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Semigroups with inverse skeletons and
Zappa-Szép products

Victoria Gould and Rida-e-Zenab

Abstract. The aim of this paper is to study semigroups possessing E-

regular elements, where an element a of a semigroup S is E-regular if a

has an inverse a◦ such that aa◦, a◦a lie in E ⊆ E(S). Where S possesses

‘enough’ (in a precisely defined way) E-regular elements, analogues of

Green’s lemmas and even of Green’s theorem hold, where Green’s relations

R,L,H and D are replaced by R̃E , L̃E , H̃E and D̃E . Note that S itself

need not be regular. We also obtain results concerning the extension of

(one-sided) congruences, which we apply to (one-sided) congruences on

maximal subgroups of regular semigroups.

If S has an inverse subsemigroup U of E-regular elements, such that

E ⊆ U and U intersects every H̃E-class exactly once, then we say that U

is an inverse skeleton of S. We give some natural examples of semigroups

possessing inverse skeletons and examine a situation where we can build an

inverse skeleton in a D̃E-simple monoid. Using these techniques, we show
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that a reasonably wide class of D̃E-simple monoids can be decomposed

as Zappa-Szép products. Our approach can be immediately applied to

obtain corresponding results for bisimple inverse monoids.

1 Introduction

Decomposing semigroups using Green’s relations is the classical approach
to semigroup structure. Regular D-classes are particularly well under-
stood, given that the left and right translations afforded by Green’s lem-
mas result in Green’s theorem, which states that the H-class of an el-
ement a is a subgroup if and only if aH a2. For non-regular D-classes,
indeed for non-regular semigroups, an approach using Green’s relations
is not always the most appropriate. As an alternative, one can make use
of the extensions K∗ of Green’s relations K, where K ∈ {R,L,H,D} or
the yet wider relations K̃E , where E is a set of idempotents. The aim of
this current paper is to take an approach that is something of a synthesis:
we study semigroups possessing E-regular elements, where an element a
of a semigroup S is E-regular if a has an inverse a◦ such that aa◦, a◦a lie
in E ⊆ E(S).

After recalling the definitions of K̃E in Section 2, we show that where
E-regular elements exist in particular places, then analogues of Green’s
lemmas hold where K is replaced by K̃E . With some extra conditions on
our semigroup we also have an analogue of Green’s theorem. Namely,
we show that under these conditions, if a H̃E a2, then H̃a

E , the H̃E-class
of a, is a monoid with identity from E. In Section 3 we show that if
H̃E is a congruence on a semigroup S, then any right congruence on
the submonoid H̃e

E , where e ∈ E, can be extended to a congruence on
S. We also have a result for two sided congruences, with some further
restrictions on S. We stress that for regular semigroups with E = E(S)
we have K̃E = K∗ = K, so our results can be immediately applied to
maximal subgroups of regular semigroups.

In Section 4 we introduce the idea of an inverse skeleton U of a
semigroup S. Here U is an inverse subsemigroup of E-regular elements,
such that E ⊆ U and U intersects every H̃E-class exactly once (it follows
that E = E(U)). We examine some conditions under which we obtain
skeletons from monoids having a particular submonoid L of the L̃E-class
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of the identity. A monoid with such a submonoid L is called special. Our
most complete results are for restriction monoids, which for convenience
we briefly define in Section 2.

Finally, in Section 5, we investigate the decomposition of some spe-
cial D̃E-simple monoids as what we refer to as Zappa-Szép products, also
known as general products. The concept of Zappa-Szép product was first
studied for groups by Neumann [15] and subsequently by Zappa [19]
and Casadio [1]. The Zappa-Szép product of two groups is a natural
generalisation of the notion of semidirect product, which itself extends
that of direct product. Szép initiated the study of Zappa-Szép prod-
ucts in settings other than groups in [17, 18]. Zappa-Szép products for
monoids have been further investigated by, for example, Kunze [10–12]
and Lavers [13]. In particular, Kunze gave applications of Zappa-Szép
products to translational hulls, Bruck-Reilly extensions and Rees ma-
trix semigroups. In this paper we focus on a result of Kunze [10] for the
Bruck-Reilly extension BR(M, θ) of a monoid M , showing that BR(M, θ)
is a Zappa-Szép product of N0 under addition and a semidirect product
MoN0. Certainly BR(M, θ) is special, with L isomorphic to N0. We put
Kunze’s result in more general framework and prove in particular that a
special D̃E-simple restriction monoid can be decomposed in an analogous
way. Again, our results apply immediately to inverse monoids.

A few words on notation. Given a semigroup S, we denote by E(S)
its set of idempotents and by E a subset of E(S). We assume that the
reader is familiar with Green’s relations and their associated preorders
and the starred versions thereof. Details of the latter and of the relations
K̃E , which we define below, can be found in the notes [6].

2 The relations R̃E, L̃E and analogues of Green’s lemmas

We recall that the relation ≤R̃E on S is defined by the rule that for all
a, b ∈ S we have a≤R̃E b if and only if

{e ∈ E : eb = b} ⊆ {e ∈ E : ea = a}.
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It is clear that ≤R̃E is a pre-order on S, that is, a relation that is reflexive

and transitive. The associated equivalence relation is denoted by R̃E .
Thus for any a, b ∈ S we have a R̃E b if and only if a and b have same
set of left identities in E. It is easy to see that R ⊆ R∗ ⊆ R̃E . The
relations ≤L̃E and L̃E are defined dually so that clearly L ⊆ L∗ ⊆ L̃E .

Note that any e ∈ E is a left (right) identity for its R̃E-class (L̃E-class).
If S is regular and E = E(S), then the foregoing inclusions are replaced
by equalities. More generally, if e, f ∈ E then e R̃E f if and only if eR f
and e L̃E f if and only if eL f . In general, however, the inclusions are
strict.

We will show that, under certain circumstances, R̃E and L̃E behave
like R and L. In general, however, they do not. The first thing to
observe is that, unlike R and R∗, the relation R̃E need not be a left
congruence; of course the dual remark is also true. We say that S satisfies
the Congruence Condition (C) with respect to E (or, more simply, S
satisfies (C)) if R̃E is a left congruence and L̃E is a right congruence. A
second observation is that, as is the case withR∗ and L∗, the relations R̃E
and L̃E need not commute. We denote by H̃E and D̃E the intersection
and join of R̃E and L̃E respectively. Note that from the previous remark,
it is not usually the case that D̃E = R̃E ◦ L̃E = L̃E ◦ R̃E . Deviating
slightly from standard terminology, we will denote the R̃E-class (L̃E-
class, H̃E-class, D̃E-class) of any a ∈ S by R̃aE (L̃aE , H̃

a
E , D̃

a
E).

One class of semigroups having the congruence condition is the class
of restriction semigroups. Left restriction semigroups form a variety of
unary semigroups, that is, semigroups equipped with an additional unary
operation, denoted by +. The identities that define a left restriction
semigroup S are:

a+a = a, a+b+ = b+a+, (a+b)+ = a+b+ and ab+ = (ab)+a.

Putting E = {a+ : a ∈ S}, it is easy to see that E is a semilattice, the
semilattice of projections of S. Dually, right restriction semigroups form
a variety of unary semigroups, where in this case the unary operation is
denoted by ∗. A bi-unary semigroup S (that is, a semigroup with two
unary operations) which is both left restriction and right restriction and
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which also satisfies the linking identities

(a+)∗ = a+ and (a∗)+ = a∗

is called a restriction semigroup. We remark that an inverse semigroup
is restriction, where we define a+ = aa−1 and a∗ = a−1a. If a restriction
semigroup S has an identity element 1, then it is easy to see that 1+ =
1∗ = 1. Such a restriction semigroup is naturally called a restriction
monoid.

A restriction semigroup satisfies (C) (with respect to E) and is such
that the R̃E-class (L̃E-class) of an element a contains a unique element of
E, namely a+ (a∗). Restriction semigroups and their one sided versions
have been studied from various point of view and under different names
since the 1960s. They were formerly called weakly E-ample semigroups,
to emphasize that the class naturally extends the class of ample semi-
groups. For detailed studies of the basic properties of these structures
and a historical overview, the reader is referred to [5] and [6].

The next remark is folklore, but worth stating as a lemma.

Lemma 2.1. If S satisfies (C), then H̃e
E is a monoid with identity e,

for any e ∈ E.

Lemma 2.2. Let S be a semigroup satisfying (C). Then if a, b ∈ S and

a R̃E e L̃E b, for some e ∈ E, we have that a L̃E ba R̃E b.

Proof. As a R̃E e and R̃E is left congruence, we have ba R̃E be = b. Du-

ally, ba L̃E a.

e a

b ba
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Definition 2.3. An element c ∈ S is E-regular if c has an inverse c◦

such that cc◦, c◦c ∈ E.

We emphasise that the notation c◦ will always be used with this
meaning. Of course, if c is E-regular, then so is c◦. Observe that if
c ∈ S is E-regular and g, h ∈ E with g R̃E c L̃E h, then cc◦R c R̃E g and
c◦cL c L̃E h, so that by an earlier remark, cc◦R g and c◦cLh. It follows
from standard results for regular elements that c has an inverse c′ such
that cc′ = g and c′c = h. It is also easy to see (in view of earlier remarks
concerning idempotents), that if h, k ∈ S are E-regular, then h K̃E k if
and only if hK k, where K is R,L or H.

We first show that analogues of Green’s Lemmas hold with R, L
replaced by R̃E , L̃E where there is a suitable E-regular element.

Lemma 2.4. Suppose that L̃E is a right congruence and S has an E-

regular element c such that e = cc◦ and f = c◦c. Then the right transla-

tions

ρc : L̃eE → L̃fE and ρc◦ : L̃fE → L̃eE

are mutually inverse R̃E-class preserving bijections.

Proof. Notice that eR cL f . Let s ∈ L̃eE . Since L̃E is a right congruence,

sc L̃E ec = c so there is a map ρc : L̃eE → L̃fE defined by sρc = sc. Now

s = se = scc◦R sc, so that certainly ρc is R̃E-class preserving. Dually,

ρc◦ : L̃fE → LeE is R̃E-class preserving.
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For any s ∈ L̃eE and t ∈ L̃fE we have s = se = s(cc◦) = sρcρc◦

and similarly, t = tρc◦ρc, so that ρc and ρc◦ are mutually inverse on the

specified domains.

Note that we are not assuming that the D̃E-class depicted above is
an “egg-box”, since as R̃E and L̃E need not commute, some of the cells
may be empty.

For convenience we now state the dual of Lemma 2.4.

Lemma 2.5. Suppose that R̃E is a left congruence and S has an E-

regular element c such that e = cc◦ and f = c◦c. Then the left transla-

tions

λc◦ : R̃eE → R̃fE and λc : R̃fE → R̃eE

are mutually inverse L̃E-class preserving bijections.

Corollary 2.6. Let S be a semigroup with (C). Let c be an E-regular

element of S such that e = cc◦ and f = c◦c. Then H̃e
E
∼= H̃f

E.

Proof. By Lemmas 2.4 and 2.5, ρc : H̃e
E → H̃c

E and λc◦ : H̃c
E → H̃f

E are

bijections. Now For any x, y ∈ H̃e
E we have

(xy)ρcλc◦ = c◦xyc

= c◦xcc◦yc as cc◦ = e

= (xρcλc◦)(yρcλc◦).

Thus ρcλc◦ is an isomorphism and hence H̃e
E
∼= H̃f

E .

If we have enough E-regular elements, then we can say much more
than in Corollary 2.6. First, we recall that S is weakly E-abundant if
every R̃E- and every L̃E-class of S contains an idempotent of E. Clearly
a regular semigroup S is weakly E(S)-abundant; on the other hand, any
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monoid is weakly {1}-abundant. A less extreme example is Mn(R), the
monoid of n×n matrices over a principal ideal domain, under matrix mul-
tiplication [4]. In such a monoid we have R̃E = R∗ and L̃E = L∗, where
E = E

(
Mn(R)

)
, and further, every H∗-class contains a regular element.

The reader will see other natural examples as the article progresses.

Lemma 2.7. If every H̃E-class contains an E-regular element, then S

is weakly E-abundant. Moreover if S has (C), then R̃E ◦ L̃E = L̃E ◦ R̃E
(so that D̃E = R̃E ◦ L̃E) and if a, b ∈ S with a D̃E b, then |H̃a

E | = |H̃b
E |.

Proof. The first statement is clear. Suppose that a, c ∈ S with a R̃E ◦

L̃E c.

b◦b

a bb◦ b

cb◦a c

There exists an E-regular b ∈ S such that a R̃E b L̃E c. Choose an inverse

b◦ of b such that bb◦, b◦b ∈ E. Notice that c L̃E b◦b and a R̃E bb◦. Using

(C), cb◦a R̃E cb◦b = c and cb◦a L̃E bb◦a = a. Then a L̃E ◦R̃E c. Together

with the dual argument we have that R̃E ◦L̃E = L̃E ◦R̃E . In view of the

remarks following Definition 2.3, the proof of the final statement follows

easily from Lemmas 2.4 and 2.5.

Green’s theorem, a pivot of classical semigroup theory, states that if
k ∈ S and kH k2, then Hk is a group. We now consider semigroups with
(C) such that the analogue of Green’s theorem holds, by which we mean,
if k H̃E k2, then H̃k

E is a monoid with identity an element of E: in view
of Lemma 2.1, this is equivalent to containing an element of E.

The set of idempotents E(T ) of any semigroup T may be endowed
with the two pre-orders ≤R and ≤L, under which it has the structure
of a biordered set; if T is regular, then E(T ) is a regular biordered set.
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Conversely, any biordered set is the biordered set of idempotents of a
semigroup, which is regular if E is regular [3, 14]. Suppose now that
S is our semigroup with E ⊆ E(S); [14, Theorem 1.3] gives necessary
and sufficient conditions such that E generates a regular subsemigroup
S′ = 〈E〉 of S such that E(S′) = E. Clearly, if these conditions hold,
and if h ∈ S′ with h H̃E h2 in S, then as E ⊆ S′ we have h H̃E h2 in S′.
It follows that hH h2 in S′ so that hH u in S′ for some u ∈ E(S′) = E.
Certainly then H̃h

E (in either S or S′) contains u.

To obtain a more general result, we need to introduce the following
concept.

Definition 2.8. We say that E ⊆ E(S) is closed under E-conjugation

if for any e ∈ E and E-regular c ∈ S (with cc◦, c◦c ∈ E), if cec◦ ∈ E(S),

then cec◦ ∈ E.

Notice that the above definition is symmetric, since (c◦)◦ = c.

Lemma 2.9. Let S be a restriction semigroup, let c ∈ S be E-regular

and let e ∈ E. Then cec◦ (and hence also c◦ec) lie in E.

Proof. Let c, e be as above. Then

cec◦ = (ce)+cc◦ ∈ E

as E is a semilattice.

The next lemma follows the pattern for regular semigroups, as stated
in [7, Result 2]. However, we need a little care as E need not consist of
all idempotents of S.

Lemma 2.10. The E-regular elements of S form a subsemigroup T with

E = E(T ) if and only if ef is E-regular for any e, f ∈ E, and E is closed

under E-conjugation.
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Proof. Let T denote the set of E-regular elements of S. The direct

statement is clear.

Conversely, suppose that ef is E-regular for any e, f ∈ E, and E is

closed under E-conjugation. Let h, k ∈ T and choose inverses h◦, k◦ of h

and k respectively, such that hh◦, f = h◦h, e = kk◦, k◦k ∈ E. Let u be

an inverse of fe such that ufe, feu ∈ E. It is easy to check that k◦uh◦

is an inverse of hk. We then have (hk)(k◦uh◦) ∈ E(S) and

(hk)(k◦uh◦) = hf(kk◦)uh◦ = h(feu)h◦,

so that (hk)(k◦uh◦) ∈ E as feu ∈ E and E is closed under E-conjugation.

Similarly, (k◦uh◦)hk ∈ E. Thus hk ∈ T as required.

Corollary 2.11. Suppose that ef is E-regular for any e, f ∈ E, and E

is closed under E-conjugation. If h ∈ S is E-regular and h H̃E h2, then

H̃h
E contains an idempotent of E; hence if S satisfies (C), then H̃h

E is a

monoid with identity from E.

Proof. From Lemma 2.10 we have that the E-regular elements of S form

a subsemigroup T with E = E(T ). Certainly h, h2 ∈ T with h H̃E h2 in

T . Then hH h2 in T so that as E = E(T ) we have H̃h
E (in either T or

S) contains an idempotent of E.

Whereas the previous result uses Green’s theorem, the next does not,
but has rather restrictive hypotheses.

Lemma 2.12. Suppose that E ⊆ E(S) is a band, every H̃E-class con-

tains an E-regular element, H̃E is a congruence and S satisfies (C).

Then for k ∈ S with k H̃E k2, we have E ∩ H̃k
E 6= ∅.
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Proof. Notice that as H̃E is a congruence and k H̃E k2, we have that H̃k
E

is a subsemigroup.

By hypothesis there exists an E-regular element h ∈ H̃k
E such that hh◦ =

e, h◦h = f ∈ E. Then

h◦ = h◦hh◦ H̃E h◦hhh◦ = fe ∈ E.

By Lemma 2.2, ef ∈ H̃k
E and ef ∈ E as E is a band. Hence E ∩ H̃k

E 6=

∅.

3 Extending congruences

Let M be a subsemigroup of a semigroup S and let ρ be a congruence
(respectively, right congruence) on M . We denote by ρ̃ (respectively,
ρ̄) the congruence (respectively, right congruence) on S generated by ρ.
We briefly review the circumstances under which ρ = ρ̃ ∩ (M ×M) or
ρ = ρ̄ ∩ (M ×M), where M = H̃e

E for some e ∈ E, in the context of the
conditions discussed in this article.

Definition 3.1. A subsemigroup M of a semigroup S has the (right)

congruence extension property in S if for any (right) congruence ρ on M

we have

ρ = ρ̃ ∩ (M ×M) (respectively, ρ = ρ̄ ∩ (M ×M)).
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Lemma 3.2. Let S be a weakly E-abundant semigroup with (C). Suppose

that H̃E is a congruence. Let e ∈ E. Then M = H̃e
E has the right

congruence extension property in S.

Proof. Let ρ be a right congruence on M . Clearly ρ ⊆ ρ̄∩ (M ×M). Let

a ∈M, b ∈ S and suppose a ρ̄ b. Then either a = b (so that clearly a ρ b)

or there exists a sequence

a = c1t1, d1t1 = c2t2, · · · , dntn = b

for some n ∈ N, where (ci, di) ∈ ρ, ti ∈ S, 1 ≤ i ≤ n (see, for example, [9,

Chapter 1]). As a, c1, d1, · · · , cn, dn ∈M , which has identity e, we have

a = c1t
′
1, d1t

′
1 = c2t

′
2, · · · , dnt′n = b where t′i = eti.

Since H̃E is a congruence we have

a = c1t
′
1 H̃E et′1 = t′1 H̃E d1t

′
1 = c2t

′
2 H̃E et′2 = t′2 H̃E · · · H̃E et′n = t′n.

We conclude that t′1, · · · , t′n ∈M and so b ∈M and a ρ b. Hence M has

the right congruence extension property.

Note that what we have shown above is something a little stronger
than claimed, namely that ρ̄ saturates M .

Corollary 3.3. Let S be a regular semigroup such that H is a congru-

ence. Then for any e ∈ E(S), the maximal subgroup He has the right

congruence extension property.

Let M be a subsemigroup of S and let ρ be a congruence on M . We
say that ρ is closed under E-conjugation if for u, v ∈ M with u ρ v and
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for any E-regular c ∈ S with cuc◦, cvc◦ ∈ M , we have cuc◦ ρ cvc◦; if
E = E(S), we simply say that ρ is closed under conjugation.

Proposition 3.4. Let S be a semigroup with (C) such that every H̃E-

class contains an E-regular element, H̃E is a congruence and if k H̃E k2,

then H̃k
E contains an idempotent of E. Let e ∈ E and M = H̃e

E and let

ρ be a congruence on M . Then

ρ = ρ̃ ∩ (M ×M),

if and only if ρ is closed under E-conjugation.

Proof. It is clear that if ρ = ρ̃ ∩ (M ×M), then ρ is closed under E-

conjugation.

Conversely, suppose that ρ is closed under E-conjugation. Let a ∈

M, b ∈ S and suppose that

a = cpd, cqd = b,

where (p, q) ∈ ρ and c, d ∈ S1. As p H̃
e

E q and H̃E is a congruence, we

see that b ∈M . It follows that

a = c′pd′, c′qd′ = b,

where c′ = ece and d′ = ede. Then

a≤R̃E c
′≤R̃E e R̃E a,

so that a R̃E c′. Dually, a L̃E d′.
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e a v◦ c′ u

u◦ f

d′ v u∗ g d′c′ w

From the comments following Definition 2.3, there exist E-regular

elements u ∈ H̃c′
E and v ∈ H̃d′

E such that uu◦ = e, u◦u = f ∈ E and

v◦v = e, vv◦ = g ∈ E. Now vu ∈ R̃vE ∩ L̃uE by Lemma 2.2 and vu H̃E d′c′.

Since

uv H̃E c′d′ = c′ed′ H̃E c′pd′ = a H̃E e

we have

vuvu H̃E veu H̃E vu.

By assumption, there exists an idempotent w ∈ E ∩ H̃d′c′
E . Let u∗ ∈ H̃d′

E

be an inverse of u such that uu∗ = e and u∗u = w. Then

a = c′wpwd′ = (c′u∗)(upu∗)(ud′) and b = c′wqwd′ = (c′u∗)(uqu∗)(ud′).

Now u∗ H̃E d′ gives that c′u∗ H̃E c′d′ H̃E e, so c′u∗ ∈ M and similarly

u H̃E c′ gives that ud′ H̃E c′d′ H̃E e, so that ud′ ∈M . Further,

upu∗ = e(upu∗)e H̃E (c′u∗)(upu∗)(ud′) = a ∈M,

and similarly, uqu∗ ∈M . Since ρ is closed under E-conjugation it follows

that upu∗ ρ uqu∗ and so a ρ b.

Now consider h ∈M,k ∈ S with h ρ̃ k. Either h = k (so that certainly
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h ρ k), or h is connected to k via a ρ-sequence

h = c1p1d1, c1q1d1 = c2p2d2, · · · , cnqndn = k,

for some n ∈ N, where (pi, qi) ∈ ρ, ci, di ∈ S1, 1 ≤ i ≤ n (see, for

example, [8, Chapter 1]). It follows from the above that ciqidi ∈M and

h ρ ciqidi for 1 ≤ i ≤ n. Hence h ρ k and

ρ = ρ̃ ∩ (M ×M).

Corollary 3.5. Let S be a regular semigroup such that H is a congru-

ence. Let G = He be the maximal subgroup with identity e ∈ E(S). Then

for any right congruence ρ on G we have ρ = ρ̃ ∩ (G×G) if and only if

ρ is closed under conjugation.

Note that if E is a band, then from Lemma 2.12, the remaining
hypotheses of Proposition 3.4 will guarantee that H̃k

E contains an idem-
potent of E.

In the following, M is a monoid with identity e.

Example 3.6. Let B be a band. With E = {e}×B, the direct product

M ×B satisfies the hypotheses of Proposition 3.4.

The next three examples are essentially folklore, but they can all be
found in [2].

Example 3.7. Let S = B◦(M, I) be a ‘Brandt’ semigroup. That is,

S = (I ×M × I) ∪ {0}
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with multiplication given by

(i,m, j)(j, n, k) = (i,mn, k),

all other products being 0. Then with

E = {(i, 1, i) : i ∈ I} ∪ {0}

we have that for any (i,m, j), (k, n, l) ∈M

(i,m, j) R̃E (k, n, l) if and only if i = k

and

(i,m, j) L̃E (k, n, l) if and only if j = l.

It follows that S is restriction with distinguished semilattice E, H̃E is a

congruence on S and with

U = {(i, e, j) : i, j ∈ I} ∪ {0}

we have that U is an inverse subsemigroup of E-regular elements, in-

tersecting every H̃E-class exactly once. In particular, S satisfies the

hypotheses of Proposition 3.4.

Example 3.8. Let S = BR(M, θ), where θ : M → M is a monoid

morphism. That is,

S = N0 ×M × N0
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and multiplication is given by

(m, a, n)(h, b, k) = (m−n+u, aθu−nbθu−h, k−h+u) where u = max (n, h).

With

E = {(m, e,m) : m ∈ N0}

we have that for any (m, a, n), (h, b, k) ∈ S,

(m, a, n) R̃E (h, b, k) if and only if m = h

and

(m, a, n) L̃E (h, b, k) if and only if n = k.

It is then easy to see that H̃E is a congruence on S and S is restriction.

Moreover, with

U = {(m, e, n) : m,n ∈ N0}

we have that U is an inverse subsemigroup of E-regular elements of S

intersecting every H̃E-class exactly once. In particular, S satisfies the

hypotheses of Proposition 3.4. Note that S is a monoid with identity

(0, e, 0).

Note that the assumption in [2] that the image of θ is contained in
H̃1
E , is not needed for the above.

Example 3.9. Let S = BR(M,Z, θ) be the extended Bruck-Reilly ex-

tension of a monoid M . The underlying set is

S = Z×M × Z
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and the semigroup operation on S is defined as in Example 3.8. The semi-

group S has the same properties as in that example, with the exception

of being a monoid.

Example 3.10. Let S = [Y ;Sα;χα,β] be a strong semilattice Y of

monoids Sα, α ∈ Y , with connecting morphims χα,β for α > β. De-

noting the identity of Sα by eα we have that S is restriction with

E = {eα : α ∈ Y } ∼= Y,

and the Sαs are the H̃E-classes. Certainly then H̃E is a congruence on

S and S satisfies the hypotheses of Proposition 3.4.

4 Semigroups with skeletons

We continue to examine semigroups with ‘enough’ E-regular elements,
now moving towards decompositions of such semigroups. It is clear from
Lemma 2.7 that if every H̃E-class of a semigroup S with (C) contains
an E-regular element, and e D̃E a where e ∈ E, then every element of
H̃a
E has a unique decomposition as upv, where u, v are fixed E-regular

elements and p ∈ H̃e
E . For results leading further to structure theorems,

we will concentrate in this section on the case where E is a semilattice.

Definition 4.1. Let V ⊆ W be subsets of a semigroup S such that W

is a union of H̃E-classes. We say that V is an H̃E-transversal of W if

|V ∩ H̃a
E | = 1 for all a ∈W.

Lemma 4.2. Let E be a semilattice and let c ∈ S be E-regular. Then

there is only one choice of c◦. Moreover, if d ∈ S is E-regular and c H̃E d,

then c◦ H̃E d◦.
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Proof. If c◦, c′ are both inverses of c with cc◦, cc′, c◦c, c′c ∈ E, then we

have

c L̃E c◦c L̃E c′c and cc◦ R̃E c R̃E cc′.

Since E is a semilattice, any R̃E-class or L̃E-class contains at most one

idempotent of E, so that c◦c = c′c = e and cc◦ = cc′ = f say. Thus

c◦, c′ ∈ Re ∩ Lf so that (as any H-class contains at most one inverse of

c) we have c◦ = c′.

The proof of the second statement is similar.

Clearly the above shows that if E is a semilattice and c ∈ S is E-
regular, then (c◦)◦ = c. We recall that S is said to be weakly E-adequate
if S is weakly E-abundant and E is a semilattice. In this case there is a
unique idempotent in the R̃E-class (L̃E-class) of a ∈ S, which we denote
by a+ (a∗, respectively).

Note 4.3. Let S be a weakly E-adequate semigroup and let c ∈ S be

E-regular. Then

c R̃E c+ R̃E cc◦,

so that we must have c+ = cc◦ and similarly c∗ = c◦c. Hence also

(c◦)+ = c◦c and (c◦)∗ = cc◦.

Proposition 4.4. Let S be weakly E-adequate with R̃E ◦L̃E = L̃E ◦R̃E,

and let e ∈ E. Suppose there is an H̃E-transversal L of L̃eE such that

every c ∈ L is E-regular, and e ∈ L. Then:

1. R = {c◦ : c ∈ L} is an H̃E-transversal of R̃eE;

2. D = LR is an H̃E-transversal of D̃e
E;

3. if S has (C), then every element of D̃e
E has a unique decompostion as

cpd◦, where c, d ∈ L and p ∈ H̃e
E.
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Proof. (1) Let c ∈ L. As E is a semilattice and c L̃E e, we must have

that e = c◦c so that e R̃E c◦. From Lemma 4.2, clearly R intersects

any H̃E-class at most once. On the other hand, let a ∈ R̃eE . Then

a L̃E f ∈ E and as R̃E ◦ L̃E = L̃E ◦ R̃E , we have that f R̃E c for

some c ∈ L. It follows that a H̃E c◦, so that R is an H̃E-transversal

of R̃eE .

(2) It is clear from Lemma 2.2 that for any c, d ∈ L we have cd◦ ∈

R̃cE ∩ L̃d
◦
E . Since D̃E = L̃E ◦ R̃E , it follows that D is an H̃E-

transversal of D̃e
E , as required.

(3) This follows from Lemmas 2.4 and 2.5.

We anticipate that Proposition 4.4 can be used to develop structure
theorems for classes of weakly E-adequate semigroups analogous to those
for inverse semigroups.

Definition 4.5. Let U be an inverse subsemigroup of S consisting of

E-regular elements such that E ⊆ U . If U is an H̃E-transversal of S,

then U is an inverse skeleton of S.

Example 4.6. The semigroups of Examples 3.7, 3.8 and 3.10 all have

inverse skeletons, with E being the skeleton in Example 3.10.

Lemma 4.7. Let S be a semigroup containing an inverse skeleton U .

Then E = E(U) is a semilattice, S is weakly E-adequate and if in addi-

tion S has (C), we have R̃E ◦ L̃E = L̃E ◦ R̃E.

Proof. We are given that E ⊆ E(U). If u ∈ E(U), then as u is E-

regular, uRuu◦ ∈ E. We are given that E(U) is a semilattice and so
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u = uu◦ ∈ E. The remainder of the lemma is immediate from Lemma

2.7.

Naturally, we say that S is D̃E-simple if it is a single D̃E-class.

Theorem 4.8. Let S be a D̃E-simple weakly E-adequate monoid with

R̃E ◦ L̃E = L̃E ◦ R̃E. Suppose there is a submonoid H̃E-transversal L of

L̃1
E such that every c ∈ L is E-regular and for all c ∈ L, e ∈ E we have

cec◦, c◦ec ∈ E. Let

R = {c◦ : c ∈ L}.

1. R is a submonoid H̃E-transversal of R̃1
E;

2. RL ⊆ R̃1
E ∪ L̃1

E if and only if E is a chain;

3. if S is restriction then U = 〈R ∪ L〉 is an inverse subsemigroup of S

with E(U) = E;

4. if S is restriction and RL ⊆ R∪L, then U = LR and U is an inverse

skeleton for S.

Proof. From the condition that cec◦, c◦ec ∈ E for all c ∈ L, and the fact

that E is a semilattice, it is easy to see that for any u, v ∈ R∪L we have

uv is E-regular with suitable inverse v◦u◦.

(1) From Proposition 4.4, we know that R is an H̃E-transversal of R̃1
E .

Let c, d ∈ L so that c◦, d◦ ∈ R. From the above, cd is E-regular with

(cd)◦ = d◦c◦. As cd ∈ L we have d◦c◦ ∈ R. Clearly, 1 = 1◦ ∈ R, so

that R is a submonoid.

(2) Let e, f ∈ E and let c, d ∈ L be such that cc◦ = e, dd◦ = f . As

above, c◦d is E-regular with (c◦d)◦ = d◦c. We have c◦d ∈ R̃1
E if

and only if 1 = c◦dd◦c, which implies (multiplying on the front by
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c and the back by c◦) that e = efe so that e ≤ f . On the other

hand, if e ≤ f , then c◦d R̃E c◦ef = c◦e = c◦ R̃E 1. Similarly, we

see that c◦d ∈ L̃1
E if and only if f ≤ e. Statement (2) follows.

(3) Let u = x1x2 . . . xk ∈ U , where xi ∈ L ∪R for 1 ≤ i ≤ n. We show

by induction on k that u is E-regular with u◦ = x◦k . . . x
◦
1. Clearly

this is true for k = 1 and we commented above that this is true for

k = 2.

Suppose now that k > 3 and the result is true for words in U of

shorter length. Our inductive hypothesis gives that x1 . . . xk−1 is

E-regular with inverse x◦k−1 . . . x
◦
1. Then

(x1 · · ·xk)(x◦k · · ·x◦1)(x1 · · ·xk)

= (x1 · · ·xk−1)(xkx
◦
k)[(x

◦
k−1 · · ·x◦1)(x1 · · ·xk−1)]xk

= (x1 · · ·xk−1)[(x◦k−1 · · ·x◦1)(x1 · · ·xk−1)](xkx
◦
k)xk

= x1 · · ·xk−1xk

and

(x1 · · ·xk)(x◦k · · ·x◦1) = x1(x2 · · ·xkx◦k · · ·x◦2)x◦1 ∈ E

by induction and hypothesis. Together with the dual argument, we

obtain that u = x1 · · ·xk is E-regular with u◦ = x◦k · · ·x◦1.

Certainly E ⊆ E(U). To show that U is inverse, we use the fact

that S is restriction. Let e ∈ E(U). Then

e+ = ee◦ = eee◦ = ee+
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so that using the identity xy+ = (xy)+x we have

e+ = ee+ = (ee)+e = e+e = e,

so that E(U) = E. Hence E(U) is a semilattice and U is inverse.

(4) To see that U = LR, let u ∈ U . Since R and L are submonoids,

we can write u = l1r1l2r2 · · · lmrm where l1, . . . , lm ∈ L and

r1, . . . , rm ∈ R and m is least with respect to such a decompo-

sition of u. If m > 2, then either r1l2 ∈ R or r1l2 ∈ L, so that

as

u = l1(r1l2r2) · · · lmrm = (l1r1l2)r2 · · · lmrm

we have violated the minimality of m. Hence m = 1 and U = LR.

From Proposition 4.4, U is an H̃E-transversal of S, so that U is an

inverse skeleton of S.

Example 4.9. Let S = BR(M, θ) and put

L = {(m, e, 0) : m ∈ N0}.

We have that L is a submonoid H̃E-transversal of L̃1
E consisting of E-

regular elements and S × S = R̃E ◦ L̃E = L̃E ◦ R̃E . With

R = {(0, e,m) : m ∈ N0} = {(m, e, 0)◦ : m ∈ N0}

we see that RL ⊆ R ∪ L. Then U defined as in Theorem 4.8 coincides

with U as given in Example 3.8.
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5 D̃E-simple monoids and Zappa-Szép products

We build on the results of previous sections to show how certain D̃E-
simple restriction monoids decompose as Zappa-Szép products of sub-
monoids. In particular, we show how Kunze’s [10] result for the Bruck-
Reilly extension of a monoid may be put into a general framework.

For the convenience of the reader we begin by recalling the basic
definitions relating to Zappa-Szép products.

Definition 5.1. Let U and V be monoids and suppose that we have

maps

V × U → U, (t, s) 7→ t · s and V × U → V, (t, s) 7→ ts

such that for all s, s′ ∈ U, t, t′ ∈ V :

(ZS1) tt′ · s = t · (t′ · s); (ZS5) t · 1U = 1U ;

(ZS2) t · (ss′) = (t · s)(ts · s′); (ZS6) t1U = t;

(ZS3) (ts)s
′

= tss
′
; (ZS7) 1V · s = s;

(ZS4) (tt′)s = tt
′·st′s; (ZS8) 1sV = 1V .

Define a binary operation on U × V by

(s, t)(s′, t′) = (s(t · s′), ts′t′).

Then U × V is a monoid, most recently referred to as the (external)

Zappa-Szép product of U and V and denoted by U ./ V .

It is clear that U ./ V contains submonoids U ′ = U × {1V } and
V ′ = {1U}×V such that every element of U ./ V has a unique expresssion
as u′v′ where u ∈ U ′, v ∈ V ′. Thus U ./ V is the internal Zappa-Szép
product of U ′ and V ′, where we say that a monoid S is the internal Zappa-
Szép product of submonoids U and V if S = UV and every element of S
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has a unique expression as uv, u ∈ U, v ∈ V . In this case, writing

vu = (v · u)(vu)

we have that U and V act on each other satisfying (ZS1)–(ZS8) and
S ∼= U ./ V under the isomorphism uv 7→ (u, v) [13].

Note that if one of the above actions is trivial (that is, by identity
maps), then the second action is by morphisms, and we obtain the semidi-
rect product U o V (if U acts trivially) or U n V (if V acts trivially).

Definition 5.2. Let S be a monoid. We say that S is special if there is

a submonoid H̃E-transversal L of L̃1
E such that every c ∈ L is E-regular.

Example 5.3. We have observed in Example 4.9 that S = BR(M, θ) is

special with

L = {(m, e, 0) : n ∈ N0}

being a submonoid H̃E-transversal of L̃1
E . Moreover, H̃E is a congruence

on S.

Theorem 5.4. Let S be a weakly E-adequate monoid with (C). Then

S is D̃E-simple with R̃E ◦ L̃E = L̃E ◦ R̃E and special if and only if S is

the internal Zappa-Szép product of L and R̃1
E, where L is a submonoid

H̃E-transversal of L̃1
E.

Proof. Suppose that S is the internal Zappa-Szép product of L and R̃1
E ,

where L is a submonoid H̃E-transversal of L̃1
E .

Let a, b ∈ S and write a = lr, b = l′r′ where l, l′ ∈ L and r, r′ ∈ R̃1
E .

Then lr′, l′r ∈ S,

a = lr R̃E lr′ L̃E l′r′ = b
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and

a = lr L̃E l′r R̃E l′r′ = b.

Thus L̃E ◦ R̃E = R̃E ◦ L̃E = S × S. Finally we need to show that L

consists of E-regular elements. For this let l ∈ L and write l+ = uv

where u ∈ L and v ∈ R̃1
E . Then u R̃E l so that u = l, since |L ∩ H̃a

E | = 1

for all a ∈ L.

1 v = l◦

l = u l+ = uv

Therefore l+ = lv and l = l 1 = l+l = l(vl) and vl ∈ H̃1
E by

Lemma 2.2. By uniqueness of factorisation, vl = 1. Thus v = vlv

and lv, vl ∈ E, so that l is E-regular as required. Thus S is special.

Conversely, suppose that L̃E◦R̃E = R̃E◦L̃E = S×S and S is special.

Let s ∈ S. Then 1 L̃E l R̃Es for some l ∈ L and as l is E-regular we have

s = l+s = ll◦s. Now observe that l◦s R̃E l◦l = 1 so that l◦s ∈ R̃1
E . To see

that this factorisation is unique, suppose that s = lr = kt where l, k ∈ L

and r, t ∈ R̃1
E . Now R̃E is a left congruence, so that l R̃E k, giving l = k.

As l is E-regular, we have 1 = l◦l and we deduce that r = t. Thus S is

the internal Zappa-Szép product of L and R̃1
E .

We now examine the actions in the situation where the hypotheses
of Theorem 5.4 hold. For r ∈ R̃1

E and l ∈ L we have

rl = (rl)+rl = dd◦rl

where d ∈ L. Observe now that d◦rl R̃E d◦(rl)+ = d◦dd◦ = d◦R̃E 1. It
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follows that

r · l = d and rl = d◦rl where rl R̃E d ∈ L.

We explain these actions with the help of an egg-box picture.

1 r rl = d◦rl
l

r · l = d rl

We can proceed further in Theorem 5.4 to decompose R̃1
E as a Zappa-

Szép product, under the additional hypothesis that for all c ∈ L and
e ∈ E we have cec◦, c◦ec ∈ E. Recall from Theorem 4.8 that this guar-
antees that R = {c◦ : c ∈ L} is a submonoid H̃E-transversal of R̃1

E .

Theorem 5.5. Let S be a weakly E-adequate monoid with (C) such that

S is D̃E-simple with R̃E ◦L̃E = L̃E ◦R̃E and special. Suppose in addition

that for all c ∈ L and e ∈ E we have cec◦, c◦ec ∈ E. Then R̃1
E is the

internal Zappa-Szép product of H̃1
E and R.

It follows that R̃1
E
∼= H̃1

E ./ R. Further, if H̃E is a congruence on S,

then the action of H̃1
E on R is trivial and R̃1

E
∼= H̃1

E oR.

Proof. Let t ∈ R̃1
E . For r ∈ R with r H̃E t, we have rr◦ = 1 and r◦r =

f ∈ E and certainly f L̃E r. From Lemma 2.4, ρr : H̃1
E → H̃r

E is a

bijection. Thus every element of R̃1
E has a unique decomposition as hr

for some h ∈ H̃1
E and r ∈ R, that is, R̃1

E = H̃1
ER is the internal Zappa-

Szép product of H̃1
E and R.

It follows that R̃1
E
∼= H̃1

E ./ R. We now examine the mutual actions

of H̃1
E and R. Let h ∈ H̃1

E , r ∈ R and let t ∈ R be such that rh H̃E t, so

that rh L̃E f = t◦t. Then rh = (rh)f = (rh)(t◦t) and rht◦ ∈ H̃1
E , again

by Lemma 2.4. Hence r · h = rht◦ and rh = t :
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1 h r · h = rht◦ r t = rh rh

t◦ t◦t

Finally, if H̃E is congruence, then rh H̃E r1 = r, so that t = r and

rh = r.

6 Some applications and examples

If S is such that every H̃E-class contains an E-regular element and S
has (C), then we have noted in Lemma 2.7 that R̃E ◦ L̃E = L̃E ◦ R̃E .
Moreover, if S is special and restriction, then we immediately see from
Lemma 2.9 that for all c ∈ L and e ∈ E we have cec◦, c◦ec ∈ E. In
particular, if S is an inverse monoid, then certainly with E = E(S), S is
restriction, every H̃E-class contains an E-regular element and R̃E ◦L̃E =
L̃E ◦R̃E (since K̃E = K, for all relevant K). We thus immediately deduce
from Theorems 5.4 and 5.5 the following: notice that we have reverted
to the more usual notation of Ka for the K-class of a ∈ S.

Theorem 6.1. Let S be an inverse monoid. Then S is bisimple and

special if and only if S is the internal Zappa-Szép product of L and R1,

where L is a submonoid H-transversal of L1. Moreover, in this case, R1

is the internal Zappa-Szép product of H1 and R where R = {r−1 : r ∈ L},

and is a semidirect product if H is a congruence.

Now we deduce [10, Section 5.4].

Corollary 6.2. Let S = BR(M, θ). Then with

L = {(n, e, 0) : n ∈ N0} and R = {(0, e, n) : n ∈ N0}
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we have that

S ∼= N0 ./ (M oN0).

Proof. We have observed that S is restriction and special with L and R

as given. Moreover, S×S = R̃E ◦L̃E = L̃E ◦R̃E and H̃E is a congruence.

From Theorems 5.4 and 5.5 we have S ∼= L ./ (H̃1
E o R) and then as

L ∼= N0, H̃1
E
∼= M and L ∼= N0, we deduce the result.

We now consider the relevant actions. For (n, e, 0) ∈ L and

(0, a,m) ∈ R̃1
E , with k = max(m,n) we have

(0, a,m)(n, e, 0) = (k −m, aθk−m, k − n)

so that from the recipe in Theorem 5.4 we have

(0, a,m) · (n, e, 0) = (k −m, e, 0) and (0, a,m)(n,e,0) = (0, aθk−m, k − n).

Considering now the action of R on H̃1
E we have

(0, e,m) · (0, a, 0) = (0, e,m)(0, a, 0)(m, e, 0) = (0, aθm, 0).

Using the natural isomorphisms (n, e, 0) 7→ n, (0, e,m) 7→ m and

(0, a, 0) 7→ a we have that N0 acts on S by

m · a = aθm

giving the semidirect product S o N0 and then S o N0 and N0 act on
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eachother mutually by

(a,m) · n = k −m and (a,m)n = (aθk−m, k − n).

Of course, the above can be applied to the bicyclic monoid (with M
trivial) or to bisimple inverse ω-semigroups (with M a group).
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