) = B(X)$.

(e) For every set I, $\beta F(I) = B(\mathbb{R}^I) = \bigcup_{\omega} B(\mathbb{R}^J) \mid J \in \mathcal{P}_0(I)$.
We now interpret Theorem 2.1. Most of this is the routine writing-down of items in Theorem 2.1 using information in Theorem 4.1. An exception is Theorem 2.1 (5), which says $A \in H\{B(\mathbb{R}^\omega)\}$. “An” epicompletion of $A \in \mathcal{W}$ is an epic $A \leq E$, with $E \in EC$. These are exactly the quotients over A of βA.

Theorem 4.2. Suppose X is $L\check{C}$ (as is \mathbb{R}^ω).

(a) $E \in H\{B(X)\}$ if and only if there is F closed in X such that E is an epicompletion of $C(F)$.

(b) (Note that an F in (a) is again $L\check{C}$.) $C(X)$ has a unique epicompletion if and only if X is discrete and countable (and thus $X \approx \mathbb{N}$, $C(X) \approx C(\mathbb{N})$, is already EC).

(c) If X is not countable discrete, there are many epicompletions of $C(X)$.

Proof. (a) Suppose $E \in H\{B(X)\}$, as $B(X) \overset{\varphi}{\twoheadrightarrow} E$. We have

\[
\begin{array}{c}
C(X) \overset{\beta C}{\leq} \beta C(X) = B(X) \text{ (by Theorem 4.1(d))} \\
\varphi_0 \downarrow \quad \varphi \\
\varphi(C(X)) \overset{e}{\leq} E
\end{array}
\]

where φ_0 is the restriction of φ, e labels the inclusion, and $\varphi \beta C = e \varphi_0$ (obviously), so e is epic (as a second factor of the epic $\varphi \beta C$).

By Theorem 3.2, $\varphi(C(X))$ is the desired $C(F)$.

Suppose F is closed in X and $C(F) \overset{e}{\leq} E$ is an epicompletion. We then have

\[
\begin{array}{c}
C(X) \overset{\beta C}{\leq} \beta C(X) \\
\rho \downarrow \quad \rho \\
C(F) \overset{e}{\leq} E
\end{array}
\]

where ρ is the restriction map described at the beginning of the proof of Theorem 3.2, and then $\exists \rho$ with $\rho \beta C = e \rho$ by the universal mapping property of β.

We have $C(F) \overset{i}{\leq} \bar{\rho}(\beta C(X)) \overset{j}{\leq} E$ (i, j are labels) with $ji = e$. But $\bar{\rho}(\beta C(X)) \in EC$ (by Theorem 4.1(c)), and e is epic, thus also j. So j is equality.
(b) If \(C(X) \approx C(\mathbb{N}) \), already \(C(X) \in EC \), so is its only epicompletion. If \(C(X) \) has a unique epicompletion, it must be \(C(X) \leq B(X) \) (Theorem 4.1 (d)), and this must be an essential embedding (because any \(A \in W \) has a (unique) essential epicompletion ([2], §9)). If \(X \) has a non-void nowhere dense zero-set \(Z \), then the characteristic function \(\chi(Z) \in B(X) \), and there is no \(0 < a \in C(X) \) with \(a \leq \chi(Z) \): \(C(X) \leq B(X) \) is not essential. Thus there is no such \(Z \), so \(X \) is what is called an almost \(P \)-space. But the only almost \(P \)-space which is \(L\overline{C} \) is \(\approx \mathbb{N} \).

(c) See [1] and [2] for several constructions. We omit details.

Referring to Theorem 4.2, let \(\mathcal{ECS}(\mathbb{R}^\omega) \) stand for the family of epicompletions of objects of the form \(C(T) \), for \(T \) closed in \(\mathbb{R}^\omega \).

Summing up, we write down Theorem 2.1 for \(W \overset{\beta}{\rightarrow} EC \) using Theorem 4.2 and some of Theorem 4.1.

Corollary 4.3. For \(A \in W \), the following are equivalent:

1. \(A \in EC \).
2. There is \(I \) with a surjection \(B(\mathbb{R}^I) \twoheadrightarrow A \).
3. \(A \in \text{inj} \{ F(\omega) \leq B(\mathbb{R}^\omega) \} \).
4. Each countable \(B \leq A \), has the property
 \[
 \text{there is } \beta B \overset{i_B}{\rightarrow} A \text{ with } \beta B i_B = i_B. \tag{*}
 \]
5. \(A \in \bigcup \mathcal{ECS}(\mathbb{R}^\omega) \).
6. \(A \in \bigcup EC \).

The comparison of Corollary 4.3 (4) and (5) with Corollary 3.3 (4) and (5), shows a huge difference between \(c^3 \) (or any essential reflection) with \(\beta \) and identifies some special classes of \(EC \) objects which might deserve further study. (It is quite rare that any \(A \leq \beta A \) is essential; see [2], §9.)

We consider the analogue of Corollary 3.3 (4) for \(\beta \). Recall that for \(B \leq A \), \(\beta B \leq A \) means that the \(\overline{i_B} \) in 2.8 (4) is one-to-one.

Theorem 4.4. Suppose \(A \in W \). For every countable \(B \leq A \),

\[
\beta B \leq A \text{ if and only if } A \approx \mathbb{R}^n \text{ for some } n \in \mathbb{N}. \tag{*}
\]
Proof. Notice that either the condition implies $A \in EC$: for $A \in EC$ (or just a vector lattice), $A \approx \mathbb{R}^n$ ($n \in \mathbb{N}$) means $|\mathcal{Y}A| = n$ (and $\mathbb{R}^n = C(\{0, 1, \ldots, n-1\})$).

(\Leftarrow) We omit the easy proof.

(\Rightarrow) We show that $\mathcal{Y}A$ infinite $\implies A$ fails (\ast).

(i) $A = C(\mathbb{N})$ fails (\ast).

(ii) If $A \in EC$ and $\mathcal{Y}A$ is infinite, then there is an embedding $C(\mathbb{N}) \leq A$.

(iii) If $A \in EC$ and $\mathcal{Y}A$ is infinite, then A fails (\ast).

For (i): Let $B \leq C(\mathbb{N})$ be generated by rational multiples of the characteristic functions χ_p of the $p \in \mathbb{N}$. A little thought reveals that the uniform completion $\overline{uB} = c^3B = C(\alpha \mathbb{N})$, where $\alpha \mathbb{N} = \mathbb{N} \cup \{\alpha\}$ the one-point compactification of \mathbb{N}. Then $\beta C(\alpha \mathbb{N}) = B(\alpha \mathbb{N})$ (Theorem 4.1 (d)). Then, the \overline{i}_B is not one-to-one: $\overline{i}_B(\psi_{\alpha}) = 0$.

For (ii): As with any infinite Hausdorff space, there is countable $L = \{x_n\} \subseteq \mathcal{Y}A$ on pairwise disjoint open sets $\{U_n\}$ in $\mathcal{Y}A$ with $U_n \cap L = \{x_n\}$ $\forall n$. We have $L \approx \mathbb{N}$. Since $\mathcal{Y}A$ is basically disconnected, thus zero-dimensional ([8]). The U_n may be chosen clopen, and $\overline{U} \approx \beta \overline{U}$ (Čech-Stone). Choose any $p_0 \in U$, and retract $\mathcal{Y}A \overset{\rho}{\rightarrow} U$ as $\rho(x) = [x, \text{if } x \in U; p_0 \text{ if } x \notin U]$. Since \overline{U} is clopen, ρ is continuous.

Let $f \in C(L)$. Extend to $\overline{f} \in C(U)$ by $f(U_n) = \{f(x_n)\}$. Then extend \overline{f} to $\overline{f} \in D(\beta \overline{U})$ (since $\overline{U} = \beta U$). Now $\overline{f} \circ \rho \in D(\mathcal{Y}A)$ ($(\overline{f} \circ \rho)^{-1} \mathbb{R} = \overline{f}^{-1}(\mathbb{R}) \subseteq \overline{U} - u$, which is nowhere dense). Define $C(L) \overset{\hat{\rho}}{\leq} D(\mathcal{Y}A) \in A$ as $\hat{\rho}(f) = \overline{f} \circ \rho$. Such compositions preserve ℓ-group operations (and multiplication) and constants, so $\hat{\rho}(1) = 1$, and $\hat{\rho} \in \mathcal{W}$.

For (iii): In (ii) we have $C(L) \overset{\hat{i}}{\leq} A$, which we re-name $C(\mathbb{N}) \overset{k}{\leq} A$. In (i), we have countable $B \overset{i_B}{\leq} C(\mathbb{N})$ with \overline{i}_B not 1-1. We have

\[
\begin{array}{ccc}
B & \overset{i_B}{\leq} & C(\mathbb{N}) \\
\beta B & \overset{\overline{i}_B}{\leq} & A \\
\end{array}
\]
with the inclusion $B^j \leq A$ being $j_B = ki_B$ and with $\tilde{i}_B \beta_B = i_B, \tilde{j}_B \beta_B = j_B = ki_B$. Thus $\tilde{j}_B \beta_B = k\tilde{i}_B \beta_B$, so $\tilde{j}_B = k\tilde{i}_B$ since β_B is epic. Since \tilde{i}_B is not one-to-one, neither is \tilde{j}_B.

Let $BS(\mathbb{R}^\omega) \equiv \{B(T) \mid T \text{ dense in } \mathbb{R}^\omega\}$. The analogue of Corollary 3.3(5) for β is the condition

$$A \in \check{\bigcup} \{B(T) \mid T \text{ closed in } \mathbb{R}^\omega\}.$$ (**)

All we have to say is: sometimes this happens, sometimes not.

Remark 4.5. (a) There are A satisfying (**): Obviously, any $B(T)$; less trivially, ([11]) for uncountable I, $B(\mathbb{R}^I) = \check{\bigcup} \{B(\mathbb{R}^J) \mid J \in \mathcal{P}_0(I)\}$.

(b) There are many A failing (**). The countable chain condition, ccc, of a space or \mathcal{W}-object is relevant here. X (resp., A) has ccc if there is no uncountable pairwise disjoint family of non-void open sets in X (respectively, non-zero positive elements in A). A has ccc if and only if $\check{\mathcal{Y}}A$ does (because $\text{coz } A$ is a base in $\check{\mathcal{Y}}A$).

If A has ccc and satisfies (**), then in the Yosida representation $A \approx D(\check{\mathcal{Y}}A)$, each $a \in A$ is locally constant on a dense open subset of $\check{\mathcal{Y}}A$. (If $A = \check{\bigcup} B(T_\alpha)$, then each $B(T_\alpha)$ has ccc, and it follows that T_α is a copy N_α of N. For each α, $C(N_\alpha) = \beta N_\alpha \check{\hookrightarrow} \check{\mathcal{Y}}A$. If $a \in C(N_\alpha)$, then $a" =^" a \circ \tau$ is locally constant on $\tau^{-1}(N_\alpha)$.)

Consider the absolute (projective cover) $[0,1] \xleftarrow{\pi} a[0,1]$. Using irreducibility of π: Since $[0,1]$ has ccc, so do $a[0,1]$, and also $A = D(a[0,1])$. Here $C([0,1]) \leq A$, as $f \mapsto f \circ \pi$. No continuous nonconstant f has $f \circ \pi$ locally constant on a dense subset of $a[0,1]$. Thus A fails (**).

(c) The class EC consists exactly of the $D(X)$, X compact and basically disconnected. The class σBA of σ-complete Boolean algebras consists exactly of the clopen algebras $\text{clop } X$ for the same X [16]. So, the various properties of EC’s considered here have direct translations to σBA. For example, corresponding to 4.6 are the σBA’s of the form $A \in \check{\bigcup} \{B(T) \mid T \text{ closed in } \mathbb{R}^\omega\}, B$ denoting the σ-field of Baire sets.

We leave the subject for now.
Acknowledgement

We thank Mojgan Mahmoudi for assistance in preparation of the paper.

References

Bernhard Banaschewski, Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada.

Anthony W. Hager, Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457, United States of America.

Email: ahager@wesleyan.edu