• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Categories and General Algebraic Structures with Applications
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 11 (2019)
Volume Volume 10 (2019)
Volume Volume 9 (2018)
Volume Volume 8 (2018)
Volume Volume 7 (2017)
Volume Volume 6 (2017)
Volume Volume 5 (2016)
Volume Volume 4 (2016)
Volume Volume 3 (2015)
Volume Volume 2 (2014)
Volume Volume 1 (2013)
Issue Issue 1
Gould, V., Zenab, R. (2013). Semigroups with inverse skeletons and Zappa-Sz$\acute{\rm e}$p products. Categories and General Algebraic Structures with Applications, 1(1), 59-89.
Victoria Gould; Rida-e- Zenab. "Semigroups with inverse skeletons and Zappa-Sz$\acute{\rm e}$p products". Categories and General Algebraic Structures with Applications, 1, 1, 2013, 59-89.
Gould, V., Zenab, R. (2013). 'Semigroups with inverse skeletons and Zappa-Sz$\acute{\rm e}$p products', Categories and General Algebraic Structures with Applications, 1(1), pp. 59-89.
Gould, V., Zenab, R. Semigroups with inverse skeletons and Zappa-Sz$\acute{\rm e}$p products. Categories and General Algebraic Structures with Applications, 2013; 1(1): 59-89.

Semigroups with inverse skeletons and Zappa-Sz$\acute{\rm e}$p products

Article 5, Volume 1, Issue 1, Summer and Autumn 2013, Page 59-89  XML PDF (759.72 K)
Document Type: Research Paper
Authors
Victoria Gould; Rida-e- Zenab
Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom.
Abstract
The aim of this paper is to study semigroups possessing $E$-regular elements, where an element $a$ of a semigroup $S$ is {em $E$-regular} if $a$ has an inverse $a^\circ$ such that $aa^\circ,a^\circ a$ lie in $ E\subseteq E(S)$. Where $S$ possesses `enough' (in a precisely defined way) $E$-regular elements, analogues of Green's lemmas and even of Green's theorem hold, where Green's relations ${\mathcal R},{\mathcal L},{\mathcal H}$ and $\mathcal D$ are replaced by $\widetilde{{\mathcal R}}_E,\widetilde{{\mathcal L}}_E, \widetilde{{\mathcal H}}_E$ and $\widetilde{\mathcal{D}}_E$. Note that $S$ itself need not be regular. We also obtain results concerning the extension of (one-sided) congruences, which we apply to (one-sided) congruences on maximal subgroups of regular semigroups.   If $S$ has an inverse subsemigroup $U$ of $E$-regular elements, such that $E\subseteq U$ and $U$ intersects every $\widetilde{{\mathcal H}}_E$-class exactly once, then we say that $U$ is an {em inverse skeleton} of $S$. We give some natural examples of semigroups possessing inverse skeletons and examine a situation where we can build an inverse skeleton in a $\widetilde{\mathcal{D}}_E$-simple monoid. Using these techniques, we show that a reasonably wide class of $\widetilde{\mathcal{D}}_E$-simple monoids can be decomposed as Zappa-Sz$\acute{\rm e}$p products. Our approach can be immediately applied to obtain corresponding results for bisimple inverse monoids.
Keywords
Idempotents; $\mathcal{R}$; $\mathcal{L}$; restriction semigroups; Zappa-Sz$\acute{\rm e}$p products
References
[1] G. Casadio, `Construzione di gruppi come prodotto di sottogruppi permutabili' Univ. Roma e Ist. Naz. Alta Mat. Rend. Mat. e Appl 5 (1941), 348{360.
[2] C. Cornock, Restriction Semigroups: Structure, Varieties and Presentations PhD thesis, York, 2011.
[3] D. Easdown, `Biordered sets come from semigroups', J. Algebra 96 (1985), 581-591.
[4] J.B. Fountain, `Products of idempotent integer matrices', Math. Proc. Camb. Phil. Soc. 11 (1991), 431-441.
[5] J. Fountain, G. M. S. Gomes and V. Gould, `The free ample monoid', I.J.A.C. 19 (2009), 527{554.
[6] V. Gould, `Notes on restriction semigroups and related structures; http://wwwusers.york.ac.uk/varg1/restriction.pdf.
[7] T.E. Hall, `Some properties of local subsemigroups inherited by larger subsemigroups', Semigroup Forum 25 (1982), 35-49.
[8] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, Oxford, 1995.
[9] M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts, and Categories, de Gruyter, Berlin, 2000.
[10] M. Kunze, `Zappa products', Acta Math. Hungarica 41 (1983), 225-239.
[11] M. Kunze, `Bilateral semidirect products of transformation semigroups', Semigroup Forum 45 (1992), 166-182.
[12] M. Kunze, `Standard automata and semidirect products of transformation semigroups', Theoret. Comput. Sci 108 (1993), 151-171.
[13] T.G. Lavers, `Presentations of general products of monoids', J. Algebra 204 (1998), 733-741.
[14] K.S.S. Nambooripad, `Structure of regular semigroups. I', Memoirs American Math. Soc. 224 (1979).
[15] B.H. Neumann, `Decompositions of groups', J. London Math. Soc. 10 (1935), 36.
[16] J. Szep, `On factorizable, not simple groups', Acta Univ. Szeged. Sect. Sci. Math 13 (1950), 239{241.
[17] J. Szep, ` Uber eine neue Erweiterung von Ringen', Acta Sci. Math. Szeged 19 (1958), 51.

[18] J. Szep, `Sulle strutture fattorizzabili', Atti Accad. Naz. Lincei Rend. CI. sci. Fis. Mat. Nat 8 (1962), 649{652.
[19] G. Zappa, `Sulla construzione dei gruppi prodotto di due sottogruppi permutabilitra loro', Atti Secondo Congresso Un. Ital. Bologana p.p. 119{125, 1940.

Statistics
Article View: 5,134
PDF Download: 1,836
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.