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Representation of H-closed monoreflections
in archimedean `-groups with weak unit

Bernhard Banaschewski and Anthony W. Hager∗

Communicated by Themba Dube

Abstract. The category of the title is called W. This has all free objects
F (I) (I a set). For an object class A, HA consists of all homomorphic images
of A-objects. This note continues the study of the H-closed monoreflections
(R, r) (meaning HR = R), about which we show (inter alia): A ∈ A if and
only if A is a countably up-directed union from H{rF (ω)}. The meaning
of this is then analyzed for two important cases: the maximum essential
monoreflection r = c3, where c3F (ω) = C(Rω), and C ∈ H{c(Rω)} means
C = C(T ), for T a closed subspace of Rω; the epicomplete, and maximum,
monoreflection, r = β, where βF (ω) = B(Rω), the Baire functions, and
E ∈ H{B(Rω)} means E is an epicompletion (not “the”) of such a C(T ).

1 Introduction

W is the category of archimedean `-groups G with distinguished weak order
unit eG, and morphisms G ϕ−→ H the `-group homomorphisms with ϕ(eG) =
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eH . We compress the discussion in §1 of [11], which see for more detail.
“A ≤ B” means A is a W-subobject of B.

The forgetful functor W → Sets has the left adjoint F . An F (I) is the
free object on the set I, and this is theW-subobject of RRI generated by the
constant function 1, and all projections πi : RI → R (i 7→ πi is the “insertion
of generators” I ↪→ F (I)).

A full subcategory R of W is monoreflective if ∀A ∈ W ∃ monic A rA−→
rA, rA ∈ R, with the property: ∀A ϕ−→ R, R ∈ R, ∃! rA ϕ−→ R with ϕrA = ϕ.
We usually write A ≤ rA for the rA. We abuse language and notation by
saying as convenient (R, r) or R, or r, is a monoreflection.

The class of monoreflections is ordered by: r ≤ s means ∀A ∃ monic f
with sA = frA.

Let M m−→ M ′ ∈ W. Then, A ∈ inj {m} means: ∀M ϕ−→ A ∃M ′ ϕ′−→ A
with ϕ′m = ϕ.

“ω” stands for the natural numbers, or any countable set, or the ordinal
or cardinal.

Theorem 1.1 ([11], 2.7). Suppose (R, r) is an H-closed monoreflection.
Then R = inj {F (ω) ≤ rF (ω)}.

Theorem 1.1 is one of the main results of [11] and is the cornerstone
of that paper. It devolves from categorical generalities, and many special
features ofW, some of which we describe below, and some later when needed.

Another main result of [11] is the characterization of the rF (ω) in The-

orem 1.1. Namely, 3.6 there says these are exactly the S with F (ω)
σ
≤ S ≤

B(Rω) (B the Baire functions), with σ epic and S ◦Sω = S (that is, ∀s and
countable {sn} from S, the function Rω 〈sn〉−−→ Rω s−→ R lies in S). The cases
for c3 and β are mentioned in the Abstract, and will be deployed below.

Let
ω
↑⋃ denote a countably up-directed union, in Sets or in W. For A ⊆

Sets or W, A ∈
ω
↑⋃A means there is a family A′ of A-subobjects of A with

A =
ω
↑⋃A′.

For I ∈ Sets, let P0(I) = {J ⊆ I | |J | ≤ ω}. Then I =
ω
↑⋃P0(I). For

A ∈ W, A =
ω
↑⋃{B ≤ A | |B| ≤ ω}. From the form of the F (I), and the

fact that any f ∈ C(RI) factors through a countable subproduct, we have
F (I) =

ω
↑⋃{F (J) | J ∈ P0(I)}.
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A crucial ingredient to what we have said so far, and necessary later, is
the Yosida representation of W-objects:
R is the real numbers, and R = R ∪ {±∞} under the obvious topol-

ogy and order. For X a topological space, D(X) = {f ∈ C(X,R) |
f−1R dense in X}. This is a lattice containing C(X), but has only partly

defined +. For A ∈ W, A ≤ D(X) means A
W≈ A′ ⊆ D(X), where A′ is

closed under the partly defined data required to make A′ ∈ W.
The Yosida representation of A ∈ W (see [12]) says:

(1) A ≤ D(YA) for a unique compact Hausdorff YA for which A separates
the points.

(2) For A ϕ−→ B ∈ W, there is a unique continuous YA Yϕ←−− YB for which
ϕ(a) = a ◦ Yϕ ∀a ∈ A. If ϕ is onto, then Yϕ is an embedding,
YA←↩ YB.

The Yosida representation of C(X), X Tychonoff, is Čech-Stone exten-
sion C(X) 3 f 7→ βf ∈ D(βX).

2 Main Theorem

We expand on Theorem 1.1.

Theorem 2.1. Suppose (R, r) is an H-closed monoreflection in W. For
A ∈ W, the following are equivalent:

(1) A ∈ R.
(2) There is I with a surjection rF (I)� A.
(3) A ∈ inj {F (ω) ≤ rF (ω)}.
(4) Each countable B

iB≤ A (iB labels the inclusion) has the property

there is rB
iB99K A with iBrB = iB. (∗)

(5) A ∈
ω
↑⋃H{rF (ω)}.

(6) A ∈
ω
↑⋃R.

Proof. (1)⇔(2) is quite general: For (1) =⇒ (2), take F (I)
ϕ
−� A. We have

rF (I)
ϕ−→ A with ϕrF (I) = ϕ because A ∈ R, and ϕ is a surjection.
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(2) =⇒ (1) because R = HR.
(1)⇔(3) is exactly Theorem 1.1.
(1) =⇒ (2) is obvious (in fact, for any B ≤ A).
(4) =⇒ (5). We isolate two steps of the proof, just assuming (R, r)

monoreflective (not assuming (HR = R). Proofs of these items are obvious.
Step (i). Suppose B ∈ W and |B| ≤ ω. Take any F (ω)

ϕ
−� B. We then

take ϕ as shown
F (ω)

ϕ
����

≤rF (ω)

ϕ

��
B ≤ rB

commuting, so B ≤ ϕ(rF (ω)) ≤ rB.
Step (ii). Suppose A =

ω
↑⋃
αBα, where each Bα ≤ A has the property (∗)

in (4), with corresponding iBα . Then A =
ω
↑⋃
α iBα(rBα).

Now suppose HR = R. In Step (i), we then have ϕR(rF (ω)) ∈ R,
thus ϕR(rF (ω)) = rB, because the embedding B ≤ rB is “minimal to R”
(see [10]). This makes rB ∈ H{rF (ω)}.

Finally: Write A =
ω
↑⋃{B | B ≤ A, |B| ≤ ω}. By (4), step (ii) applies

and A =
ω
↑⋃{iB(rB) | B ≤ A, |B| ≤ ω}. Since each rB ∈ H{rF (ω)}, also

each iB(rB) ∈ H{rF (ω)}. Thus, (5).
(5) =⇒ (6) because HR = R.
(6) =⇒ (3) This amounts to showing that inj {F (ω) ≤ rF (ω)} is closed

under
ω
↑⋃, since we already noted (3) ⇐⇒ (1). So suppose A =

ω
↑⋃Rα,

Rα = inj {F (ω) ≤ rF (ω)}, and take F (ω)
ϕ−→ A. Since |F (ω)| = ω, also

|ϕ(F (ω))| ≤ ω, and ϕ(F (ω)) ≤ some Rα. So there is rF (ω)
ϕ−→ Rα ∈ A

extending ϕ.

We now examine 2.1 for the important cases r = c3 and r = β.

3 c3 (Closed under countable composition)

“c3” stands for “closed under countable composition”, originally studied in
[13]. The definition goes as follows.

Each A ∈ W has its Yosida representation A ≤ D(YA). A sequence
a1, a2, . . . from A has

⋂
a−1R dense in YA (Baire Category Theorem) and
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let 〈an〉 =
⋂
n a
−1
n R → Rω be the function defined by πj(〈an〉(x)) = aj(x)

∀j. For f ∈ C(Rω), we have the composition
⋂
m a
−1
n (R)

〈an〉−−→ Rω f−→ R. A
is c3 if each such f ◦ 〈an〉 extends over YA to an element of A.

c3 will denote either the object class, or reflectionsA ≤ c3A. We assemble
known facts.

Theorem 3.1. (Each item without specific reference can be located in [11]
§1, with reference to original sources.)

(a) ([13]). A is c3 if and only if A =
ω
↑⋃{C(

⋂
n a
−1
n R) | a1, a2, · · · ∈ A} if

and only if there is a Tychonoff space X and a surjection C(X)� A.
(b) A is c3 if and only if A ≈ C(L), L a locale (aka, the f -ring of

real-valued continuous functions on a frame L).
(c) c3 is monoreflective, with reflections A ≤ c3A = lim−→{C(

⋂
n a
−1
n R) |

a1, a2, . . . ∈ A}, and is an essential monoreflection (meaning that A ≤ c3A
is a essential monic).

The class c3 is H-closed.
(d) c3 is the largest essential monoreflection (with the smallest class of

objects).
(e) ∀ set I, c3F (I) = C(RI) =

ω
↑⋃{C(RJ) | J ∈ P0(I)}.

We consider the meaning of 2.1 (4) for r = c3.
A Tychonoff space X is called Čech-complete if X is Gδ in βX (see [7]).
We abbreviate “Lindelöf and Čech-complete” to “LČ”.

Theorem 3.2. If X is LČ, then H{C(X)} = {C(T ) | T closed in X}.

Proof. First note: For any Tychonoff space X and T ⊆ X, the restriction
C(X) 3 f 7→ f |T ∈ C(T ) defines a W-homomorphism C(X)

ρT−→ C(T ), and
ρT is onto if and only if T is C-embedded in X (which entails the closure T
is C-embedded.) (See [8].)

Now supposeX is LČ. ThenX is normal, so any closed T is C-embedded,
thus C(T ) ∈ H{C(X)}.

For the converse, we shall use details of the Yosida representation; see
§1. Any A

ϕ
−� B has the quasi-dual embedding YA ←↩ YB for which

ϕ(a) = a|YB ∀a ∈ A. This entails a−1R ∩ YB dense in YB, and thus
∀a1, a2, · · · ∈ A,

(⋂
n a
−1
n (R)

)
∩ YB =

⋂
n(a−1

n R ∩ YB) dense in YB (Baire
Category Theorem).
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Now, the Yosida representation of a C(X) is extension over Čech-Stone
compactification βX, as C(X) ≈ {βa | a ∈ C(X)}. And X is LČ if and
only if ∃a1, a2, · · · ∈ C(X) with X =

⋂
n(βan)−1R.

Suppose X is LČ, and C(X)
ϕ
−� B with Yosida dual embedding βX ←↩

YB. Take {an} ⊆ C(X) with X =
⋂
n(βan)−1R as above. Then T =

X ∩YB =
⋂
n(βan)−1R∩YB is dense in YB. (So we can view B ≤ C(T )),

and closed in the normal X (thus C-embedded) so B = C(T ).

Summing up, we interpret Theorem 2.1 for c3 through Theorem 3.2 and
some of Theorem 3.1.

Corollary 3.3. For A ∈ W, the following are equivalent:
(1) A ∈ c3.
(2) There is I with a surjection C(RI)� A.
(3) A ∈ inj {F (ω) ≤ C(Rω)}.
(4) For any countable B ≤ A, also c3B ≤ A.
(5) A ⊆

ω
↑⋃{C(T ) | T closed in Rω}.

(6) A ∈
ω
↑⋃ c3.

Proof. This is all quite immediate. We just note: (4) is just Theorem 2.1(5),
using Theorem 3.2 for X = Rω.

(4) is the statement that in Theorem 2.1(4) the iB are one-to-one. This
follows solely from the essentiality of the reflection maps B ≤ c3B.

Remark 3.4. (a) A ∈ ↑⋃ c3 6=⇒ A ∈
ω
↑⋃ c3. An example is A = {f ∈

C(Rω) | ∃ finite F ⊆ ω s.t. f = f ◦ πF }.
(b) Corollary 3.3 (3) and (5) are to be compared with Theorem 3.1(a).

The X in Theorem 3.1(a) is YA× N.
(c) We note [7], p. 74: T is (≈) a closed subspace of Rω if and only if T

is completely metrizable and separable.
(d) In Corollary 3.3 (5), the A =

ω
↑⋃C(T )’s is a countably directed direct

limit, A = lim−→ω
C(T )’s. The Yosida functor converts this to an inverse limit

YA = lim←−ω βT ’s. Using A = C(X) with X real compact, and a little fiddling
yields X = lim←−ω T ’s, and if X is compact, so are the T ’s. This is more or
less a result of Pasynkov [15]. See also [7], p. 220.

(e) An essential reflection (R, r) has r ≤ c3 (Theorem 3.1 (d)), and
if R = HR, Corollary 3.3 holds mutatis mutandis. For rF (ω) = S (see
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the second paragraph after Theorem 1.1), we have F (ω)
σ
≤ S ≤ C(Rω),

and “σ epic” is automatic. Examples of this are: R = “rings” (W-objects A
with a compatible f -ring multiplication with identity theW-unit eA), vector
lattices, algebras, . . . . For example: for rings, rF (ω) is the sub-f -ring of
C(Rω) generated by F (ω). In Corollary 3.3 (4), each C(T ) is to be replaced
by the set of restrictions rF (ω)|T . An additional feature of any essential r
is that rF (ω)|T = r(F (ω)|T ).

(f) The present paper began with an analysis of a version of Corollary
3.3 and some related matters, in the view of a c3-object as the f -ring of
real-valued continuous functions on a frame. As such, it was reported in [6]:
where c3 was taken as condition 3.3(3), thus avoiding a reference to the
Yosida representation and the reflection is then given an explicit frame-
theoretic form. See [4] for details.

4 β (Epicomplete)

E is called epicomplete if E ϕ−→ • monic and epic implies ϕ an isomorphism.
The class of epicomplete objects is denoted EC.

Recall that, for a Tychonoff space X, B(X) denotes the W-object of
real-valued Baire functions on X.

We summarize known features of EC, prior to the interpretation of The-
orem 2.1 for R = EC.

Theorem 4.1. (Each item without specific reference can be located in [11],
with reference to original sources.)

(a) E ∈ EC if and only if E is σ-complete both conditionally, and later-
ally if and only if E ≈ D(X) with X basically disconnected (the X is YE).
Thus, any B(X) ∈ EC.

(b) ([3]). E ≈ C(P) with P a P -locale. (Such a P is the localic inter-
section of {S | S is dense cozero in YE}.)

(c) EC is monoreflective, thus the maximum monoreflection. The reflec-
tion of A is βA = B(YA)/N , for a certain σ-ideal N .

EC is H-closed, thus EC = H{B(K) | K compact}.
(d) If X is Lindelöf and Čech-complete, then βC(X) = B(X).
(e) For every set I, βF (I) = B(RI) =

ω
↑⋃{B(RJ) | J ∈ P0(I)}.
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We now interpret Theorem 2.1. Most of this is the routine writing-down
of items in Theorem 2.1 using information in Theorem 4.1. An exception is
Theorem 2.1 (5), which says A ∈ H{B(Rω)}. “An” epicompletion of A ∈ W
is an epic A ≤ E, with E EC. These are exactly the quotients over A of
βA.

Theorem 4.2. Suppose X is LČ (as is Rω).
(a) E ∈ H{B(X)} if and only if there is F closed in X such that E is

AN epicompletion of C(F ).
(b) (Note that an F in (a) is again LČ.) C(X) has a unique epicomple-

tion if and only if X is discrete and countable (and thus X ≈ N, C(X) ≈
C(N), is already EC).

(c) If X is not countable discrete, there are many epicompletions of
C(X).

Proof. (a) Suppose E ∈ H{B(X)}, as B(X)
ϕ
−� E. We have

C(X)

ϕ0

����

βC(X) =
βC≤ B(X)

ϕ

����
ϕ(C(X))

e
≤ E

(by Theorem 4.1(d))

where ϕ0 is the restriction of ϕ, e labels the inclusion, and ϕβC = eϕ0

(obviously), so e is epic (as a second factor of the epic ϕβC).
By Theorem 3.2, ϕ(C(X)) is the desired C(F ).

Suppose F is closed in X and C(F )
e
≤ E is an epicompletion. We then

have

C(X)

ρ
����

βC≤ βC(X)

ρ
����

C(F )
e
≤ E

where ρ is the restriction map described at the beginning of the proof of
Theorem 3.2, and then ∃ρ with ρβC = eρ by the universal mapping property
of β.

We have C(F )
i
≤ ρ(βC(X))

j
≤ E (i, j are labels) with ji = e. But

ρ(βC(X)) ∈ EC (by Theorem 4.1(c)), and e is epic, thus also j. So j is
equality.
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(b) If C(X) ≈ C(N), already C(X) ∈ EC, so is its only epicompletion.
If C(X) has a unique epicompletion, it must be C(X) ≤ B(X) (Theorem

4.1 (d)), and this must be an essential embedding (because any A ∈ W has
a (unique) essential epicompletion ( [2], §9)). If X has a non-void nowhere
dense zero-set Z, then the characteristic function χ(Z) ∈ B(X), and there
is no 0 < a ∈ C(X) with a ≤ χ(Z): C(X) ≤ B(X) is not essential. Thus
there is no such Z, so X is what is called an almost P -space. But the only
almost P -space which is LČ is (≈) N.

(c) See [1] and [2] for several constructions. We omit details.

Referring to Theorem 4.2, let ECS(Rω) stand for the family of epicom-
pletions of objects of the form C(T ), for T closed in Rω.

Summing up, we write down Theorem 2.1 for W β−→ EC using Theorem
4.2 and some of Theorem 4.1.

Corollary 4.3. For A ∈ W, the following are equivalent:
(1) A ∈ EC.
(2) There is I with a surjection B(RI)� A.
(3) A ∈ inj {F (ω) ≤ B(Rω)}.
(4) Each countable B

iB≤ A, has the property

there is βB iB−→ A with iBβB = iB. (∗)

(5) A ∈
ω
↑⋃ ECS(Rω).

(6) A ∈
ω
↑⋃EC.

The comparison of Corollary 4.3 (4) and (5) with Corollary 3.3 (4) and
(5), shows a huge difference between c3 (or any essential reflection) with β
and identifies some special classes of EC objects which might deserve further
study. (It is quite rare that any A ≤ βA is essential; see [2], §9.)

We consider the analogue of Corollary 3.3 (4) for β. Recall that for
B ≤ A, βB ≤ A means that the iB in 2.8 (4) is one-to-one.

Theorem 4.4. Suppose A ∈ W. For every countable B ≤ A,

βB ≤ A if and only if A ≈ Rn for some n ∈ N. (∗)
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Proof. Notice that either the condition implies A ∈ EC: for A ∈ EC
(or just a vector lattice), A ≈ Rn (n ∈ N) means |YA| = n (and Rn =
C({0, 1, . . . , n− 1})).

(⇐=) We omit the easy proof.
(=⇒) We show that YA infinite =⇒ A fails (∗).

(i) A = C(N) fails (∗).

(ii) If A ∈ EC and YA is infinite, then there is an embedding C(N) ≤ A.

(iii) If A ∈ EC and YA is infinite, then A fails (∗).

For (i): Let B ≤ C(N) be generated by rational multiples of the charac-
teristic functions χp of the p ∈ N. A little thought reveals that the uniform
completion uB = c3B = C(αN), where αN = N ∪ {α} the one-point com-
pactification of N. Then βC(αN) = B(αN) (Theorem 4.1 (d)). Then, the
iB is not one-to-one: iB(ψα) = 0.

For (ii): As with any infinite Hausdorff space, there is countable L =
{xn} ⊆ YA on pairwise disjoint open sets {Un} in YA with Un∩L = {xn} ∀n.
We have L ≈ N. Since YA is basically disconnected, thus zero-dimensional
( [8]). The Un may be chosen clopen, and U ≈ βŨ (Čech-Stone). Choose
any p0 ∈ U , and retract YA

ρ
−� U as ρ(x) = [x, if x ∈ U ; p0 if x /∈ U ].

Since U is clopen, ρ is continuous.
Let f ∈ C(L). Extend to f ∈ C(U) by f(Un) = {f(xn)}. Then extend f

to f ∈ D(βU) (since U = βU). Now f ◦ρ ∈ D(YA) ((f ◦ρ)−1R = f
−1

(R) ⊆
U − u, which is nowhere dense). Define C(L)

ρ̃
≤ D(YA) ∈ A as ρ̃(f) =

f ◦ ρ. Such compositions preserve `-group operations (and multiplication)
and constants, so ρ̃(1) = 1, and ρ̃ ∈ W.

For (iii): In (ii) we have C(L)
ρ̃
≤ A, which we re-name C(N)

k
≤ A. In (i),

we have countable B
iB≤ C(N) with iB not 1-1. We have

B

βB
��

iB≤ c(N)
k
≤ A

βB

iB

<<

jB

66
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with the inclusion B
jB≤ A being jB = kiB and with iBβB = iB, jBβB =

jB = kiB. Thus jBβB = kiBβB, so jB = kiB since βB is epic. Since iB is
not one-to-one, neither is jB.

Let BS(Rω) ≡ {B(T ) | T dense in Rω}. The analogue of Corollary
3.3(5) for β is the condition

A ∈
ω
↑⋃{B(T ) | T closed in Rω}. (∗∗)

All we have to say is: sometimes this happens, sometimes not.

Remark 4.5. (a) There are A satisfying (∗∗): Obviously, any B(T ); less
trivially, ([11]) for uncountable I, B(RI) =

ω
↑⋃{B(RJ) | J ∈ P0(I)}.

(b) There are many A failing (∗∗). The countable chain condition, ccc,
of a space or W-object is relevant here. X (resp., A) has ccc if there is no
uncountable pairwise disjoint family of non-void open sets inX (respectively,
non-zero positive elements in A). A has ccc if and only if YA does (because
cozA is a base in YA).

If A has ccc and satisfies (∗∗), then in the Yosida representation A ≈
D(YA), each a ∈ A is locally constant on a dense open subset of YA. (If
A =

ω
↑⋃B(Tα), then each B(Tα) has ccc, and it follows that Tα is a copy Nα

of N. For each α, C(Nα) = βNα
c̃�− YA). If a ∈ C(Nα), then a“ =′′ a ◦ τ is

locally constant on τ−1(Nα).)
Consider the absolute (projective cover) [0, 1]

π�− a[0, 1]. Using irre-
ducibility of π: Since [0, 1] has ccc, so do a[0, 1], and also A = D(a[0, 1]).
Here C([0, 1]) ≤ A, as f 7→ f ◦ π. No continuous nonconstant f has f ◦ π
locally constant on a dense subset of a[0, 1]. Thus A fails (∗∗).

(c) The class EC consists exactly of the D(X), X compact and basi-
cally disconnected. The class σBA of σ-complete Boolean algebras consists
exactly of the clopen algebras clopX for the same X [16]. So, the various
properties of EC’s considered here have direct translations to σBA. For
example, corresponding to 4.6 are the σBA’s of the form A ∈

ω
↑⋃{B(T ) |

T closed in Rω}, B denoting the σ-field of Baire sets.

We leave the subject for now.
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