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K-theories and free inductive graded rings in
abstract quadratic forms theories

K.M.d.A. Roberto∗ and H.L. Mariano

Abstract. We build on previous work on multirings ( [17]) that provides gener-
alizations of the available abstract quadratic forms theories (special groups and real
semigroups) to the context of multirings ( [10], [14]). Here we raise one step in
this generalization, introducing the concept of pre-special hyperfields and expand a
fundamental tool in quadratic forms theory to the more general multivalued setting:
the K-theory. We introduce and develop the K-theory of hyperbolic hyperfields that
generalize simultaneously Milnor’s K-theory ( [11]) and Special Groups K-theory, de-
veloped by Dickmann-Miraglia ( [5]). We develop some properties of this generalized
K-theory, that can be seen as a free inductive graded ring, a concept introduced in [2]
in order to provide a solution of Marshall’s Signature Conjecture.

1 Introduction

Concerning Abstract Theories of Quadratic forms (in particular special groups
and real semigroups), the references [3], [6] and [7] are central. The theory of
special groups deals simultaneously reduced and non-reduced theories but focuses
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on rings with an “expressive amount” of invertible coefficients to quadratic forms
and the theory of real semigroups consider general coefficients of a ring, but only
addresses the reduced case. Both are first-order theory, thus they allow the use of
model theoretic methods.

M. Marshall in [10] introduced an approach to (reduced) theory of quadratic
forms through the concept of multiring (roughly, a ring with a multi valued sum)
1: this seems more intuitive for an algebraist since it encompasses (generalizes, in
fact) some techniques of ordinary Commutative Algebra. Moreover, the multirings
encode copies of special groups and real semigroups (see [14]) and still allows the
use of model-theoretic tools, since multirings (hyperrings) endowed with conve-
nient notion of morphisms constitutes a category that is isomorphic to a category
of appropriate first-order structures.

In the recent work [17]: (i) we have considered interesting pairs (𝐴,𝑇) where
𝐴 is a multiring and 𝑇 ⊆ 𝐴 is a certain multiplicative subset in such a way to obtain
models of abstract theories of quadratic forms (special groups and real semigroups)
via natural quotients - Marshall’s quotient construction and (ii) we have used this
new setting to motivate a “non reduced” expansion of the theory of real semigroups
to deal the formally real case, isolating axioms over pairs involving multirings and
a multiplicative subset with some properties.

The uses of K-theoretic (and Boolean) methods in abstract theories of quadratic
forms has been proved a very successful method, see for instance, these two papers
of Dickmann and Miraglia: [2] where they give an affirmative answer to Marshall’s
Conjecture, and [4], where they give an affirmative answer to Lam’s Conjecture
(previously both conjecture have kept open for almost three decades). These two
central papers makes us take a deeper look at the theory of special groups (and
hence, hyperbolic/pre-special hyperfields) by itself. This is not mere exercise in
abstraction: from Marshall’s and Lam’s Conjecture many questions arise in the
abstract and concrete context of quadratic forms.

In the present paper we provide some new steps towards the development of
tools of algebraic theory of quadratic forms in this multiring setting: we have
defined and explored K-theory and graded rings in the context of hyperfields that,
in particular, provides a generalization and unification of Milnor’s K-theory ( [11])

1The main terminology in the literature is “hyperring”. Moreover, M. Marshall makes a distinction
between “multiring” and “hyperrings” which is important in the context of quadratic forms. But
throughout this entire work, we deal essentially with multifields/hyperfields and then, the main
terminology here will be “hyperfield”.
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and special groups K-theory ( [5]). We develop some properties of this generalized
K-theory, that can be seen as a free inductive graded ring.

Outline: In Section 2 we: recall the basic notions of K-theory in quadratic
forms theories (Milnor’s K-theory, Special Groups K-theory); provide the basic
definitions, constructions and results on multirings and hyperfields; introduce the
concept of pre-special hyperfield. In the third section we introduce the notion
of K-theory of hyperfields and establish its main properties and some technical
results. In Section 4 we recognize the K-theory of special hyperfields as a free
construction in the category of inductive graded rings ( [3]) and prove that this
concept, encompasses both Milnor’s K-theory and Special Groups K-theory. We
finish the work indicating some themes of research motivated by the present paper.

Throughout this entire paper, we adopt the following convention: let 𝐴 be an
arbitrary structure (field, graded ring and so on) and let 𝑇 ⊆ 𝐴 be a subset such that
the quotient 𝐴/𝑇 is defined. We usually denote the elements of 𝐴/𝑇 by 𝑎 ∈ 𝐴/𝑇 .
This notation is overwhelming here (as you will see rapidly). So, we will omit the
overline symbol, and an equation “𝑎 = 𝑏” that took place in 𝐴/𝑇 will be denoted
simply by “𝑎 = 𝑏 in 𝐴/𝑇”. In other words, we will add “in 𝐴/𝑇” or “in 𝐴” to make
distinctions between some set and its quotients.

2 Preliminaries

This section contains, basically, the fundamental definitions and results included
for the convenience of the reader such as multirings, hyperfields, special groups,
Minor’s K-theory of fields and Dickmann-Miraglia K-theory of (pre) special groups.
For more details, consult [11], [3], [5], [10], [14] or [17].

2.1 Milnor’s K-theory Here we get some definitions and results about Mil-
nor’s K-theory, as developed in [11].

Definition 2.1 (The Milnor’s K-theory of a Field [11]). For a field 𝐹 (of character-
istic not 2), 𝐾∗𝐹 is the graded ring

𝐾∗𝐹 = (𝐾0𝐹, 𝐾1𝐹, 𝐾2𝐹, ...)

defined by the following rules: 𝐾0𝐹 := Z. 𝐾1𝐹 is the multiplicative group ¤𝐹 written
additively. With this purpose, we fix the canonical “logarithm” isomorphism

𝑙 : ¤𝐹 → 𝐾1𝐹,
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where 𝑙 (𝑎𝑏) = 𝑙 (𝑎) + 𝑙 (𝑏). Then 𝐾𝑛𝐹 is defined to be the quotient of the tensor
algebra

𝐾1𝐹 ⊗ 𝐾1𝐹 ⊗ ... ⊗ 𝐾1𝐹 (𝑛 times)
by the (homogeneous) ideal generated by all 𝑙 (𝑎) ⊗ 𝑙 (1 − 𝑎), with 𝑎 ≠ 0, 1. We
also have the reduced K-theory graded ring 𝑘∗𝐹 = (𝑘0𝐹, 𝑘1𝐹, ..., 𝑘𝑛𝐹, ...), which
is defined by the rule 𝑘𝑛𝐹 := 𝐾𝑛𝐹/2𝐾𝑛𝐹 for all 𝑛 ⩾ 0.

Theorem 2.2 (Theorem 4.1 of [11]). There is only one morphism

𝑠𝑛 : 𝑘𝑛𝐹 → 𝐼𝑛𝐹/𝐼𝑛+1𝐹

which carries each product 𝑙 (𝑎1)...𝑙 (𝑎𝑛) in 𝐾𝑛𝐹/2𝐾𝑛𝐹 to the product
(⟨𝑎1⟩ − ⟨1⟩)...(⟨𝑎𝑛⟩ − ⟨1⟩) modulo 𝐼𝑛+1𝐹.

These morphisms determines an epimorphism 𝑠∗ : 𝑘∗𝐹 → 𝑊𝑔 (𝐹), where

𝑊𝑔 (𝐹) = (𝑊𝐹/𝐼𝐹, 𝐼𝐹/𝐼2𝐹, ..., 𝐼𝑛𝐹/𝐼𝑛+1𝐹, ...).
For a field 𝐹, let 𝐹𝑠 be the a separable closure of 𝐹 and 𝐺𝐹 = Gal(𝐹𝑠). Then,

the exact sequence

1 // {±1} // ¤𝐹𝑠 2 // ¤𝐹𝑠 // 1

is taken to the following exact sequence

𝐻0(𝐺𝐹 , ¤𝐹𝑠) 2 // 𝐻0(𝐺𝐹 , ¤𝐹𝑠) 𝛿 // 𝐻1(𝐺𝐹 , {±1}) // 𝐻1(𝐺𝐹 , ¤𝐹𝑠)

of cohomology groups. Identifying the two first groups with ¤𝐹, and {±1} with
Z/2Z and applying Hilbert’s 90, we have

¤𝐹 2 // ¤𝐹 𝛿 // 𝐻1(𝐺𝐹 ,Z/2Z) // 0 .

The quotient ¤𝐹/ ¤𝐹2 is identified with 𝑘1𝐹.

Theorem 2.3 (Lemma 6.1 of [11]). The isomorfism 𝑙 (𝑎) ↦→ 𝛿(𝑎) from 𝐾1𝐹/2𝐾1𝐹
to 𝐻1(𝐺𝐹 ,Z/2Z) admits a unique extension to a graded ring morphism

ℎ 𝑓 : 𝑘∗𝐹 → 𝐻∗(𝐺𝐹 ,Z/2Z).
The Milnor Conjecture consists of the assertion that 𝑠 and ℎ are graded rings

isomorfisms, which makes the fuctors 𝐾∗𝐹/2𝐾∗𝐹,𝑊𝑔 (𝐹), 𝐻∗(𝐺,Z/2Z) isomor-
phic.
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2.2 Dickmann-Miraglia K-theory for Special Groups There are some
generalizations of Milnor’s K-theory. In the quadratic forms context, maybe the
most significant one is the Dickmann-Miraglia K-theory of Special Groups. It is a
main tool in the proof of Marshall’s and Lam’s Conjecture. In this section, we get
some definitions and results from [3] and [5].

Firstly, we make a brief summary on special groups. Let 𝐴 be a set and ≡ a
binary relation on 𝐴 × 𝐴. We extend ≡ to a binary relation ≡𝑛 on 𝐴𝑛, by induction
on 𝑛 ⩾ 1, as follows:

i) ≡1 is the diagonal relation Δ𝐴 ⊆ 𝐴 × 𝐴.

ii) ≡2=≡.

iii) If 𝑛 ≥ 3, ⟨𝑎1, ..., 𝑎𝑛⟩ ≡𝑛 ⟨𝑏1, ..., 𝑏𝑛⟩ if and only there are 𝑥, 𝑦, 𝑧3, ..., 𝑧𝑛 ∈ 𝐴
such that

⟨𝑎1, 𝑥⟩ ≡ ⟨𝑏1, 𝑦⟩, ⟨𝑎2, ..., 𝑎𝑛⟩ ≡𝑛−1 ⟨𝑥, 𝑧3, ..., 𝑧𝑛⟩,
and ⟨𝑏2, ..., 𝑏𝑛⟩ ≡𝑛−1 ⟨𝑦, 𝑧3, ..., 𝑧𝑛⟩.

Whenever clear from the context, we frequently abuse notation and indicate the
afore-described extension ≡ by the same symbol.

Definition 2.4 (Special Group, 1.2 of [3]). A special group is a tuple (𝐺,−1,≡),
where 𝐺 is a group of exponent 2, i.e, 𝑔2 = 1 for all 𝑔 ∈ 𝐺; −1 is a distinguished
element of 𝐺, and ≡⊆ 𝐺 ×𝐺 ×𝐺 ×𝐺 is a relation (the special relation), satisfying
the following axioms for all 𝑎, 𝑏, 𝑐, 𝑑, 𝑥 ∈ 𝐺:

SG 0 ≡ is an equivalence relation on 𝐺2;

SG 1 ⟨𝑎, 𝑏⟩ ≡ ⟨𝑏, 𝑎⟩;
SG 2 ⟨𝑎,−𝑎⟩ ≡ ⟨1,−1⟩;
SG 3 ⟨𝑎, 𝑏⟩ ≡ ⟨𝑐, 𝑑⟩ ⇒ 𝑎𝑏 = 𝑐𝑑;

SG 4 ⟨𝑎, 𝑏⟩ ≡ ⟨𝑐, 𝑑⟩ ⇒ ⟨𝑎,−𝑐⟩ ≡ ⟨−𝑏, 𝑑⟩;
SG 5 ⟨𝑎, 𝑏⟩ ≡ ⟨𝑐, 𝑑⟩ ⇒ ⟨𝑔𝑎, 𝑔𝑏⟩ ≡ ⟨𝑔𝑐, 𝑔𝑑⟩, for all 𝑔 ∈ 𝐺.

SG 6 (3-transitivity) the extension of ≡ for a binary relation on 𝐺3 is a transitive
relation.
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A group of exponent 2, with a distinguished element −1, satisfying the axioms
SG0-SG3 and SG5 is called a proto special group; a pre special group is a proto
special group that also satisfy SG4. Thus a special group is a pre-special group
that satisfies SG6 (or, equivalently, for each 𝑛 ≥ 1, ≡𝑛 is an equivalence relation
on 𝐺𝑛).

A 𝑛-form (or form of dimension 𝑛 ⩾ 1) is an 𝑛-tuple of elements of a pre-SG𝐺.
An element 𝑏 ∈ 𝐺 is represented on 𝐺 by the form
𝜑 = ⟨𝑎1, ..., 𝑎𝑛⟩, in symbols 𝑏 ∈ 𝐷𝐺 (𝜑), if there exists 𝑏2, ..., 𝑏𝑛 ∈ 𝐺 such
that ⟨𝑏, 𝑏2, ..., 𝑏𝑛⟩ ≡ 𝜑.

A pre-special group (or special group) (𝐺,−1,≡) is:
• formally real if −1 ∉

⋃
𝑛∈N 𝐷𝐺 (𝑛⟨1⟩)2 ;

• reduced if it is formally real and, for each 𝑎 ∈ 𝐺, 𝑎 ∈ 𝐷𝐺 (⟨1, 1⟩) iff 𝑎 = 1.

Definition 2.5 (1.1 of [3]). A map (𝐺,≡𝐺 ,−1) 𝑓
// (𝐻,≡𝐻 ,−1) between pre-

special groups is a morphism of pre-special groups or PSG-morphism if 𝑓 :
𝐺 → 𝐻 is a homomorphism of groups, 𝑓 (−1) = −1 and for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐺

⟨𝑎, 𝑏⟩ ≡𝐺 ⟨𝑐, 𝑑⟩ ⇒ ⟨ 𝑓 (𝑎), 𝑓 (𝑏)⟩ ≡𝐻 ⟨ 𝑓 (𝑐), 𝑓 (𝑑)⟩

A morphism of special groups or SG-morphism is a pSG-morphism between
the corresponding pre-special groups. 𝑓 will be an isomorphism if is bijective and
𝑓 , 𝑓 −1 are PSG-morphisms.

It can be verified that a special group 𝐺 is formally real iff it admits some
SG-morphism 𝑓 : 𝐺 → 2. The category of special groups (respectively reduced
special groups) and their morphisms will be denoted by SG (respectively RSG).

Definition 2.6 (The Dickmann-Miraglia K-theory [5]). For each special group 𝐺
(written multiplicatively) we associate a graded ring

𝑘∗𝐺 = (𝑘0𝐺, 𝑘1𝐺, ..., 𝑘𝑛𝐺, ...)

as follows: 𝑘0𝐺 := F2 and 𝑘1𝐺 := 𝐺 written additively. With this purpose, we fix
the canonical “logarithm” isomorphism 𝜆 : 𝐺 → 𝑘1𝐺 by
𝜆(𝑎𝑏) = 𝜆(𝑎) + 𝜆(𝑏). Observe that 𝜆(1) is the zero of 𝑘1𝐺 and 𝑘1𝐺 has ex-
ponent 2, i.e, 𝜆(𝑎) = −𝜆(𝑎) for all 𝑎 ∈ 𝐺. In the sequel, we define 𝑘∗𝐺 by the

2Here the notation 𝑛⟨1⟩ means the form ⟨𝑎1, ..., 𝑎𝑛⟩ where 𝑎 𝑗 = 1 for all 𝑗 = 1, ..., 𝑛. In other
words, 𝑛⟨1⟩ is the form ⟨1, ..., 1⟩ with 𝑛 entries equal to 1.
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quotient of the F2-graded algebra

(F2, 𝑘1𝐺, 𝑘1𝐺 ⊗F2 𝑘1𝐺, 𝑘1𝐺 ⊗F2 𝑘1𝐺 ⊗F2 𝑘1𝐺, ...)

by the (graded) ideal generated by {𝜆(𝑎) ⊗ 𝜆(𝑎𝑏), 𝑎 ∈ 𝐷𝐺 (1, 𝑏)}. In other words,
for each 𝑛 ⩾ 2,

𝑘𝑛𝐺 := 𝑇𝑛 (𝑘1𝐺)/𝑄𝑛 (𝐺),
where

𝑇𝑛 (𝑘1𝐺) := 𝑘1𝐺 ⊗F2 𝑘1𝐺 ⊗F2 ... ⊗F2 𝑘1𝐺

and 𝑄𝑛 (𝐺) is the subgroup generated by all expressions of type
𝜆(𝑎1) ⊗ 𝜆(𝑎2) ⊗ ... ⊗ 𝜆(𝑎𝑛) such that for some 𝑖 with 1 ⩽ 𝑖 < 𝑛, there exist
𝑏 ∈ 𝐺 such that 𝑎𝑖 ∈ 𝐷𝐺 (1, 𝑏) and 𝑎𝑖 = 𝑎𝑖+1𝑏, which in symbols, means

𝑄𝑛 (𝐺) := ⟨{𝜆(𝑎1) ⊗ 𝜆(𝑎2) ⊗ ... ⊗ 𝜆(𝑎𝑛) : exists 1 ⩽ 𝑖 < 𝑛 and 𝑏 ∈ 𝐺
such that 𝑎𝑖 = 𝑎𝑖+1𝑏 and 𝑎𝑖 ∈ 𝐷𝐺 (1, 𝑏)}⟩.

Since 𝜆(𝑎) + 𝜆(𝑎) = 0 for all 𝑎 ∈ 𝑘1𝐺, it follow that 𝜂 + 𝜂 = 0 for all 𝜂 ∈ 𝑘𝑛𝐺,
so this is a group of exponent 2.

Moreover, we will denote “𝜆(𝑎1) ⊗ 𝜆(𝑎2) ⊗ ... ⊗ 𝜆(𝑎𝑛)” simply by
“𝜆(𝑎1)𝜆(𝑎2)...𝜆(𝑎𝑛)”. Clearly, 𝑘∗(𝐺) is a graded ring, and in particular, a ring, so
that we are able to multiply elements 𝜂 ∈ 𝑘𝑛𝐺, 𝜏 ∈ 𝑘𝑚𝐺. Whenever we want to
do this, we will denote 𝜂 · 𝜏, in order to avoid confusion with the simplifications
described above.

Finally, since we only take tensorial products with parameters in F2, we ab-
breviate “𝐴 ⊗F2 𝐵” simply by “𝐴 ⊗ 𝐵”. In this way, 𝑇𝑛 (𝑘1𝐺) we will be denoted
simply by

𝑇𝑛 (𝑘1𝐺) = 𝑘1𝐺 ⊗ 𝑘1𝐺 ⊗ ... ⊗ 𝑘1𝐺.

Next, we have a result that approximates Dickmann-Miraglia’s K-theory with
the Milnor’s reduced K-theory:

Proposition 2.7 (2.1 [5]). Let 𝐺 be a special group, 𝑥, 𝑦, 𝑎1, ..., 𝑎𝑛 ∈ 𝐺 and 𝜎 be
a permutation on 𝑛 elements.

(a) In 𝑘2𝐺, 𝜆(𝑎)2 = 𝜆(𝑎)𝜆(−1). Hence in 𝑘𝑚𝐺, 𝜆(𝑎)𝑚 = 𝜆(𝑎)𝜆(−1)𝑚−1,
𝑚 ⩾ 2;

(b) In 𝑘2𝐺, 𝜆(𝑎)𝜆(−𝑎) = 𝜆(𝑎)2 = 0;
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(c) In 𝑘𝑛𝐺, 𝜆(𝑎1)𝜆(𝑎2)...𝜆(𝑎𝑛) = 𝜆(𝑎𝜎1)𝜆(𝑎𝜎2)...𝜆(𝑎𝜎𝑛);
(d) For 𝑛 ⩾ 1 and 𝜉 ∈ 𝑘𝑛𝐺, 𝜉2 = 𝜆(−1)𝑛𝜉;
(e) If 𝐺 is a reduced special group, then 𝑥 ∈ 𝐷𝐺 (1, 𝑦) and the equality

𝜆(𝑦)𝜆(𝑎1)...𝜆(𝑎𝑛) = 0 implies

𝜆(𝑥)𝜆(𝑎1)𝜆(𝑎2)...𝜆(𝑎𝑛) = 0.

Definition 2.8 (2.4 [5]).

a) A reduced special group is [MC] if for all 𝑛 ⩽ 1 and all forms 𝜑 over 𝐺,

For all 𝜎 ∈ 𝑋𝐺 , if 𝜎(𝜑) ≡ 0 mod 2𝑛 then 𝜑 ∈ 𝐼𝑛𝐺.

b) A reduced special group is [SMC] if for all 𝑛 ⩾ 1, the multiplication by
𝜆(−1) is an injection of 𝑘𝑛𝐺 in 𝑘𝑛+1𝐺.

Fact 2.9: We summarize some properties of the Dickmann-Miraglia K-theory be-
low:

i) An inductive system of special groups

G = (𝐺𝑖; { 𝑓𝑖 𝑗 : 𝑖 ⩽ 𝑗 ∈ 𝐼}),
provides an inductive system of graded ring, which nodes are 𝑘∗𝐺𝑖 and
morphisms are

( 𝑓𝑖 𝑗)∗ : 𝑘∗𝐺𝑖 → 𝑘∗𝐺 𝑗 , for 𝑖 ⩽ 𝑗 in 𝐼 .

ii) (4.5 of [5]) Let G = (𝐺𝑖; { 𝑓𝑖 𝑗 : 𝑖, 𝑗 ∈ 𝐼, 𝑖 ⩽ 𝑗}) an inductive system of
special groups over a directed poset 𝐼 and (𝐺; { 𝑓𝑖 : 𝑖 ∈ 𝐼}) = lim−−→G. Then

𝑘∗𝐺 � lim−−→
𝑖∈𝐼

𝑘∗𝐺𝑖 .

iii) (4.6, 5.1, 5,7 and 6.8 of [5]) The inductive limit, finite products, SG-sum and
extension of SMC groups is a SMC group.

iv) (5.1 of [5]) Let 𝐺1, ..., 𝐺𝑚 be special groups and
∏𝑚
𝑖=1𝐺𝑖 . Then there exists

a graded isomorphism

𝛾 : 𝑘∗𝑃 →
𝑚⊕
𝑖=1

𝑘∗𝐺𝑖 .
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2.3 Multifields/Hyperfields Roughly speaking, a multiring is a
“ring” with a multivalued addition, a notion introduced in the 1950s by Kras-
ner’s works. The notion of multiring was joined to the quadratic forms tools by the
hands of M. Marshall in the last decade ( [10]). We gather the basic information
about multirings/hyperfields and expand some details that we use in the context
of K-theories. For more detailed calculations involving multirings/hyperfields and
quadratic forms we indicate to the reader the reference [14] (or even [8] and [17]).
Of course, multi-structures is an entire subject of research (which escapes from the
“quadratic context”), and in this sense, we indicate the references [12], [18], [1].

Definition 2.10. A multigroup is a quadruple (𝐺, ∗, 𝑟, 1), where 𝐺 is a non-empty
set, ∗ : 𝐺 ×𝐺 → P(𝐺) \ {∅} and 𝑟 : 𝐺 → 𝐺 are functions, and 1 is an element of
𝐺 satisfying:

i) If 𝑧 ∈ 𝑥 ∗ 𝑦 then 𝑥 ∈ 𝑧 ∗ 𝑟 (𝑦) and 𝑦 ∈ 𝑟 (𝑥) ∗ 𝑧.
ii) 𝑦 ∈ 1 ∗ 𝑥 if and only if 𝑥 = 𝑦.

iii) With the convention 𝑥 ∗ (𝑦 ∗ 𝑧) = ⋃
𝑤∈𝑦∗𝑧

𝑥 ∗ 𝑤 and (𝑥 ∗ 𝑦) ∗ 𝑧 = ⋃
𝑡∈𝑥∗𝑦

𝑡 ∗ 𝑧,

𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝐺.

A multigroup is said to be commutative if

iv) 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 for all 𝑥, 𝑦 ∈ 𝐺.

Observe that by (i) and (ii), 1 ∗ 𝑥 = 𝑥 ∗ 1 = {𝑥} for all 𝑥 ∈ 𝐺. When 𝑎 ∗ 𝑏 = {𝑥} be
a unitary set, we just write 𝑎 ∗ 𝑏 = 𝑥.

Definition 2.11 (Adapted from Definition 2.1 in [10]). A multiring is a sextuple
(𝑅, +, ·,−, 0, 1) where 𝑅 is a non-empty set, + : 𝑅×𝑅 → P(𝑅) \{∅}, · : 𝑅×𝑅 → 𝑅
and − : 𝑅 → 𝑅 are functions, 0 and 1 are elements of 𝑅 satisfying:

i) (𝑅, +,−, 0) is a commutative multigroup;

ii) (𝑅, ·, 1) is a commutative monoid;

iii) 𝑎.0 = 0 for all 𝑎 ∈ 𝑅;

iv) If 𝑐 ∈ 𝑎 + 𝑏, then 𝑐.𝑑 ∈ 𝑎.𝑑 + 𝑏.𝑑. Or equivalently, (𝑎 + 𝑏).𝑑 ⊆ 𝑎.𝑑 + 𝑏.𝑑.
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Note that if 𝑎 ∈ 𝑅, then 0 = 0.𝑎 ∈ (1 + (−1)).𝑎 ⊆ 1.𝑎 + (−1).𝑎, thus
(−1).𝑎 = −𝑎.

𝑅 is said to be an hyperring if for 𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐.
A multring (respectively, a hyperring) 𝑅 is said to be a multidomain (hyperdo-

main) if it has no zero divisors. A multring 𝑅 will be a multifield if every non-zero
element of 𝑅 has multiplicative inverse; note that hyperfields and multifields coin-
cide. We will use “hyperfield” since this is the prevailing terminology.

Definition 2.12. Let 𝐴 and 𝐵 multirings. A map 𝑓 : 𝐴 → 𝐵 is a morphism if for
all 𝑎, 𝑏, 𝑐 ∈ 𝐴:

i) 𝑐 ∈ 𝑎 + 𝑏 ⇒ 𝑓 (𝑐) ∈ 𝑓 (𝑎) + 𝑓 (𝑏);
ii) 𝑓 (−𝑎) = − 𝑓 (𝑎);

iii) 𝑓 (0) = 0;
iv) 𝑓 (𝑎𝑏) = 𝑓 (𝑎) 𝑓 (𝑏);
v) 𝑓 (1) = 1.

If 𝐴 and 𝐵 are multirings, a morphism 𝑓 : 𝐴 → 𝐵 is a strong morphism if
for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, if 𝑓 (𝑐) ∈ 𝑓 (𝑎) + 𝑓 (𝑏), then there are 𝑎′, 𝑏′, 𝑐′ ∈ 𝐴 with
𝑓 (𝑎′) = 𝑓 (𝑎), 𝑓 (𝑏′) = 𝑓 (𝑏), 𝑓 (𝑐′) = 𝑓 (𝑐) such that 𝑐′ ∈ 𝑎′ + 𝑏′. In the quadratic
context, there is a more detailed analysis in Example 2.10 of [14].

Example 2.13.

(a) Suppose that (𝐺, +, 0) is an abelian group. Defining 𝑎 + 𝑏 = {𝑎 + 𝑏} and
𝑟 (𝑔) = −𝑔, we have that (𝐺, +, 𝑟, 0) is an abelian multigroup. In this way,
every ring, domain and field is a multiring, multidomain and hyperfield,
respectively.

(b) 𝑄2 = {−1, 0, 1} is hyperfield with the usual product (inZ) and the multivalued
sum defined by relations




0 + 𝑥 = 𝑥 + 0 = 𝑥, for every 𝑥 ∈ 𝑄2

1 + 1 = 1, (−1) + (−1) = −1
1 + (−1) = (−1) + 1 = {−1, 0, 1}

(c) Let 𝐾 = {0, 1} with the usual product and the sum defined by relations
𝑥 + 0 = 0 + 𝑥 = 𝑥, 𝑥 ∈ 𝐾 and 1 + 1 = {0, 1}. This is a hyperfield called
Krasner’s hyperfield [9].
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Now, another example that generalizes 𝑄2 = {−1, 0, 1}. Since this is a new
one, we will provide the entire verification that it is a multiring:

Example 2.14 (Kaleidoscope, Example 2.7 in [14]). Let 𝑛 ∈ N and define

𝑋𝑛 = {−𝑛, ..., 0, ..., 𝑛} ⊆ Z.

We define the 𝑛-kaleidoscope multiring by (𝑋𝑛, +, ·,−, 0, 1), where
− : 𝑋𝑛 → 𝑋𝑛 is restriction of the opposite map in Z, + : 𝑋𝑛 × 𝑋𝑛 → P(𝑋𝑛) \ {∅}
is given by the rules:

𝑎 + 𝑏 =



{𝑎}, if 𝑏 ≠ −𝑎 and |𝑏 | ⩽ |𝑎 |
{𝑏}, if 𝑏 ≠ −𝑎 and |𝑎 | ⩽ |𝑏 |
{−𝑎, ..., 0, ..., 𝑎} if 𝑏 = −𝑎

,

and · : 𝑋𝑛 × 𝑋𝑛 → 𝑋𝑛 is given by the rules:

𝑎 · 𝑏 =

{
sgn(𝑎𝑏) max{|𝑎 |, |𝑏 |} if 𝑎, 𝑏 ≠ 0
0 if 𝑎 = 0 or 𝑏 = 0

.

With the above rules we have that (𝑋𝑛, +, ·,−, 0, 1) is a multiring.

Now, another example that generalizes 𝐾 = {0, 1}.

Example 2.15 (H-hyperfield, Example 2.8 in [14]). Let 𝑝 ⩾ 1 be a prime integer
and 𝐻𝑝 := {0, 1, ..., 𝑝 − 1} ⊆ N. Now, define the binary multioperation and
operation in 𝐻𝑝 as follows:

𝑎 + 𝑏 =




𝐻𝑝 if 𝑎 = 𝑏, 𝑎, 𝑏 ≠ 0
{𝑎, 𝑏} if 𝑎 ≠ 𝑏, 𝑎, 𝑏 ≠ 0
{𝑎} if 𝑏 = 0
{𝑏} if 𝑎 = 0

𝑎 · 𝑏 = 𝑘 where 0 ⩽ 𝑘 < 𝑝 and 𝑘 ≡ 𝑎𝑏 mod p.

(𝐻𝑝, +, ·,−, 0, 1) is a hyperfield such that for all 𝑎 ∈ 𝐻𝑝, −𝑎 = 𝑎. In fact, these 𝐻𝑝
are a kind of generalization of 𝐾 , in the sense that 𝐻2 = 𝐾 .



12 K. Roberto and H. Mariano

There are many natural constructions on the category of multrings as: products,
directed inductive limits, quotients by an ideal, localizations by multiplicative
subsets and quotients by ideals. Now, we present some constructions that will be
used further. For the first one, we need to restrict our category:

Definition 2.16 (Definition 3.1 of [17]). An hyperbolic multiring is a multiring
𝑅 such that 1 − 1 = 𝑅. The category of hyperbolic multirings and hyperbolic
hyperfields will be denoted by HMR and HMF respectively.

Let 𝐹1 and 𝐹2 be two hyperbolic hyperfields. We define a new hyperbolic
hyperfield (𝐹1 ×ℎ 𝐹2, +,−, ·, (0, 0), (1, 1)) by the following: the adjacent set of this
structure is

𝐹1 ×ℎ 𝐹2 := ( ¤𝐹1 × ¤𝐹2) ∪ {(0, 0)}.
For (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐹1 ×ℎ 𝐹2 we define

−(𝑎, 𝑏) = (−𝑎,−𝑏),
(𝑎, 𝑏) · (𝑐, 𝑑) = (𝑎 · 𝑐, 𝑏 · 𝑑),
(𝑎, 𝑏) + (𝑐, 𝑑) = {(𝑒, 𝑓 ) ∈ 𝐹1 × 𝐹2 : 𝑒 ∈ 𝑎 + 𝑐 and 𝑓 ∈ 𝑏 + 𝑑} ∩ (𝐹1 ×ℎ 𝐹2).

(2.1)

In other words, (𝑎, 𝑏) + (𝑐, 𝑑) is defined in order to avoid elements of 𝐹1 × 𝐹2 of
type (𝑥, 0), (0, 𝑦), 𝑥, 𝑦 ≠ 0.

Theorem 2.17 (Product of Hyperbolic Hyperfields). Let 𝐹1, 𝐹2 be hyperbolic
hyperfields and 𝐹1 ×ℎ 𝐹2 as above. Then 𝐹1 ×ℎ 𝐹2 is a hyperbolic hyperfield and
satisfy the Universal Property of product for 𝐹1 and 𝐹2.

Proof. We will verify the conditions of definition 2.11 (in a very similar manner
as in Theorem 3.3 of [14]). Note that by the definition of multivalued sum in
𝐹1 ×ℎ 𝐹2 we have for all 𝑎, 𝑐 ∈ 𝐹1 and all 𝑏, 𝑑 ∈ 𝐹2 that (𝑎, 𝑏) + (𝑐, 𝑑) ≠ ∅ and
(𝑎, 𝑐) − (𝑎, 𝑐) = 𝐹1 ×ℎ 𝐹2 if 𝑎, 𝑐 ≠ 0.

i) In order to prove that (𝐹1 ×ℎ 𝐹2, +,−, (0, 0)) is a multigroup we follow the
steps below.

(a) We will prove that if (𝑒, 𝑓 ) ∈ (𝑎, 𝑏) + (𝑐, 𝑑), then (𝑎, 𝑏) ∈ (𝑐, 𝑑) + (−𝑒,− 𝑓 )
and (𝑐, 𝑑) ∈ (−𝑎,−𝑏) + (𝑒, 𝑓 ).
If (𝑎, 𝑏) = (0, 0) (or (𝑐, 𝑑) = (0, 0)) or (𝑎, 𝑏) = (−𝑐,−𝑑), then
(𝑒, 𝑓 ) ∈ (𝑎, 𝑏) + (𝑐, 𝑑) means (𝑒, 𝑓 ) = (𝑐, 𝑑) or 𝑒 ∈ 𝑎−𝑎, 𝑓 ∈ 𝑏− 𝑏. In both
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cases we get (𝑎, 𝑏) ∈ (𝑐, 𝑑) + (−𝑒,− 𝑓 ) and (𝑐, 𝑑) ∈ (−𝑎,−𝑏) + (𝑒, 𝑓 ). Now
suppose 𝑎, 𝑏, 𝑐, 𝑑 ≠ 0 with 𝑎 ≠ −𝑐, 𝑏 ≠ −𝑑. Let (𝑒, 𝑓 ) ∈ (𝑎, 𝑏) + (𝑐, 𝑑).
Then (𝑒, 𝑓 ) ∈ 𝐹1 ×ℎ 𝐹2 with 𝑒 ∈ 𝑎 + 𝑐 and 𝑓 ∈ 𝑐 + 𝑑. Moreover 𝑎 ∈ 𝑐 − 𝑒
and 𝑏 ∈ 𝑑 − 𝑓 with (𝑎, 𝑏) ∈ 𝐹1 ×ℎ 𝐹2, implying (𝑎, 𝑏) ∈ (𝑐, 𝑑) + (−𝑒,− 𝑓 ).
We prove (𝑐, 𝑑) ∈ (−𝑎,−𝑏) + (𝑒, 𝑓 ) by the very same argument.

(b) Commutativity and ((𝑎, 𝑏) ∈ (𝑐, 𝑑) + (0, 0)) ⇔ ((𝑎 = 𝑏) ∧ (𝑐 = 𝑑)) are
direct consequence of the definition of multivaluated sum.

(c) Now we prove the associativity, that is,

[(𝑎, 𝑏) + (𝑐, 𝑑)] + (𝑒, 𝑓 ) = (𝑎, 𝑏) + [(𝑐, 𝑑) + (𝑒, 𝑓 )] .
In fact (see the remarks after Lemma 2.4 of [14]), it is enough to show

[(𝑎, 𝑏) + (𝑐, 𝑑)] + (𝑒, 𝑓 ) ⊆ (𝑎, 𝑏) + [(𝑐, 𝑑) + (𝑒, 𝑓 )] .

If (𝑎, 𝑏) = 0 or (𝑐, 𝑑) = 0 or (𝑒, 𝑓 ) = 0 we are done. Now let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ≠
0 and (𝑣, 𝑤) ∈ [(𝑎, 𝑏) + (𝑐, 𝑑)] + (𝑒, 𝑓 ). If (𝑐, 𝑑) = −(𝑒, 𝑓 ), we have

(𝑎, 𝑏)+[(𝑐, 𝑑)+(𝑒, 𝑓 )] = (𝑎, 𝑏)+𝐹1×ℎ𝐹2 = 𝐹1×ℎ𝐹2 ⊇ [(𝑎, 𝑏)+(𝑐, 𝑑)]+(𝑒, 𝑓 ).
If −(𝑒, 𝑓 ) ∈ (𝑎, 𝑏) + (𝑐, 𝑑) then −(𝑎, 𝑏) ∈ (𝑐, 𝑑) + (𝑒, 𝑓 ) and we have

[(𝑎, 𝑏) + (𝑐, 𝑑)] + (𝑒, 𝑓 ) = 𝐹1 ×ℎ 𝐹2 = (𝑎, 𝑏) + [(𝑐, 𝑑) + (𝑒, 𝑓 )]

Now suppose 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ≠ 0, (𝑐, 𝑑) ≠ −(𝑒, 𝑓 ), −(𝑒, 𝑓 ) ∉ (𝑎, 𝑏) + (𝑐, 𝑑).
Let (𝑥, 𝑦) ∈ [(𝑎, 𝑏) + (𝑐, 𝑑)] + (𝑒, 𝑓 ). Then there exists (𝑣, 𝑤) ∈ 𝐹1 ×ℎ 𝐹2
such that (𝑣, 𝑤) ∈ (𝑎, 𝑏) + (𝑐, 𝑑) and (𝑥, 𝑦) ∈ (𝑣, 𝑤) + (𝑒, 𝑓 ). This imply
(𝑣 ∈ 𝑎 + 𝑐) ∧ (𝑥 ∈ 𝑣 + 𝑒) and (𝑤 ∈ 𝑏 + 𝑦) ∧ (𝑦 ∈ 𝑑 + 𝑓 ), so there exists
𝑝 ∈ 𝐹1, 𝑞 ∈ 𝐹2 such that (𝑣 ∈ 𝑎 + 𝑝) ∧ (𝑝 ∈ 𝑐 + 𝑒) and (𝑤 ∈ 𝑏 + 𝑞) ∧ (𝑞 ∈
𝑑 + 𝑓 ). If 𝑝, 𝑞 = 0 or 𝑝, 𝑞 ≠ 0 we have (𝑝, 𝑞) ∈ 𝐹1 ×ℎ 𝐹2, which imply
(𝑣, 𝑤) ∈ [(𝑎, 𝑏) + (𝑐, 𝑑)] + (𝑒, 𝑓 ). If 𝑝 = 0 and 𝑞 ≠ 0 (the case 𝑞 = 0
and 𝑝 ≠ 0 is analogous), then 𝑣 = 𝑎 and 𝑐 = −𝑒. Since 𝑎, 𝑐 ≠ 0 and 𝐹1 is
hyperbolic, we have 𝑎 − 𝑎 = 𝑐 − 𝑐 = 𝐹1. Then (𝑣 ∈ 𝑎 − 𝑎) ∧ (−𝑎 ∈ 𝑐 − 𝑐)
and (𝑤 ∈ 𝑏 + 𝑞) ∧ (𝑞 ∈ 𝑑 + 𝑓 ), with (−𝑎, 𝑞) ∈ 𝐹1 ×ℎ 𝐹2 and again, we get
(𝑣, 𝑤) ∈ [(𝑎, 𝑏) + (𝑐, 𝑑)] + (𝑒, 𝑓 ).

ii) Since (𝐹1 ×ℎ 𝐹2, ·, (1, 1)) is an abelian group, we conclude that it is a
commutative monoid. Beyond this, every nonzero element of 𝐹1 ×ℎ 𝐹2 has an
inverse.
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iii) (𝑎, 𝑏) · (0, 0) = (0, 0) for all (𝑎, 𝑏) ∈ 𝐹1 ×ℎ 𝐹2 is direct from definition.
iv) For the distributive property, let (𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓 ) ∈ 𝐹1×ℎ𝐹2 and consider

(𝑥, 𝑦) ∈ (𝑒, 𝑓 ) [(𝑎, 𝑏) + (𝑐, 𝑑)]. We need to prove that

(𝑥, 𝑦) ∈ (𝑒, 𝑓 ) · (𝑎, 𝑏) + (𝑒, 𝑓 ) · (𝑐, 𝑑). (*)

It is the case if (𝑎, 𝑏) = (0, 0), or (𝑐, 𝑑) = (0, 0) or (𝑒, 𝑓 ) = (0, 0). Moreover (*)
also holds if 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ≠ 0 and (𝑐, 𝑑) = −(𝑎, 𝑏).

Now suppose 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ≠ 0 and (𝑐, 𝑑) ≠ −(𝑎, 𝑏). Then we have (𝑥, 𝑦) =
(𝑒𝑣, 𝑓 𝑤) for some (𝑣, 𝑤) ∈ (𝑎, 𝑏) + (𝑐, 𝑑). Since (𝑒, 𝑓 ) ∈ 𝐹1 ×ℎ 𝐹2, 𝑒 = 0 iff
𝑓 = 0, which imply (𝑒𝑣, 𝑓 𝑤) ∈ 𝐹1 ×ℎ 𝐹2, with 𝑒𝑣 ∈ 𝑒𝑎 + 𝑒𝑐 and 𝑓 𝑤 ∈ 𝑓 𝑏 + 𝑓 𝑑.
Therefore (𝑥, 𝑦) = (𝑒𝑣, 𝑓 𝑤) ∈ (𝑒, 𝑓 ) · (𝑎, 𝑏) + (𝑒, 𝑓 ) · (𝑐, 𝑑), as desired.

Then (𝐹1 ×ℎ 𝐹2, +,−, ·, (0, 0), (1, 1)) is a hyperbolic hyperfield. Moreover we
have projections 𝜋1 : 𝐹1 ×ℎ 𝐹2 → 𝐹1, 𝜋2 : 𝐹1 ×ℎ 𝐹2 → 𝐹2 given respectively by
the rules 𝜋1(𝑥, 𝑦) = 𝑥, 𝜋2(𝑥, 𝑦) = 𝑦.

Finally, suppose that 𝐹 is another hyperfield with morphisms 𝑝1 : 𝐹 → 𝐹1 and
𝑝2 : 𝐹 → 𝐹2. Consider (𝑝1, 𝑝2) : 𝐹 → 𝐹1 ×ℎ 𝐹2 given by the rule (𝑝1, 𝑝2) (𝑥) =
(𝑝1(𝑥), 𝑝2(𝑥)). It is immediate that (𝑝1, 𝑝2) is the unique morphism making the
following diagram commute

𝐹

𝑝2

��

𝑝1

��

(𝑝1, 𝑝2 )

��

𝐹1 𝐹1 ×ℎ 𝐹2 𝑝2
//

𝑝1
oo 𝐹2

so 𝐹1 ×ℎ 𝐹2 is the product in the category of hyperbolic hyperfields, completing
the proof.

In order to avoid confusion and mistakes, we denote the binary product in
HMF by 𝐹1 ×ℎ 𝐹2. For hyperfields {𝐹𝑖}𝑖∈𝐼 , we denote the product of this family
by

ℎ∏
𝑖∈𝐼

𝐹𝑖 ,
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with underlying set defined by
ℎ∏
𝑖∈𝐼

𝐹𝑖 :=

(∏
𝑖∈𝐼

¤𝐹𝑖
)
∪ {(0𝑖)𝑖∈𝐼 }

and operations defined by rules similar to the ones defined in 2.1. If
𝐼 = {1, ...𝑛}, we denote

ℎ∏
𝑖∈𝐼

𝐹𝑖 =
𝑛∏
𝑖=1
[ℎ]

𝐹𝑖 .

Example 2.18. Note that if 𝐹1 (or 𝐹2) is not hyperbolic, then 𝐹1 ×ℎ 𝐹2 is not a
hyperfield. Let 𝐹1 be a field (considered as a hyperfield), for example 𝐹1 = R
and 𝐹2 be another hyperfield. Then if 𝑎, 𝑏 ∈ 𝐹2, we have 1 − 1 = {0}, so
(1, 𝑎) + (−1, 𝑏) = {0} × (𝑎 − 𝑏), and

[{0} × (𝑎 − 𝑏)] ∩ (𝐹1 ×ℎ 𝐹2) = ∅.
Proposition 2.19 (Example 2.6 in [10]). Fix a multiring 𝐴 and a multiplicative
subset 𝑆 of 𝐴 such that 1 ∈ 𝑆. Define an equivalence relation ∼ on 𝐴 by 𝑎 ∼ 𝑏 if
and only if 𝑎𝑠 = 𝑏𝑡 for some 𝑠, 𝑡 ∈ 𝑆. Denote by 𝑎 the equivalence class of 𝑎 and
set 𝐴/𝑚𝑆 = {𝑎 : 𝑎 ∈ 𝐴}. Then, we define in agreement with Marshall’s notation,
𝑎 + 𝑏 = {𝑐 : 𝑐𝑣 ∈ 𝑎𝑠 + 𝑏𝑡, for some 𝑠, 𝑡, 𝑣 ∈ 𝑆}, −𝑎 = −𝑎, and 𝑎𝑏 = 𝑎𝑏.

Then 𝐴/𝑚𝑆 are multirings. Moreover, if 𝐴 is a hyperring, the same holds for
𝐴/𝑚𝑆. The canonical projection 𝜋 : 𝐴→ 𝐴/𝑚𝑆 is a morphism.

Proposition 2.20 (2.19 in [14]). Let 𝐴, 𝐵 be a multiring and 𝑆 ⊆ 𝐴 a multiplicative
subset of 𝐴. Then for every morphism 𝑓 : 𝐴→ 𝐵 such that 𝑓 [𝑆] = {1}, there exist
a unique morphism 𝑓 : 𝐴/𝑚𝑆 → 𝐵 such that the following diagram commute:

𝐴
𝜋 //

𝑓
""

𝐴/𝑚𝑆
! 𝑓
��

𝐵

where 𝜋 : 𝐴→ 𝐴/𝑚𝑆 is the canonical projection 𝜋(𝑎) = 𝑎.

Proposition 2.21 (3.13 of [14]). Let (𝐺,≡,−1) be a special group and define
𝑀 (𝐺) = 𝐺 ∪ {0} where 0 := {𝐺}3. Then (𝑀 (𝐺), +,−, ·, 0, 1) is a hyperfield,
where

3Here, the choice of the zero element was ad hoc. Indeed, we can define 0 := {𝑥} for any 𝑥 ∉ 𝐺.
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• 𝑎 · 𝑏 =

{
0 if 𝑎 = 0 or 𝑏 = 0
𝑎 · 𝑏 otherwise

• −(𝑎) = (−1) · 𝑎

• 𝑎 + 𝑏 =




{𝑏} if 𝑎 = 0
{𝑎} if 𝑏 = 0
𝑀 (𝐺) if 𝑎 = −𝑏, and 𝑎 ≠ 0
𝐷𝐺 (𝑎, 𝑏) otherwise

Corollary 2.22 (3.14 of [14]). The correspondence 𝐺 ↦→ 𝑀 (𝐺) extends to a
faithful functor 𝑀 : SG → 𝑀𝐹𝑖𝑒𝑙𝑑.

Definition 2.23 (3.15-3.19 of [14]). A hyperfield 𝐹 is a special multifield if there
exist a special group 𝐺 such that 𝐹 = 𝑀 (𝐺). The category of special multifields
will be denoted by SMF .

Definition 2.24 (Definition 3.2 of [17]). A Dickmann-Miraglia multiring (or
DM-multiring for short) 4 is a pair (𝑅,𝑇) such that 𝑅 is a multiring, 𝑇 ⊆ 𝑅 is a
multiplicative subset of 𝑅 \ {0}, and (𝑅,𝑇) satisfies the following properties:

DM0 𝑅/𝑚𝑇 is hyperbolic.

DM1 If 𝑎 ≠ 0 in 𝑅/𝑚𝑇 , then 𝑎2 = 1 in 𝑅/𝑚𝑇 . In other words, for all 𝑎 ∈ 𝑅 \ {0},
there are 𝑟, 𝑠 ∈ 𝑇 such that 𝑎𝑟 = 𝑠.

DM2 For all 𝑎 ∈ 𝑅, (1 − 𝑎) (1 − 𝑎) ⊆ (1 − 𝑎) in 𝑅/𝑚𝑇 .

DM3 For all 𝑎, 𝑏, 𝑥, 𝑦, 𝑧 ∈ 𝑅 \ {0}, if{
𝑎 ∈ 𝑥 + 𝑏
𝑏 ∈ 𝑦 + 𝑧 in 𝑅/𝑚𝑇,

then exist 𝑣 ∈ 𝑥 + 𝑧 such that 𝑎 ∈ 𝑦 + 𝑣 and 𝑣𝑏 ∈ 𝑥𝑦 + 𝑎𝑧 in 𝑅/𝑚𝑇 .

If 𝑅 is a ring, we just say that (𝑅,𝑇) is a DM-ring, or 𝑅 is a DM-ring.
A Dickmann-Miraglia hyperfield (or DM-hyperfield) 𝐹 is a hyperfield such that
(𝐹, {1}) is a DM-multiring (satisfies DM0-DM3). In other words, 𝐹 is a DM-
hyperfield if 𝐹 is hyperbolic and for all 𝑎, 𝑏, 𝑣, 𝑥, 𝑦, 𝑧 ∈ 𝐹∗,

4The name “Dickmann-Miraglia” is given in honor to professors Maximo Dickmann and Francisco
Miraglia, the creators of the special group theory.
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i) 𝑎2 = 1.
ii) (1 − 𝑎) (1 − 𝑎) ⊆ (1 − 𝑎).

iii) If

{
𝑎 ∈ 𝑥 + 𝑏
𝑏 ∈ 𝑦 + 𝑧 then there exists 𝑣 ∈ 𝑥 + 𝑧 such that 𝑎 ∈ 𝑦 + 𝑣 and

𝑣𝑏 ∈ 𝑥𝑦 + 𝑎𝑧.
Theorem 2.25 (Theorem 3.4 of [17]). Let (𝑅,𝑇) be a DM-multiring and denote

𝑆𝑚(𝑅,𝑇) = (𝑅/𝑚𝑇).
Then 𝑆𝑚(𝑅) is a special hyperfield (thus 𝑆𝑚(𝑅,𝑇)× is a special group).

Theorem 2.26 (Theorem 3.9 of [17]). Let 𝐹 be a hyperfield satisfying DM0-DM2.
Then 𝐹 satisfies DM3 if and only if satisfies SMF4. In other words, 𝐹 is a DM-
hyperfield if and only if it is a special hyperfield.

In this sense, we define the following category:

Definition 2.27. A pre-special hyperfield is a hyperfield satisfying DM0, DM1
and DM2. In other words, a pre-special hyperfield is a hyperbolic hyperfield 𝐹
such that for all 𝑎 ∈ ¤𝐹, 𝑎2 = 1 and (1 − 𝑎) (1 − 𝑎) ⊆ 1 − 𝑎.

The category of pre-special hyperfields will be denoted by 𝑃𝑆𝑀𝐹.

Example 2.28 (An hyperfield satisfying DM3 but not DM2). Let 𝐻3 as in Example
2.15. We have that𝐻3 is hyperbolic and has exponent 2 but does not satisfies 𝐷𝑀2:

1 + 2 = {1, 2} and (1 + 2) (1 + 2) = 1 + 2 + 2 + 1 = (1 + 1) + (2 + 2) = 𝐻3.

Moreover, by a case analysis we have that 𝐻3 satisfies DM3, and we prove it by a
case analysis: we have 27 possible choices for the triple (𝑥, 𝑦, 𝑧) with 𝑥, 𝑦, 𝑧 ∈ 𝐻3.

(i) Let (𝑥, 𝑦, 𝑧) such that 𝑧 = 0. Then 𝑏 ∈ 𝑦 + 𝑧 means 𝑏 = 𝑦 and 𝑣 ∈ 𝑥 + 𝑧
means 𝑣 = 𝑥. Let 𝑎 ∈ 𝑥 + 𝑏 with 𝑏 ∈ 𝑦 + 𝑧. Then 𝑎 ∈ 𝑏 + 𝑥 = 𝑦 + 𝑣 and

𝑣𝑏 = 𝑥𝑦 ∈ 𝑥𝑦 + 𝑎𝑧.
So we cover the cases

(𝑥, 𝑦, 𝑧) ∈ {(0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0), (2, 0, 0),
(2, 1, 0), (2, 2, 0)}.
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(ii) Let (𝑥, 𝑦, 𝑧) such that 𝑥 = 0. Then 𝑣 ∈ 𝑥 + 𝑧 means 𝑣 = 𝑧. Let 𝑎 ∈ 𝑥 + 𝑏 =
0 + 𝑏 = {𝑏} with 𝑏 ∈ 𝑦 + 𝑧. Then 𝑎 ∈ 𝑏 + 𝑧 = 𝑦 + 𝑧, 𝑎𝑧 = 𝑏𝑧 and

𝑣𝑏 = 𝑏𝑧 ∈ 𝑥𝑦 + 𝑏𝑧 = 𝑥𝑦 + 𝑎𝑧.
So we cover the cases

(𝑥, 𝑦, 𝑧) ∈ {(0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)}.

(iii) Let (𝑥, 𝑦, 𝑧) such that 𝑦 = 0 and 𝑥, 𝑧 ≠ 0. Then {1, 2} ⊆ 𝑥 + 𝑧, 𝑏 ∈ 𝑦 + 𝑧
means 𝑏 = 𝑧 and 𝑎 ∈ 𝑦 + 𝑣 means 𝑎 = 𝑣. Let 𝑎 ∈ 𝑥 + 𝑏 = 𝑥 + 𝑧. Then 𝑣𝑏 = 𝑎𝑧
and

𝑣𝑏 = 𝑎𝑧 ∈ 0 + 𝑎𝑧 = 𝑥𝑦 + 𝑎𝑧.
So we cover the cases

(𝑥, 𝑦, 𝑧) ∈ {(1, 0, 1), (1, 0, 2), (2, 0, 1), (2, 0, 2)}.

(iv) Let (𝑥, 𝑦, 𝑧) such that 𝑥, 𝑦, 𝑧 ≠ 0 and 𝑥 + 𝑧 = 𝐻3. Let 𝑎 ∈ 𝑥 + 𝑏 with 𝑏 ∈ 𝑦 + 𝑧.
If 𝑎 = 0 then 𝑏 = 𝑥. Taking 𝑣 = 𝑦 ∈ 𝐻3 = 𝑥 + 𝑧 we get 𝑎 ∈ 𝑦 + 𝑦 = 𝑦 + 𝑣 and

𝑣𝑏 = 𝑥𝑦 ∈ 𝑥𝑦 + 0 = 𝑥𝑦 + 𝑎𝑧.
If 𝑏 = 0 then 𝑧 = 𝑦 𝑎 = 𝑥 (so 𝑎𝑧 = 𝑥𝑦). Taking 𝑣 = 𝑦 ∈ 𝐻3 = 𝑥 + 𝑧 we get
𝑎 ∈ 𝑦 + 𝑦 = 𝑦 + 𝑣 and

𝑣𝑏 = 0 ∈ 𝑥𝑦 + 𝑥𝑦 = 𝑥𝑦 + 𝑎𝑧.
If 𝑎, 𝑏 ≠ 0, then there exist 𝑣 ∈ 𝐻3 = 𝑥 + 𝑧 such that 𝑣𝑏 = 𝑥𝑦. Then
𝑎 ∈ {1, 2} ⊆ 𝑦 + 𝑣 (because 𝑥, 𝑦, 𝑧, 𝑣 ≠ 0) and

𝑣𝑏 = 𝑥𝑦 ∈ 𝑥𝑦 + 𝑎𝑧.
So we cover the cases

(𝑥, 𝑦, 𝑧) ∈ {(1, 1, 1), (1, 2, 1), (2, 1, 2), (2, 2, 2)}.

(v) Let (𝑥, 𝑦, 𝑧) such that 𝑥, 𝑦, 𝑧 ≠ 0 and 𝑦 + 𝑧 = 𝐻3. Let 𝑎 ∈ 𝑥 + 𝑏 with 𝑏 ∈ 𝑦 + 𝑧.
If 𝑎 = 0 then 𝑏 = 𝑥. Taking 𝑣 = 𝑦 ∈ {1, 2} ⊆ 𝑥 + 𝑧 we get 𝑎 ∈ 𝑦 + 𝑦 = 𝑦 + 𝑣
and

𝑣𝑏 = 𝑥𝑦 ∈ 𝑥𝑦 + 0 = 𝑥𝑦 + 𝑎𝑧.



K-theories and free inductive graded rings 19

If 𝑏 = 0 then 𝑧 = 𝑦 𝑎 = 𝑥 (so 𝑎𝑧 = 𝑥𝑦). Taking 𝑣 = 𝑦 ∈ {1, 2} ⊆ 𝑥 + 𝑧 we get
𝑎 ∈ 𝑦 + 𝑦 = 𝑦 + 𝑣 and

𝑣𝑏 = 0 ∈ 𝑥𝑦 + 𝑥𝑦 = 𝑥𝑦 + 𝑎𝑧.
If 𝑎, 𝑏 ≠ 0, then there exist 𝑣 ∈ {1, 2} ⊆ 𝑥 + 𝑧 such that 𝑣𝑏 = 𝑥𝑦. Then
𝑎 ∈ {1, 2} ⊆ 𝑦 + 𝑣 (because 𝑥, 𝑦, 𝑧, 𝑣 ≠ 0) and

𝑣𝑏 = 𝑥𝑦 ∈ 𝑥𝑦 + 𝑎𝑧.
So we cover the cases

(𝑥, 𝑦, 𝑧) ∈ {(1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 2, 1)}.

Example 2.28 is a big surprise in the sense that, in the context of special groups,
this example exhibits a group that it is not pre-special but satisfies SG6.

3 The K-theory for Multifields/Hyperfields

In this section we introduce the notion of K-theory of a hyperfield essentially
repeating the construction in 2.1 replacing the word “field” by “hyperfield” and
explore some of this basic properties. In particular, Theorem 3.8 is an extension of
a result [19], that gives us some evidence, that apart from the obvious resemblance,
more technical aspects of this new theory can be developed (but with other proofs)
in multistructure setting in parallel with classical K-theory.

Definition 3.1 (The K-theory of a Hyperfield). For a hyperfield 𝐹, 𝐾∗𝐹 is the
graded ring

𝐾∗𝐹 = (𝐾0𝐹, 𝐾1𝐹, 𝐾2𝐹, ...)
defined by the following rules: 𝐾0𝐹 := Z. 𝐾1𝐹 is the multiplicative group ¤𝐹 written
additively. With this purpose, we fix the canonical “logarithm” isomorphism

𝜌 : ¤𝐹 → 𝐾1𝐹,

where 𝜌(𝑎𝑏) = 𝜌(𝑎) + 𝜌(𝑏). Then 𝐾𝑛𝐹 is defined to be the quotient of the tensor
algebra

𝐾1𝐹 ⊗ 𝐾1𝐹 ⊗ ... ⊗ 𝐾1𝐹 (𝑛 times)
by the (homogeneous) ideal generated by all 𝜌(𝑎) ⊗ 𝜌(𝑏), with 𝑎 ≠ 0, 1 and
𝑏 ∈ 1 − 𝑎.
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In other words, for each 𝑛 ⩾ 2,

𝐾𝑛𝐹 := 𝑇𝑛 (𝐾1𝐹)/𝑄𝑛 (𝐾1(𝐹)),

where
𝑇𝑛 (𝐾1𝐹) := 𝐾1𝐹 ⊗Z 𝐾1𝐹 ⊗Z ... ⊗Z 𝐾1𝐹

and 𝑄𝑛 (𝐾1(𝐹)) is the subgroup generated by all expressions of type
𝜌(𝑎1) ⊗ 𝜌(𝑎2) ⊗ ... ⊗ 𝜌(𝑎𝑛) such that 𝑎𝑖 ∈ 1 − 𝑎 𝑗 for some 𝑖, 𝑗 with 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛.

To avoid carrying the overline symbol, we will adopt all the conventions used
in Dickmann-Miraglia’s K-theory (as explained in above definition 2.6). Just as it
happens with the previous K-theories, a generic element 𝜂 ∈ 𝐾𝑛𝐹 has the pattern

𝜂 = 𝜌(𝑎1) ⊗ 𝜌(𝑎2) ⊗ ... ⊗ 𝜌(𝑎𝑛)

for some 𝑎1, ..., 𝑎𝑛 ∈ ¤𝐹, with 𝑎𝑖 ∈ 1 − 𝑎 𝑗 for some 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛. Note that if 𝐹
is a field, then “𝑏 ∈ 1 − 𝑎” just means 𝑏 = 1 − 𝑎, and the hyperfield and Milnor’s
K-theory for 𝐹 coincide.

The very first task, is to extend the basic properties valid in Milnor’s and
Dickmann-Miraglia’s K-theory to ours. Here we already need to restrict our atten-
tion to hyperbolic hyperfields:

Lemma 3.2 (Basic Properties I). Let 𝐹 be an hyperbolic hyperfield. Then

(a) 𝜌(1) = 0.
(b) For all 𝑎 ∈ ¤𝐹, 𝜌(𝑎)𝜌(−𝑎) = 0 in 𝐾2𝐹.
(c) For all 𝑎, 𝑏 ∈ ¤𝐹, 𝜌(𝑎)𝜌(𝑏) = −𝜌(𝑎)𝜌(𝑏) in 𝐾2𝐹.
(d) For every 𝑎1, ..., 𝑎𝑛 ∈ ¤𝐹 and every permutation 𝜎 ∈ 𝑆𝑛,

𝜌(𝑎1)...𝜌(𝑎𝑖)...𝜌(𝑎𝑛) = sgn(𝜎)𝜌(𝑎1)...𝜌(𝑎𝑛) in 𝐾𝑛𝐹.

(e) For every 𝜉 ∈ 𝐾𝑚𝐹 and 𝜂 ∈ 𝐾𝑛𝐹, 𝜂𝜉 = (−1)𝑚𝑛𝜉𝜂 in 𝐾𝑚+𝑛𝐹.
(f) For all 𝑎 ∈ ¤𝐹, 𝜌(𝑎)2 = 𝜌(𝑎)𝜌(−1).

Proof.

(a) Is an immediate consequence of the fact that 𝜌 is an isomorphism.
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(b) Since 𝐹 hiperbolic, 1 − 1 = 𝐹. Then −𝑎−1 ∈ 1 − 1 for all 𝑎 ∈ ¤𝐹, and hence,
−1 ∈ −1 + 𝑎−1. Multiplying this by −𝑎, we get 𝑎 ∈ 1− 𝑎. By definition, this
imply 𝜌(𝑎)𝜌(−𝑎) = 0.

(c) By item (b), 𝜌(𝑎𝑏)𝜌(−𝑎𝑏) = 0 in 𝐾2𝐹. But

𝜌(𝑎𝑏)𝜌(−𝑎𝑏) = 𝜌(𝑎)𝜌((−𝑎)𝑏) + 𝜌(𝑏)𝜌((−𝑏)𝑎)
= 𝜌(𝑎)𝜌(−𝑎) + 𝜌(𝑎)𝜌(𝑏) + 𝜌(𝑏)𝜌(−𝑏) + 𝜌(𝑏)𝜌(𝑎)
= 𝜌(𝑎)𝜌(𝑏) + 𝜌(𝑏)𝜌(𝑎).

From 𝜌(𝑎)𝜌(𝑏) + 𝜌(𝑏)𝜌(𝑎) = 𝜌(𝑎𝑏)𝜌(−𝑎𝑏) = 0, we get the desired result
𝜌(𝑎)𝜌(𝑏) = −𝜌(𝑎)𝜌(𝑏) in 𝐾2𝐹.

(d) This is a consequence of item (c) and an inductive argument.
(e) This is a consequence of item (d) and an inductive argument, using the fact

that an element in 𝐾𝑛𝐹 has pattern

𝜂 = 𝜌(𝑎1) ⊗ 𝜌(𝑎2) ⊗ ... ⊗ 𝜌(𝑎𝑛)

for some 𝑎1, ..., 𝑎𝑛 ∈ ¤𝐹, with 𝑎𝑖 ∈ 1 − 𝑎 𝑗 for some 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛.
(f) Follow from the fact that 𝐹 is hyperbolic i.e, for all 𝑎 ∈ ¤𝐹, 𝑎 ∈ 1 − 1.

An element 𝑎 ∈ ¤𝐹 induces a morphism of graded rings of degree 1,
𝜔𝑎 = {𝜔𝑎𝑛}𝑛⩾1 : 𝐾∗𝐹 → 𝐾∗𝐹, where 𝜔𝑎𝑛 : 𝐾𝑛𝐹 → 𝐾𝑛+1𝐹 is the multiplica-
tion by 𝜆(−𝑎). When 𝑎 = −1, we write

𝜔 = {𝜔𝑛}𝑛⩾1 = {𝜔−1
𝑛 }𝑛⩾1 = 𝜔−1.

Proposition 3.3 (Adapted from 3.3 of [5]). Let 𝐹, 𝐾 be hyperbolic hyperfields and
𝜑 : 𝐹 → 𝐿 be a morphism. Then 𝜑 induces a morphism of graded rings

𝜑∗ = {𝜑𝑛 : 𝑛 ⩾ 0} : 𝐾∗𝐹 → 𝐾∗𝐿,

where 𝜑0 = 𝐼𝑑Z and for all 𝑛 ⩾ 1, 𝜑𝑛 is given by the following rule on generators

𝜑𝑛 (𝜌(𝑎1)...𝜌(𝑎𝑛)) = 𝜌(𝜑(𝑎1))...𝜌(𝜑(𝑎𝑛)).

Moreover if 𝜑 is surjective then 𝜑∗ is also surjective, and if 𝜓 : 𝐿 → 𝑀 is another
morphism then
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(a) (𝜓 ◦ 𝜑)∗ = 𝜓∗ ◦ 𝜑∗ and 𝐼𝑑∗ = 𝐼𝑑.
(b) For all 𝑎 ∈ ¤𝐹 the following diagram commute:

𝐾𝑛𝐹

𝜑𝑛

��

𝜔𝑎
𝑛 // 𝐾𝑛+1𝐹

𝜑𝑛+1

��

𝐾𝑛𝐿
𝜔

𝜑 (𝑎)
𝑛

// 𝐾𝑛+1𝐿

(c) If 𝜑(1) = 1 then for all 𝑛 ⩾ 1 the following diagram commute:

𝐾𝑛𝐹

𝜑𝑛

��

𝜔−1
𝑛 // 𝐾𝑛+1𝐹

𝜑𝑛+1

��

𝐾𝑛𝐿
𝜔−1

𝑛

// 𝐾𝑛+1𝐿

Proof. Firstly, note that 𝜑 extends to a function 𝜑1 : 𝐾1𝐹 → 𝐾1𝐿 given by the rule

𝜑1(𝜌(𝑎)) = 𝜌(𝜑(𝑎)).
Certainly 𝜑1 is a morphism because

𝜑1(0) = 𝜑1(𝜌(1)) = 𝜌(𝜑(1)) = 𝜌(1) = 0,

and for all 𝜌(𝑎), 𝜌(𝑏) ∈ 𝐾1𝐹,

𝜑1(𝜌(𝑎) + 𝜌(𝑏)) = 𝜑1(𝜌(𝑎𝑏)) = 𝜌(𝜑(𝑎𝑏)) = 𝜌(𝜑(𝑎)𝜑(𝑏)) = 𝜌(𝜑(𝑎)) + 𝜌(𝜑(𝑏)).
Proceeding inductively, for all 𝑛 ⩾ 1 we extend 𝜑 to a function
𝜑𝑛 :

∏𝑛
𝑖=1 𝐾1𝐹 → 𝐾𝑛𝐿 given by the rule

𝜑(𝜌(𝑎1), ..., 𝜌(𝑎𝑛)) := 𝜑1(𝜌(𝑎1))...𝜑1(𝜌(𝑎𝑛)) = 𝜌(𝜑(𝑎1))...𝜌(𝜑(𝑎𝑛)).
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Then if 𝑖 = 1, ..., 𝑛 and 𝑏𝑖 ∈ 𝑘1𝐹 we have

𝜑𝑛 (𝜌(𝑎1), ..., 𝜌(𝑎𝑖) + 𝜌(𝑏𝑖), ..., 𝜌(𝑎𝑛)) = 𝜑𝑛 (𝜌(𝑎1), ..., 𝜌(𝑎𝑖𝑏𝑖), ..., 𝜌(𝑎𝑛)) =
𝜌(𝜑(𝑎1))...𝜌(𝜑(𝑎𝑖𝑏𝑖)...𝜌(𝜑(𝑎𝑛)) = 𝜌(𝜑(𝑎1))...𝜌(𝜑(𝑎𝑖)𝜑(𝑏𝑖))...𝜌(𝜑(𝑎𝑛)) =
𝜌(𝜑(𝑎1)...[𝜌(𝜑(𝑎𝑖) + 𝜑(𝑏𝑖))] ...𝜌(𝜑(𝑎𝑛)) =
𝜌(𝜑(𝑎1))...𝜌(𝜑(𝑎𝑖))...𝜌(𝜑(𝑎𝑛)) + 𝜌(𝜑(𝑎1))...𝜌(𝜑(𝑏𝑖))...𝜌(𝜑(𝑎𝑛)) =
𝜑𝑛 (𝜌(𝑎1), ..., 𝜌(𝑎𝑖), ..., 𝜌(𝑎𝑛)) + 𝜑𝑛 (𝜌(𝑎1), ..., 𝜌(𝑏𝑖), ..., 𝜌(𝑎𝑛)),

then for each 𝑛, 𝜑𝑛 :
∏𝑛
𝑖=1 𝐾1𝐹 → 𝐾𝑛𝐿 is multilinear and by the universal property

of tensor product there is an unique morphism

�̃�𝑛 :
𝑛⊗
𝑗=1

𝐾1𝐹 → 𝐾𝑛𝐿

extending 𝜑𝑛. By construction (and using the fact that 𝜑 is a morphism), Ker(�̃�𝑛) =
𝑄𝑛 (𝐾1𝐹), which provides an unique morphism

𝜑𝑛 : 𝑇𝑛 (𝐾1𝐹)/𝑄𝑛 (𝐾1(𝐹) → 𝐾𝑛𝐿

such that �̃�𝑛 = 𝜑𝑛 ◦𝜋𝑛, where 𝜋𝑛 is the canonical projection 𝑇𝑛 (𝐾1𝐹) in𝑄𝑛 (𝑘1𝐹).
Then taking 𝜑0 = 𝐼𝑑Z, we get a morhism 𝜑∗ : 𝐾∗𝐹 → 𝐾∗𝐿, given by 𝜑∗ = {𝜑𝑛 :
𝑛 ⩾ 0}.

For items (a) and (b), it is enough to note that these properties holds for �̃�𝑛,
𝑛 ⩾ 0, and after the application of projection, we get the validity for 𝜑𝑛 = 𝜋𝑛 ◦ �̃�𝑛.

Item (c) follows by the same argument of itens (a) and (b), noting that 𝜑(1) = 1
imply 𝜑(−1) = −1. By abuse of notation, we denote

𝜑∗ = {𝜑𝑛 : 𝑛 ⩾ 0} = {𝜑𝑛 : 𝑛 ⩾ 0}.

We also have the reduced K-theory graded ring
𝑘∗𝐹 = (𝑘0𝐹, 𝑘1𝐹, ..., 𝑘𝑛𝐹, ...) in the hyperfield context, which is defined by the
rule 𝑘𝑛𝐹 := 𝐾𝑛𝐹/2𝐾𝑛𝐹 for all 𝑛 ⩾ 0. Of course for all 𝑛 ⩾ 0 we have an epimor-
phism 𝑞 : 𝐾𝑛𝐹 → 𝑘𝑛𝐹 simply denoted by 𝑞(𝑎) := [𝑎], 𝑎 ∈ 𝐾𝑛𝐹. It is immediate
that 𝑘𝑛𝐹 is additively generated by

{[𝜌(𝑎1)] ..[𝜌(𝑎𝑛)] : 𝑎1, ..., 𝑎𝑛 ∈ ¤𝐹}.



24 K. Roberto and H. Mariano

We simply denote such a generator by �̃�(𝑎1)...�̃�(𝑎𝑛) or even 𝜌(𝑎1)...𝜌(𝑎𝑛) when-
ever the context allows it.

We also have some basic properties of the reduced K-theory, which proof is
just a translation of 2.1 of [5]:

Lemma 3.4 (Adapted from 2.1 [5]). Let𝐹 be a hyperbolic hyperfield, 𝑥, 𝑦, 𝑎1, ..., 𝑎𝑛 ∈
¤𝐹 and 𝜎 be a permutation on 𝑛 elements.

(a) In 𝑘2𝐹, 𝜌(𝑎)2 = 𝜌(𝑎)𝜌(−1). Hence in 𝑘𝑚𝐹, 𝜌(𝑎)𝑚 = 𝜌(𝑎)𝜌(−1)𝑚−1,
𝑚 ⩾ 2;

(b) In 𝑘2𝐹, 𝜌(𝑎)𝜌(−𝑎) = 𝜌(𝑎)2 = 0;
(c) In 𝑘𝑛𝐹, 𝜌(𝑎1)𝜌(𝑎2)...𝜌(𝑎𝑛) = 𝜌(𝑎𝜎1)𝜌(𝑎𝜎2)...𝜌(𝑎𝜎𝑛);
(d) For 𝑛 ⩾ 1 and 𝜉 ∈ 𝑘𝑛𝐹, 𝜉2 = 𝜌(−1)𝑛𝜉;
(e) If 𝐹 is a real reduced hyperfield, then 𝑥 ∈ 1 + 𝑦 and 𝜌(𝑦)𝜌(𝑎1)...𝜌(𝑎𝑛) = 0

implies
𝜌(𝑥)𝜌(𝑎1)𝜌(𝑎2)...𝜌(𝑎𝑛) = 0.

Moreover the results in Proposition 3.3 continue to hold if we took
𝜑∗ = {𝜑𝑛 : 𝑛 ⩾ 0} : 𝑘∗𝐹 → 𝑘∗𝐿.

Proposition 3.5. Let 𝐹 be a hyperfield and 𝑇 ⊆ 𝐹 be a multiplicative subset such
that 𝐹 ⊆ 𝑇 . Then

𝐾 (𝐹/𝑚𝑇∗) � 𝑘 (𝐹/𝑚𝑇∗).
Proof. Since 𝐹2 ⊆ 𝑇 , for all 𝑎 ∈ 𝐹/𝑚𝑇∗ we have

0 = 𝜌(𝑎2) = 𝜌(𝑎) + 𝜌(𝑎).

Then 2𝐾 (𝐹/𝑚𝑇∗) = 0 and we get 𝐾 (𝐹/𝑚𝑇∗) � 𝑘 (𝐹/𝑚𝑇∗).
Theorem 3.6. Let 𝐹 be a hyperbolic hyperfield and 𝑇 ⊆ 𝐹 be a multiplicative
subset such that 𝐹 ⊆ 𝑇 . Then there is a surjective morphism

𝑘 (𝐹) → 𝑘 (𝐹/𝑚𝑇∗).

Moreover,
𝑘 (𝐹) � 𝐾 (𝐹/𝑚 ¤𝐹2) � 𝑘 (𝐹/𝑚 ¤𝐹2).

Berfore we prove it, we need a Lemma:
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Lemma 3.7. Let 𝐹 be a hyperfield and 𝑛 ⩾ 1. Then

𝐾𝑛 (𝐹) =
{ 𝑝∑︁
𝑗=1

𝜌(𝑎 𝑗1)...𝜌(𝑎 𝑗𝑛) : for all 𝑗 there is an index 𝑘 such that

𝑎 𝑗𝑘 = 𝑏
2
𝑖 , 𝑏𝑖 ∈ ¤𝐹}

,

2𝐾𝑛 (𝐹) =
{ 𝑝∑︁
𝑗=1

𝜌(𝑎 𝑗1)...𝜌(𝑎 𝑗𝑛) : for all 𝑗 there is an index 𝑘 such that

𝑎 𝑗𝑘 = 𝑏
2
𝑖 , 𝑏𝑖 ∈ ¤𝐹}

Proof. Let 𝜂 ∈ 2𝐾𝑛𝐹. Then

𝜂 =
©­
«
𝑝∑︁
𝑗=1

𝜌(𝑎 𝑗1)...𝜌(𝑎 𝑗𝑛)ª®¬
+ ©­

«
𝑝∑︁
𝑗=1

𝜌(𝑎 𝑗1)...𝜌(𝑎 𝑗𝑛)ª®¬
, 𝑑𝑖 𝑗 ∈ ¤𝐹.

By induction, we only need to consider the case 𝑝 = 1, so

𝜌(𝑎1)...𝜌(𝑎𝑛) + 𝜌(𝑎1)...𝜌(𝑎𝑛) = 𝜌(𝑎2
1)𝜌(𝑎2)...𝜌(𝑎𝑛).

and we get ⊆. The reverse inclusion follow by the same calculation.

Proof of Theorem 3.6. Let 𝜋 : 𝐹 → 𝐹/𝑚𝑇∗ denote the canonical projection. By
Proposition 3.3 there is a morphism 𝜋∗ : 𝐾 (𝐹) → 𝐾 (𝐹/𝑚𝑇∗). Since 𝜋 is surjective,
𝜋∗ is surjective.

Now, let 𝜋 : 𝐹 → 𝐹/𝑚 ¤𝐹2 and 𝑞 : 𝐾 (𝐹) → 𝑘 (𝐹) the canonical projections.
Denote elements in 𝐹/𝑚 ¤𝐹2 by [𝑎] ∈ 𝐹/𝑚 ¤𝐹2, 𝑎 ∈ 𝐹 and elements in 𝑘𝑛 (𝐹) by
�̃�(𝑎1)...�̃�(𝑎𝑛). For all 𝑛 ⩾ 1 we have an induced morphism 𝑞𝑛 : 𝐾𝑛 (𝐹/𝑚 ¤𝐹2) →
𝑘𝑛 (𝐹) given by the rule

𝑞𝑛 (𝜌( [𝑎1])...𝜌( [𝑎𝑛])) := �̃�(𝑎1)...�̃�(𝑎𝑛).
This morphism �̃�𝑛 makes the following diagram commute

𝐾𝑛 (𝐹) 𝑞
//

𝜋𝑛

��

𝑘𝑛 (𝐹)

𝐾𝑛 (𝐹/𝑚 ¤𝐹2)

�̃�𝑛

??



26 K. Roberto and H. Mariano

and then, 𝑞𝑛 is surjective. Finally, if 𝑞𝑛 (𝜌( [𝑎1])...𝜌( [𝑎𝑛])) = 0, then we have
�̃�(𝑎1)...�̃�(𝑎𝑛) = 0, and hence 𝜌(𝑎1)...𝜌(𝑎𝑛) ∈ 2𝐾𝑛 (𝐹). By Lemma 3.7

𝜌(𝑎1)...𝜌(𝑎𝑛) =
𝑝∑︁
𝑗=1

𝜌(𝑑 𝑗1)...𝜌(𝑑 𝑗𝑛), 𝑑𝑖 𝑗 ∈ ¤𝐹

and for all 𝑖 there is an index 𝑘 such that 𝑎𝑖𝑘 = 𝑏2
𝑖 , 𝑏𝑖 ∈ ¤𝐹. Therefore

𝜋𝑛 (𝜌(𝑎1)...𝜌(𝑎𝑛)) = 𝜋𝑛 ©­
«
𝑝∑︁
𝑗=1

𝜌(𝑑 𝑗1)...𝜌(𝑑 𝑗𝑛)ª®¬
=

𝑝∑︁
𝑗=1
𝜋𝑛 (𝜌(𝑑 𝑗1)...𝜌(𝑑 𝑗𝑛)) =

𝑝∑︁
𝑗=1

𝜌( [𝑑 𝑗1])...𝜌( [𝑑 𝑗𝑛)])

=
𝑝∑︁
𝑗=1

[𝑑 𝑗1])...𝜌( [1])...𝜌( [𝑑 𝑗𝑛)] = 0.

Then Ker(𝑞𝑛) = [0], proving that 𝑞𝑛 is injective. Then 𝑞𝑛 is an isomorphism, and
composing all the isomorphisms obtained here we get

𝑘 (𝐹) � 𝐾 (𝐹/𝑚 ¤𝐹2) � 𝑘 (𝐹/𝑚 ¤𝐹2).

The Theorem 3.8 below generalizes Proposition 5.10 of [19]: this constitutes
a fundamental technical step to build profinite (Galois) groups associated to a
pre-special hyperfield in [15].

Lets establish some notation: for 𝑛 ⩾ 0 we denote

𝑃(𝑛) = P({0, ..., 𝑛 − 1}) \ {∅}

and for 0 ⩽ 𝑖 ⩽ 𝑛 − 1, denote

𝑃(𝑛, 𝑖) = {𝑋 ∈ 𝑃(𝑛) : 𝑖 ∈ 𝑋}.

For a be a pre-special hyperfield 𝐹 and {𝑎0, ..., 𝑎𝑛−1} ⊆ 𝐹∗ F2-linearly independent,
if 𝑆 ∈ 𝑃(𝑛) we denote

𝑎𝑆 := 𝑎𝜀0
0 ...𝑎

𝜀𝑛−1
𝑛−1 ,
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where 𝜀0 ∈ {0, 1} for all 𝑖 = 0, .., 𝑛 − 1 and 𝜀𝑖 = 1 if and only if 𝑖 ∈ 𝑆.
Remember that by the very definition of 𝑘𝑛 (𝐹),

𝑘𝑛 (𝐹) := [𝑘1(𝐺) ⊗ 𝑘1(𝐺)]/𝑀,

where 𝑀 is the subgroup of 𝑘1(𝐺) ⊗ 𝑘1(𝐺) generated by

{𝜌(𝑎)𝜌(𝑏) : 𝑎 ∈ 𝐷𝐺 (1, 𝑏), 𝑎}.

Theorem 3.8. Let 𝐹 be a pre-special hyperfield and {𝑎0, ..., 𝑎𝑛−1} ⊆ 𝐹∗ F2-
linearly independent. The following conditions are equivalent:

(i) There exists {𝑏0, ..., 𝑏𝑛−1} ⊆ 𝐹∗ such that∑︁
𝑘<𝑛

𝜌(𝑎𝑘)𝜌(𝑏𝑘) = 0 in 𝑘2(𝐹).

(ii) There exist subsets {𝑐0, ..., 𝑐𝑚−1}, {𝑑0, ..., 𝑑𝑛−1} of 𝐹∗ with 𝑚 ⩾ 𝑛 such that

(a) {𝑐0, ..., 𝑐𝑚−1} is linearly independent and 𝑐𝑖 = 𝑎𝑖 for all 𝑖 < 𝑛;
(b) 𝑑𝑖 = 𝑏𝑖 for all 𝑖 < 𝑛 and 𝑑𝑖 = 1 for 𝑖 = 𝑛, ..., 𝑚 − 1.
(c) For all 𝑥 ∈ 𝐶 := [𝑐0, ..., 𝑐𝑚−1], there is some 𝑟𝑥 ∈ 1 + 𝑥 \ {0} such that

for each 𝑖 < 𝑚
𝑑𝑖 =

∏
𝑥∈𝐶𝑖

𝑟𝑥

where

𝐶𝑖 =

{∏
𝑘<𝑚

𝑐𝜀𝑘𝑘 : 𝜀𝑘 ∈ {0, 1} and 𝜀𝑖 = 1

}
.

In other words, 𝐶𝑖 is “counting” all products 𝑐𝑟00 ...𝑐
1
𝑖 ...𝑐

𝑟𝑚−1
𝑚−1 . Since for all

𝑥 ∈ 𝐶 := [𝑐0, ..., 𝑐𝑚−1] there exist 𝑆 ∈ 𝑃(𝑚) such that

𝑥 =
∏
𝑖∈𝑆

𝑐𝑖 := 𝑐𝑆 .

Denoting 𝑟𝑥 by 𝑟𝑆 we can rewrite

𝑑𝑖 =
∏
𝑥∈𝐶𝑖

𝑟𝑥 =
∏

𝑆∈𝑃 (𝑚)
𝑟𝑆 .
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Proof of Theorem 3.8. (i) ⇒ (ii). Let

∑︁
𝑘<𝑛

𝜌(𝑎𝑘)𝜌(𝑏𝑘) = 0 in 𝑘2(𝐹).

Then there exist 𝑢0, ..., 𝑢𝑝−1, 𝑣0, ..., 𝑣𝑝−1 ∈ 𝐹∗ such that 𝑣𝑖 ∈ 1+𝑢𝑖 for 𝑖 = 0, ..., 𝑝−1
and

∑︁
𝑘<𝑛

𝜌(𝑎𝑘)𝜌(𝑏𝑘) =
∑︁
𝑘<𝑛

𝜌(𝑎𝑘)𝜌(𝑏𝑘) in 𝑘1(𝐹) ⊗ 𝑘1(𝐹).

Enlarge the set {𝑎0, ..., 𝑎𝑛−1} to a base for [{𝑎0, ..., 𝑎𝑛−1, 𝑢0, ..., 𝑢𝑝−1}], namely
{𝑐0, ..., 𝑐𝑚−1} with 𝑐𝑖 = 𝑎𝑖 for all 𝑖 < 𝑛. For all 𝑥 ∈ 𝐶 := [𝑐0, ..., 𝑐𝑚−1] there exist
𝑆 ∈ 𝑃(𝑚) such that

𝑥 =
∏
𝑖∈𝑆

𝑐𝑖 := 𝑐𝑆 .

Moreover, since {𝑐0, ..., 𝑐𝑚−1} is a basis, for each 𝑖 = 0, ..., 𝑝 − 1 there is only one
𝑆𝑖 ∈ 𝑃(𝑚) such that

𝑢𝑖 = 𝑐𝑆𝑖 .

For each 𝑆 ∈ 𝑃(𝑚), set

𝑟𝑆 :=
∏

𝑡ℎ𝑜𝑠𝑒 𝑗 𝑤𝑖𝑡ℎ
𝑆 𝑗=𝑆

𝑣 𝑗 .

If no 𝑆 𝑗 = 𝑆, set 𝑟𝑆 = 1. Note that if there is an index 𝑗 with 𝑆 = 𝑆 𝑗 , this index
must be unique (because the expression 𝑢𝑖 = 𝑐𝑆𝑖 is unique). Then by construction
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𝑟𝑆 ∈ 1 + 𝑐𝑆 \ {0} and in 𝑘2(𝐹) we get∑︁
𝑘<𝑚

𝜌(𝑎𝑘)𝜌(𝑏𝑘) =
∑︁
𝑘<𝑛

𝜌(𝑐𝑘)𝜌(𝑑𝑘) =
∑︁
𝑘<𝑝

𝜌(𝑢𝑘)𝜌(𝑣𝑘)

=
∑︁

𝑆∈𝑃 (𝑚)
𝜌
©­­­
«

∏
𝑡ℎ𝑜𝑠𝑒 𝑗 𝑤𝑖𝑡ℎ

𝑆 𝑗=𝑆

𝑐 𝑗

ª®®®
¬
𝜌(𝑣 𝑗)

=
∑︁

𝑆∈𝑃 (𝑚)

∑︁
𝑡ℎ𝑜𝑠𝑒 𝑗 𝑤𝑖𝑡ℎ

𝑆 𝑗=𝑆

𝜌(𝑐 𝑗)𝜌(𝑣 𝑗)

=
∑︁

𝑆∈𝑃 (𝑚)
𝜌(𝑐𝑆)𝜌

©­­­
«

∏
𝑡ℎ𝑜𝑠𝑒 𝑗 𝑤𝑖𝑡ℎ

𝑆 𝑗=𝑆

𝑣𝑆

ª®®®
¬

=
∑︁

𝑆∈𝑃 (𝑚)
𝜌(𝑐𝑆)𝜌(𝑟𝑆) =

∑︁
𝑆∈𝑃 (𝑚)

∑︁
𝑘∈𝑆

𝜌(𝑐𝑘)𝜌(𝑟𝑆)

=
∑︁
𝑘<𝑚

𝜌(𝑐𝑘)𝜌 ©­
«

∏
𝑆∈𝑃 (𝑛)

𝑟𝑆
ª®
¬
.

Since {𝑐0, ..., 𝑐𝑚−1} is a basis, it follows that

𝑑𝑖 =
∏

𝑆∈𝑃 (𝑛)
𝑟𝑆

as desired.
(ii)⇒(i). Under the hypotheses of (ii) we get

∑︁
𝑘<𝑛

𝜌(𝑎𝑘)𝜌(𝑏𝑘) =
∑︁
𝑘<𝑚

𝜌(𝑐𝑘)𝜌(𝑑𝑘) =
∑︁
𝑘<𝑚

𝜌(𝑐𝑘)𝜌 ©­
«

∏
𝑆∈𝑃 (𝑛)

𝑟𝑆
ª®
¬

=
∑︁
𝑘<𝑚

∑︁
𝑆∈𝑃 (𝑚)

𝜌(𝑐𝑘)𝜌(𝑟𝑆) =
∑︁

𝑆∈𝑃 (𝑚)

∑︁
𝑘<𝑚

𝜌(𝑐𝑖)𝜌(𝑟𝑆)

=
∑︁

𝑆∈𝑃 (𝑚)
𝜌(𝑐𝑆)𝜌(𝑟𝑆) = 0.
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4 Inductive Graded Rings and Interchanging of K-theories

After the three K-theories defined in the above sections, it is desirable (or, at least,
suggestive) to build of an abstract environment that encapsulates all them, and of
course, provide an axiomatic approach to guide new extensions of the concept of
K-theory in the context of the algebraic and abstract theories of quadratic forms.
The inductive graded rings fit well to this purpose5.

Definition 4.1 (Inductive Graded Rings First Version (Definition 9.7 of [3])). An in-
ductive graded ring (or Igr for short) is a structure
𝑅 = ((𝑅𝑛)𝑛⩾0, (ℎ𝑛)𝑛⩾0, ∗𝑛𝑚) where

i) 𝑅0 � F2.
ii) 𝑅𝑛 is a group of exponent 2 with a distinguished element ⊤𝑛.

iii) ℎ𝑛 : 𝑅𝑛 → 𝑅𝑛+1 is a group homomorphism such that ℎ𝑛 (⊤𝑛) = ⊤𝑛+1.
iv) For all 𝑛 ⩾ 0, ℎ𝑛 = ∗1𝑛 (⊤1, ).
v) The ring

𝑅 =
⊕
𝑛⩾0

𝑅𝑛

is a commutative graded ring.
vi) For 0 ⩽ 𝑠 ⩽ 𝑡 define

ℎ𝑡𝑠 =

{
𝐼𝑑𝑅𝑠 if 𝑠 = 𝑡
ℎ𝑡−1 ◦ ... ◦ ℎ𝑠+1 ◦ ℎ𝑠 if 𝑠 < 𝑡.

Then if 𝑝 ⩾ 𝑛 and 𝑞 ⩾ 𝑚, for all 𝑥 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑚,

ℎ𝑝𝑛 (𝑥) ∗ ℎ𝑞𝑚(𝑦) = ℎ𝑝+𝑞𝑛+𝑚(𝑥 ∗ 𝑦).

A morphism between Igr’s 𝑅 and 𝑆 is a pair 𝑓 = ( 𝑓 , ( 𝑓𝑛)𝑛⩾0) where 𝑓𝑛 : 𝑅𝑛 → 𝑆𝑛
is a morphism of pointed groups and

𝑓 =
⊕
𝑛⩾0

𝑓𝑛 : 𝑅 → 𝑆

is a morphism of commutative rings with unity. The category of inductive graded
rings (in first version) and their morphisms will be denoted by Igr.

5A categorical and systematic development of inductive graded rings in connection with “quadratic
multirings” is carried out in [16].
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A first consequence of these definitions is that: if

𝑓 : ((𝑅𝑛)𝑛⩾0, (ℎ𝑛)𝑛⩾0, ∗𝑛𝑚) → ((𝑆𝑛)𝑛⩾0, (𝑙𝑛)𝑛⩾0, ∗𝑛𝑚)

is a morphism of Igr’s then 𝑓𝑛+1 ◦ ℎ𝑛 = 𝑙𝑛 ◦ 𝑓𝑛.

𝑅0
ℎ0 //

𝑓0

��

𝑅1
ℎ1 //

𝑓1

��

𝑅2
ℎ2 //

𝑓2

��

...
ℎ𝑛−1 // 𝑅𝑛

ℎ𝑛 //

𝑓𝑛

��

𝑅𝑛+1
ℎ𝑛+1 //

𝑓𝑛+1

��

...

𝑆0
𝑙0 // 𝑆1

𝑙1 // 𝑆2
𝑙2 // ...

𝑙𝑛−1 // 𝑆𝑛
𝑙𝑛 // 𝑆𝑛+1

𝑙𝑛+1 // ...

In fact, 𝑓0 : 𝑅0 → 𝑆0 is an isomorphism, so 𝑓1 ◦ ℎ0 = 𝑙0 ◦ 𝑓0. If 𝑛 ⩾ 1, for all
𝑎𝑛 ∈ 𝑅𝑛 holds

𝑓𝑛+1 ◦ ℎ𝑛 (𝑎𝑛) = 𝑓𝑛+1 ◦ (∗1𝑛 (⊤1, 𝑎𝑛)) = 𝑓1(⊤1) ∗1𝑛 𝑓𝑛 (𝑎𝑛)
= ⊤1 ∗1𝑛 𝑓𝑛 (𝑎𝑛) = 𝑙𝑛 ( 𝑓𝑛 (𝑎𝑛)) = 𝑙𝑛 ◦ 𝑓𝑛 (𝑎𝑛).

Example 4.2.

(a) Let 𝐹 be a field of characteristic not 2. The main actors here are𝑊𝐹, the Witt
ring of 𝐹 and 𝐼𝐹, the fundamental ideal of 𝑊𝐹. Is well know that 𝐼𝑛𝐹, the
𝑛-th power of 𝐼𝐹 is additively generated by 𝑛-fold Pfister forms over 𝐹. Now,
let 𝑅0 = 𝑊𝐹/𝐼𝐹 � F2 and 𝑅𝑛 = 𝐼𝑛𝐹/𝐼𝑛+1𝐹. Finally, let ℎ𝑛 = ⊗ ⟨1, 1⟩.
With these prescriptions we have an inductive graded ring 𝑅 associated to 𝐹.

(b) The previous example still works if we change the Witt ring of a field 𝐹 for
the Witt ring of a (formally real) special group 𝐺.

Definition 4.3. We denote Igr 𝑓 𝑖𝑛 the full subcategory of Igr such that

Obj(Igr 𝑓 𝑖𝑛) = {𝑅 ∈ Obj(Igr) : |𝑅𝑛 | < 𝜔 for all 𝑛 ⩾ 1} .

Of course, {
𝑅 ∈ Obj(Igr) :

�����
⊕
𝑛⩾1

𝑅𝑛

����� < 𝜔
}
≠ Obj(Igr 𝑓 𝑖𝑛),

for example, in 4.2(a), F2 [𝑥] ∈ Obj(Igr 𝑓 𝑖𝑛) and F2 [𝑥] is not finite.
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We finally this section with an use of Igr’s to interchanging the three K-theory
notions presented before in a functorial fashion. Lets first, look more carefully at
theorem 4.4. We make the following distinctions between K-theories:

𝐾𝑚𝑖𝑙 will denote the Milnor’s K-theory,
𝐾𝑑𝑚 will denote the Dickmann-Miraglia’s K-theory,
𝐾𝑚𝑢𝑙𝑡 will denote the K-theory of Hyperfields.

We will deal with some different categories, so in order to ease the exposition
lets establish some dictionary:

1. An object in 𝐼𝑔𝑟 will be denoted simply by 𝑅 = (𝑅𝑛, ℎ𝑛, ∗𝑛𝑚) (being implicit
the identation 𝑛 ∈ N or 𝑛 ⩾ 0). We even denote simply 𝑅 = (𝑅𝑛, ℎ, ∗) if the
context allows it.

2. The distinguished elements ⊤𝑛 ∈ 𝑅𝑛 will be denoted simply by ⊤, whenever
the context allows it, and we do the same for the symbols +𝑛, 0𝑛.

3. An IGR-morphism between 𝑅 and 𝑆 will be simply denoted by
𝑓 : 𝑅 → 𝑆, with the immediate convention that 𝑓 = ( 𝑓𝑛)𝑛⩾0, with
𝑓𝑛 : 𝑅𝑛 → 𝑆𝑛 being a morphism of pointed F2-modules.

4. Let C be a category. We use the notation “𝐴, 𝐵 ∈ C” as a synonym of “𝐴, 𝐵
be objects of C”.

5. Let C be a category, 𝐴, 𝐵 be objects of C. We use the notations “ 𝑓 ∈ C(𝐴, 𝐵)
and 𝑓 ∈ HomC (𝐴, 𝐵)” as a synonyms of “ 𝑓 : 𝐴→ 𝐵 is a morphism in C”.

6. We will define various functors below. In order to facilitate the exposition,
we define a functor 𝐹 : C → D by the sentence “for 𝑓 : 𝐴 → 𝐵, we define
𝐹 (𝐴) := ... and 𝐹 ( 𝑓 ) := ...”; being implicit that 𝐴 and 𝐵 are objects and
𝑓 : 𝐴→ 𝐵 is a morphism in category C.

Of course, we need the following theorem:

Theorem 4.4. (a) Let 𝐹 be a field. Then 𝑘𝑚𝑖𝑙∗ 𝐹 (the reduced Milnor K-theory)
is an inductive graded ring.

(b) Let 𝐺 be a special group. Then 𝑘𝑑𝑚∗ 𝐺 (the Dickmann-Miraglia K-theory of
𝐺) is an inductive graded ring.

(c) Let 𝐹 be a hyperfield. Then 𝑘𝑚𝑢𝑙𝑡∗ 𝐹 (our reduced K-theory) is an inductive
graded ring.
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Proof. Item (a) is the content of Lemma 9.11 in [3], and item (b) is the content of
Lemma 9.12 in [3]. We prove item (c) and itens (a) and (b) will proceed by the
same argument.

Let 𝑘𝑚𝑢𝑙𝑡∗ 𝐹 = (𝑘0𝐹, 𝑘1𝐹, ..., 𝑘𝑛𝐹, ...) be the reduced K-theory of a hyperfield
𝐹. Let ⊤0 = 1 and for each 𝑛 ⩾ 1, we set ⊤𝑛 = 𝑙 (−1)𝑛 as the distinguished element
of 𝑚 − 𝑛. For each 𝑛 ⩾ 0, let

𝜃𝑛 :
𝑛∏
𝑗=1

𝐾𝑚𝑢𝑙𝑡1 𝐹 → ⊗𝑛+1
𝑗=1𝐾

𝑚𝑢𝑙𝑡
𝑛+1 𝐹

given by the rule

𝜃𝑛 (𝜌(𝑎1), ..., 𝜌(𝑎𝑛)) := 𝜌(−1)𝜌(𝑎1)...𝜌(𝑎𝑛).
We have for each 𝑖 ∈ {1, ..., 𝑛} and each 𝑎1, ..., 𝑎𝑛, 𝑏𝑖 ∈ 𝐹∗ that

𝜃𝑛 (𝜌(𝑎1), ...𝜌(𝑎𝑖) + 𝜌(𝑏𝑖), ..., 𝜌(𝑎𝑛)) = 𝜃𝑛 (𝜌(𝑎1), ...𝜌(𝑎𝑖𝑏𝑖), ..., 𝜌(𝑎𝑛)) :=
𝜌(−1)𝜌(𝑎1)...𝜌(𝑎𝑖𝑏𝑖)...𝜌(𝑎𝑛) = 𝜌(−1)𝜌(𝑎1)...[𝜌(𝑎𝑖) + 𝜌(𝑏𝑖)] ...𝜌(𝑎𝑛) =
𝜌(−1)𝜌(𝑎1)...𝜌(𝑎𝑖)...𝜌(𝑎𝑛) + 𝜌(−1)𝜌(𝑎1)...𝜌(𝑏𝑖)...𝜌(𝑎𝑛) =
𝜃𝑛 (𝜌(𝑎1), ..., 𝜌(𝑎𝑖), ..., 𝜌(𝑎𝑛)) + 𝜃𝑛 (𝜌(𝑎1)...𝜌(𝑏𝑖)...𝜌(𝑎𝑛)),

then 𝜃𝑛 is multilinear. By the universal property of tensor product, we have a group
homomorphism 𝜃𝑛 : 𝐾𝑚𝑢𝑙𝑡𝑛 𝐹 → 𝐾𝑚𝑢𝑙𝑡𝑛+1 𝐹 given by the rule6

𝜃𝑛 (𝜌(𝑎1)...𝜌(𝑎𝑛)) = 𝜌(−1)𝜌(𝑎1)...𝜌(𝑎𝑛).
In order to make distinctions between reduced and non-reduced K-theories, we
denote an element in 𝑘𝑚𝑢𝑙𝑡𝑛 𝐹 := 𝐾𝑚𝑢𝑙𝑡𝑛 𝐹/2𝐾𝑚𝑢𝑙𝑡𝑛 𝐹 by �̃�(𝑎1)...�̃�(𝑎𝑛). Lets also
denote the canonical projection by 𝜋𝑛 : 𝐾𝑚𝑢𝑙𝑡𝑛 𝐹 → 𝑘𝑚𝑢𝑙𝑡𝑛 𝐹. We define 𝜔𝑛 :
𝑘𝑚𝑢𝑙𝑡𝑛 𝐹 → 𝑘𝑚𝑢𝑙𝑡𝑛+1 𝐹 by the following rule (on generators): for 𝑎1, ..., 𝑎𝑛 ∈ ¤𝐹,

𝜔𝑛 ( �̃�(𝑎1)...�̃�(𝑎𝑛)) = �̃�(−1) �̃�(𝑎1)...�̃�(𝑎𝑛).
In fact, if 𝜌(𝑎1)...𝜌(𝑏𝑛) − 𝜌(𝑏1)...𝜌(𝑏𝑛) ∈ 2𝐾𝑚𝑢𝑙𝑡𝑛 𝐹 then

𝜌(−1)𝜌(𝑎1)...𝜌(𝑏𝑛) − 𝜌(−1)𝜌(𝑏1)...𝜌(𝑏𝑛)
= 𝜌(−1) [𝜌(𝑎1)...𝜌(𝑏𝑛) − 𝜌(𝑏1)...𝜌(𝑏𝑛)] ∈ 2𝐾𝑚𝑢𝑙𝑡𝑛+1 𝐹,

6Remember that we are using the simplificated notation for elements in 𝐾𝑚𝑢𝑙𝑡𝑛 𝐹 (and all other
K-theories), which is 𝜌(𝑎1)...𝜌(𝑎𝑛) := 𝜌(𝑎1) ⊗ ... ⊗ 𝜌(𝑎𝑛).
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which proves that 𝜔𝑛 is in fact a group homomorphism making the following
diagram commute

𝐾𝑚𝑢𝑙𝑡𝑛 𝐹
𝜃𝑛 //

𝜋𝑛

��

𝐾𝑚𝑢𝑙𝑡𝑛+1 𝐹

𝜋𝑛+1

��

𝑘𝑚𝑢𝑙𝑡𝑛 𝐹 𝜔𝑛

// 𝑘𝑚𝑢𝑙𝑡𝑛+1 𝐹

With these rules, we already have the properties (i)-(iv) of Definition 4.1 holding
in 𝑘∗𝐹, remaining only property (v). Note that 𝜔𝑡𝑠 = �̃�(−1)𝑡−𝑠 for 0 ⩽ 𝑠 < 𝑡.

Now let𝑚, 𝑛, 𝑝, 𝑞 ∈ N, 𝑝 ⩾ 𝑛, 𝑞 ⩾ 𝑚 and consider 𝑥 ∈ 𝑘𝑚𝑢𝑙𝑡𝑛 𝐹 and 𝑦 ∈ 𝑘𝑚𝑢𝑙𝑡𝑚 𝐹.
Note that 𝜔𝑝𝑛 (𝑥) = �̃�(−1) 𝑝−𝑛 · 𝑥 and 𝜔𝑞𝑚(𝑦) = �̃�(−1)𝑞−𝑚 · 𝑦. Then

𝜔𝑝𝑛 (𝑥) · 𝜔𝑞𝑚(𝑦) = ( �̃�(−1) 𝑝−𝑛 · 𝑥) ( �̃�(−1)𝑞−𝑚 · 𝑦)
= �̃�(−1) 𝑝−𝑛+𝑞−𝑚 · (𝑥 · 𝑦) = 𝜔𝑝+𝑞𝑛−𝑚(𝑥),

completing the proof.

Using this Theorem (in addition with the argument of Lemma 3.3 in [5]) we
obtain the following.

Corollary 4.5. Let 𝐹 be a field. We have a functor and 𝑘 : 𝐹𝑖𝑒𝑙𝑑2 → Igr induced
by K-theory and Milnor’s reduced K-theory.

Corollary 4.6. Let 𝐹 be a hyperfield. Then, we have a functor
𝑘𝑚𝑢𝑙𝑡 : 𝑀𝐹𝑖𝑒𝑙𝑑2 → Igr induced by our reduced K-theory.

Theorem 4.7 (Theorem 2.5 in [4]). Let 𝐹 be a field. Then the functor𝐺 : 𝐹𝑖𝑒𝑙𝑑2 →
𝑆𝐺 provides a functor 𝑘𝑑𝑚∗ : 𝐹𝑖𝑒𝑙𝑑2 → Igr (the special group K-theory functor)
given on the objects by 𝑘𝑑𝑚∗ (𝐹) : 𝑘𝑑𝑚∗ (𝐺 (𝐹)) and on the morphisms 𝑓 : 𝐹 → 𝐾
by 𝑘𝑑𝑚∗ ( 𝑓 ) := 𝐺 ( 𝑓 )∗ (in the sense of Lemma 3.3 of [5]). Moreover, this functor
commutes with the functors 𝐺 and 𝑘 , i.e, for all 𝐹 ∈ 𝐹𝑖𝑒𝑙𝑑, 𝑘𝑑𝑚∗ (𝐺 (𝐹)) � 𝑘∗(𝐹).
Theorem 4.8. Let𝐺 be a special group. The equivalence of categories 𝑀 : 𝑆𝐺 →
𝑆𝑀𝐹 induces a functor 𝑘𝑚𝑢𝑙𝑡∗ : 𝑆𝐺 → Igr given on the objects by 𝑘𝑚𝑢𝑙𝑡∗ (𝐺) :=
𝑘𝑚𝑢𝑙𝑡∗ (𝑀 (𝐺)), and given on the morphisms 𝑓 : 𝐺 → 𝐻 by 𝑘𝑚𝑢𝑙𝑡∗ ( 𝑓 ) := 𝑘𝑚𝑢𝑙𝑡∗ (𝑀 ( 𝑓 )).
Moreover, this functor commutes with𝑀 and 𝑘𝑑𝑚, i.e, for all𝐺 ∈ 𝑆𝐺, 𝑘𝑚𝑢𝑙𝑡∗ (𝑀 (𝐺)) �
𝑘𝑑𝑚∗ (𝐺).
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Proof. The only part requiring proof is that for all 𝐺 ∈ 𝑆𝐺, 𝑘𝑚𝑢𝑙𝑡∗ (𝑀 (𝐺)) is
isomorphic to 𝑘𝑑𝑚∗ (𝐺). The very first observation is that: since 𝐺 is an exponent
2 group, the reduced and non-reduced 𝐾𝑚𝑢𝑙𝑡 -theory of 𝑀 (𝐺) coincide.

Following the argument of Theorem 2.5 in [4], it is enough to show the following
two statements:

(i) For all 𝑎, 𝑏 ∈ 𝐺, if 𝑏 ∈ 1 − 𝑎 in 𝑀 (𝐺) then 𝜆(𝑏)𝜆(𝑎) = 0;
(ii) For all 𝑎, 𝑏 ∈ 𝐺, if 𝑏 ∈ 𝐷𝐺 (1, 𝑎) then 𝜌(𝑏)𝜌(𝑎) = 0.

For (i), if 𝑏 ∈ 1 − 𝑎 in 𝑀 (𝐺) then 𝑏 ∈ 𝐷𝐺 (1,−𝑎) and then, 𝜆(𝑏)𝜆(−𝑎) = 0.
Hence

𝜆(𝑏)2 = 𝜆(𝑏)𝜆(−𝑎) = 𝜆(𝑏)𝜆(𝑎) + 𝜆(𝑏)𝜆(−1).
Since 𝜆(𝑏)𝜆(−1) = 𝜆(𝑏)2, we get 𝜆(𝑏)𝜆(𝑎) = 0.

For (ii) we just use the same argument: if 𝑏 ∈ 𝐷𝐺 (1, 𝑎) then 𝑏 ∈ 1 + 𝑎 in
𝑀 (𝐺) and then, 𝜌(𝑏)𝜌(−𝑎) = 0. Hence

𝜌(𝑏)2 = 𝜌(𝑏)𝜌(−𝑎) = 𝜌(𝑏)𝜌(𝑎) + 𝜌(𝑏)𝜌(−1).

Since 𝜌(𝑏)𝜌(−1) = 𝜌(𝑏)2, we get 𝜌(𝑏)𝜌(𝑎) = 0.

Combining Theorems 4.4, 4.7, 4.8, 3.6, and Corollaries 4.5 and 4.6, we obtain
the following Theorem that unificate in some sense all three
K-theories:

Theorem 4.9 (Interchanging K-theories Formulas). Let 𝐹 ∈ 𝐹𝑖𝑒𝑙𝑑2. Then

𝑘𝑚𝑖𝑙 (𝐹) � 𝑘𝑑𝑚(𝐺 (𝐹)) � 𝑘𝑚𝑢𝑙𝑡 (𝑀 (𝐺 (𝐹))).

If 𝐹 is formally real and 𝑇 is a preordering of 𝐹, then

𝑘𝑑𝑚(𝐺𝑇 (𝐹)) � 𝑘𝑚𝑢𝑙𝑡 (𝑀 (𝐺𝑇 (𝐹))).

Moreover, since 𝑀 (𝐺 (𝐹)) � 𝐹/𝑚 ¤𝐹2 and 𝑀 (𝐺𝑇 (𝐹)) � 𝐹/𝑚𝑇∗, we get

𝑘𝑚𝑖𝑙 (𝐹) � 𝑘𝑑𝑚(𝐺 (𝐹)) � 𝑘𝑚𝑢𝑙𝑡 (𝐹/𝑚 ¤𝐹2) and
𝑘𝑑𝑚(𝐺𝑇 (𝐹)) � 𝑘𝑚𝑢𝑙𝑡 (𝐹/𝑚𝑇∗).

Corollary 4.10. Let 𝐹 be a field. Then

𝑘𝑚𝑖𝑙 (𝐹) � 𝑘𝑚𝑢𝑙𝑡 (𝐹/𝑚 ¤𝐹2).



36 K. Roberto and H. Mariano

Proof. Using the previous Corollary, we already have

𝑘𝑚𝑖𝑙 (𝐹) � 𝑘𝑑𝑚(𝐺 (𝐹)) � 𝑘𝑚𝑢𝑙𝑡 (𝑀 (𝐺 (𝐹))).

Now, is enough to observe that 𝑀 (𝐺 (𝐹)) � 𝐹/𝑚 ¤𝐹2.

Combining Theorem 4.9, Corollary 4.10 and Theorem 3.6 we get the following
Corollaries.

Corollary 4.11. Let 𝐹 be a formally real field and 𝑇 be a preordering. Then we
have a surjective map

𝑘𝑚𝑖𝑙 (𝐹) → 𝑘𝑚𝑢𝑙𝑡 (𝐹/𝑚𝑇∗).

Corollary 4.12. Let 𝐺 be a pre-special group and 𝐻 ⊆ 𝐺 be a subgroup of 𝐺. Let
𝑀 (𝐺) be the pre-special multifield associated to 𝐺 and let
𝑀 (𝐻) = 𝐻 ∪ {0} ⊆ 𝑀 (𝐺). Then

𝐺/𝐻 � 𝑀 (𝐺)/𝑚𝑀 (𝐻)∗.

Moreover, 𝑀 (𝐻) ⊆ 𝑀 (𝐺) is a preordering if and only if 𝐻 is saturated.

Corollary 4.13. Let 𝐺 be a special group and 𝐻 be a saturated subgroup. Then
we have a surjective map

𝑘𝑑𝑚(𝐺) → 𝑘𝑚𝑢𝑙𝑡 (𝐺/𝑚𝐻) � 𝑘𝑑𝑚(𝐺/𝐻).

We close this paper “embedding” the three K-theories considered until now
into the framework of inductive graded rings, in such a way that this “embedding”
provides a sort of free objects in Igr. Lets firstly define functors that formalize the
construction of K-theory.

Definition 4.14. We define the graded subring generated by the level 1 functor

1 : Igr → Igr

as follow: for an object 𝑅 = (𝑅𝑛, ℎ𝑛, ∗𝑛𝑚),

i) 1(𝑅)0 := 𝑅0 � F2,

ii) 1(𝑅)1 := 𝑅1,
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iii) for 𝑛 ⩾ 2,

1(𝑅)𝑛 := {𝑥 ∈ 𝑅𝑛 : 𝑥 =
𝑟∑︁
𝑗=1
𝑎1 𝑗 ∗11 ... ∗11 𝑎𝑛 𝑗 ,

with 𝑎𝑖 𝑗 ∈ 𝑅1, 1 ⩽ 𝑖 ⩽ 𝑛, 1 ⩽ 𝑗 ⩽ 𝑟 for some 𝑟 ⩾ 1}.
Of course, 1(𝑅) provides an inclusion 𝜄1(𝑅) : 1(𝑅) → 𝑅 in the obvious way.

On the morphisms, for 𝑓 ∈ Igr(𝑅, 𝑆), we define 1( 𝑓 ) ∈ Igr(1(𝑅),1(𝑆)) by
the restriction 1( 𝑓 ) = 𝑓 ↿1(𝑅) . In other words, 1( 𝑓 ) is the only Igr-morphisms
that makes the following diagram commute:

1(𝑅) 𝜄1(𝑅)
//

1( 𝑓 )

��

𝑅

𝑓

��

1(𝑆) 𝜄1(𝑆)
// 𝑆

We denote Igr
1

the full subcategory of Igr such that

Obj(Igr
1
) = {𝑅 ∈ Igr : 𝜄1(𝑅) : 1(𝑅) → 𝑅 is an isomorphism}.

Definition 4.15. We define the quotient graded ring functor

Q : Igr → Igr

as follow: for an object 𝑅 = (𝑅𝑛, ℎ𝑛, ∗𝑛𝑚), Q(𝑅) := 𝑅/𝑄, where
𝑄 = (𝑄𝑛)𝑛⩾0 is the ideal generated by {(⊤ + 𝑎) ∗11 𝑎 ∈ 𝑅2 : 𝑎 ∈ 𝑅1}. More
explicit,

i) 𝑄0 := {0} ⊆ 𝑅0,
ii) 𝑄1 := {0} ⊆ 𝑅1,

iii) for 𝑛 ⩾ 2, 𝑄𝑛 ⊆ 𝑅𝑛 is the pointed F2-submodule generated by

{𝑥 ∈ 𝑅𝑛 : 𝑥 = 𝑦𝑙 ∗𝑙1 (⊤ + 𝑎1) ∗11 𝑎1 ∗1𝑟 𝑧𝑟 ,

with 𝑎1 ∈ 𝑅1, 𝑦𝑙 ∈ 𝑅𝑙, 𝑧𝑟 ∈ 𝑅𝑟 , 1 ⩽ 𝑟, 𝑙 ⩽ 𝑛 − 2, 𝑙 + 𝑟 = 𝑛 − 2}.
Of course, Q(𝑅) provides a projection 𝜋Q(𝑅) : 𝑅 → Q(𝑅) in the obvious
way.
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On the morphisms, for 𝑓 ∈ Igr(𝑅, 𝑆), we define Q( 𝑓 ) ∈ Igr(Q(𝑅),Q(𝑆)) by
the only Igr-morphisms that makes the following diagram commute:

𝑅
𝜋Q(𝑅)

//

𝑓

��

Q(𝑅)

Q( 𝑓 )

��

𝑆 𝜋Q(𝑆)
// Q(𝑆)

We denote Igr𝑞 the full subcategory of Igr such that

Obj(Igr𝑞) = {𝑅 ∈ Igr : 𝜋Q : 𝑅 → Q(𝑅) is an isomorphism}.

Definition 4.16. We denote by Igr+ the full subcategory of Igr such that

Obj(Igr+) = Obj(Igr
1
) ∩ Obj(Igr𝑞).

We denote by 𝑗+ : Igr+ → Igr the inclusion functor.

By the very definition of the K-theory of hyperfields (with the notations in
Theorem 3.3) we define the following functor.

Definition 4.17 (K-theories Functors). With the notations of Theorem 3.3 we have
a functors 𝑘 : HMF → Igr+, 𝑘 : PSMF → Igr+ induced by the reduced
K-theory for hyperfields.

Now, let 𝑅 ∈ Igr. We define a hyperfield (Γ(𝑅), +,−.·, 0, 1) by the following:
firstly, fix an isomorphism 𝑒𝑅 : (𝑅1, +1, 01,⊤1) → (𝐺 (𝑅), ·, 1,−1). This isomor-
phism makes, for example, an element 𝑎 ∗11 (⊤ + 𝑏) ∈ 𝑅2, 𝑎, 𝑏 ∈ 𝑅1 take the form
(𝑒−1
𝑅 (𝑥)) ∗11 (𝑒−1

𝑅 ((−1) · 𝑦)) ∈ 𝑅2, 𝑥, 𝑦 ∈ Γ(𝑅). By an abuse of notation, we simply
write 𝑥 ∗11 (−𝑦) ∈ 𝑅2, 𝑥, 𝑦 ∈ Γ(𝑅). In this sense, an element in 𝑄2 (see Definition
4.15) has the form 𝑥 ∗11 (−𝑥), 𝑥 ∈ Γ(𝑅), and we can extend this terminology for
all 𝑄𝑛, 𝑛 ⩾ 2.
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Now, let Γ(𝑅) := 𝐺 (𝑅) ∪ {0} and for 𝑎, 𝑏 ∈ Γ(𝑅) we define

−𝑎 := (−1) · 𝑎,
𝑎 · 0 = 0 · 𝑎 := 0,
𝑎 + 0 = 0 + 𝑎 = {𝑎},

𝑎 + (−𝑎) = Γ(𝑅),
for 𝑎, 𝑏 ≠ 0, 𝑎 ≠ −𝑏 define

𝑎 + 𝑏 := {𝑐 ∈ Γ(𝑅) : there exists 𝑑 ∈ 𝐺 (𝑅) such that
𝑎 · 𝑏 = 𝑐 · 𝑑 and 𝑎 ∗11 𝑏 = 𝑐 ∗11 𝑑 ∈ 𝑅2}. (4.1)

Proposition 4.18. With the above rules, (Γ(𝑅), +,−.·, 0, 1) is a pre-special hyper-
field.

Proof. The proof is similar to Theorem 2.17: we will verify the conditions of
Definition 2.11. Note that by the definition of multivalued sum once we proof that
Γ(𝑅) is an hyperfield, it will be hyperbolic.

i) In order to prove that (Γ(𝑅), +,−.·, 0, 1) is a multigroup we follow the steps
below.

(a) Commutativity and (𝑎 ∈ 𝑏 + 0) ⇔ (𝑎 = 𝑏) are direct consequence of
the definition of multivaluated sum and the fact that 𝑎 ∗11 𝑏 = 𝑏 ∗11 𝑎.

(b) We will prove that if 𝑐 ∈ 𝑎 + 𝑏, then 𝑎 ∈ 𝑏 − 𝑐 and 𝑏 ∈ −𝑐 + 𝑎.
If 𝑎 = 0 (or 𝑏 = 0) or 𝑎 = −𝑏, then 𝑐 ∈ 𝑎 + 𝑏 means 𝑐 = 𝑎 or 𝑐 ∈ 𝑎 − 𝑎.
In both cases we get 𝑎 ∈ 𝑏 − 𝑐 and 𝑏 ∈ −𝑐 + 𝑎.
Now suppose 𝑎, 𝑏 ≠ 0 with 𝑎 ≠ −𝑏. Let 𝑐 ∈ 𝑎 + 𝑏. Then 𝑎 · 𝑏 = 𝑐 · 𝑑
and 𝑎 ∗11 𝑏 = 𝑐 ∗11 𝑑 ∈ 𝑅2 for some 𝑑 ∈ 𝐺 (𝑅). Then 𝑏 · (−𝑐) = 𝑎 · (−𝑑)
and

𝑎 ∗11 𝑏 = 𝑐 ∗11 𝑑 ⇒
𝑎 ∗11 𝑏 ∗11 [(−𝑏) ∗11 (−𝑑)] =𝑐 ∗11 𝑑 ∗11 [(−𝑏) ∗11 (−𝑑)]

⇒𝑎 ∗11 (−𝑑) = 𝑏 ∗11 (−𝑐),

proving that 𝑎 ∈ 𝑏 − 𝑐. Similarly we prove that 𝑏 ∈ −𝑐 + 𝑎.
(c) Now we prove the associativity, that is,

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐).
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In fact (see the remarks after Lemma 2.4 of [14]), it is enough to show

(𝑎 + 𝑏) + 𝑐 ⊆ 𝑎 + (𝑏 + 𝑐).

If 0 ∈ {𝑎, 𝑏, 𝑐} we are done. Now let 𝑎, 𝑏, 𝑐 ≠ 0 and 𝑥 ∈ (𝑎 + 𝑏) + 𝑐.
If 𝑏 = −𝑐 we have

𝑎 + (𝑏 + 𝑐) = 𝑎 + Γ(𝑅) = Γ(𝑅) ⊇ (𝑎 + 𝑏) + 𝑐.

If −𝑐 ∈ 𝑎 + 𝑏, then −𝑎 ∈ 𝑏 + 𝑐 and we have

(𝑎 + 𝑏) + 𝑐 = Γ(𝑅) = 𝑎 + (𝑏 + 𝑐).

Now suppose 𝑎, 𝑏, 𝑐 ≠ 0, 𝑐 ≠ −𝑏, −𝑐 ∉ 𝑎 + 𝑏. Let 𝑝 ∈ (𝑎 + 𝑏) + 𝑐.
Then 𝑝 ∈ 𝑥 + 𝑐 for some 𝑥 ∈ 𝑎 + 𝑏, and there exists 𝑞, 𝑦 ∈ 𝐺 (𝑅) such
that

𝑝 · 𝑞 = 𝑥 · 𝑐 and 𝑝 ∗11 𝑞 = 𝑥 ∗11 𝑐

𝑥 · 𝑦 = 𝑎 · 𝑏 and 𝑥 ∗11 𝑦 = 𝑎 ∗11 𝑏.

Now let 𝑧, 𝑤 ∈ 𝐺 (𝑅) defined by 𝑧 = 𝑥𝑐𝑎, 𝑤 = 𝑎𝑏𝑥. We have 𝑝 · 𝑞 =
𝑥 · 𝑐 = 𝑥 · 𝑐 · (𝑎2) = 𝑎 · 𝑧 and 𝑧 · 𝑤 = (𝑥𝑐𝑎) · (𝑎𝑏𝑥) = 𝑏 · 𝑐. Moreover

𝑝 ∗11 𝑞 = 𝑥 ∗11 𝑐 = 𝑥 ∗11 𝑐 ∗11 (𝑎2) = 𝑥 ∗11 𝑐 ∗11 𝑎 ∗11 𝑎

= [𝑥 ∗11 𝑐 ∗11 𝑎] ∗11 𝑎 = (𝑥𝑐𝑎) ∗11 𝑎 = 𝑧 ∗11 𝑎

and

𝑧 ∗11 𝑤 = (𝑥𝑐𝑎) ∗11 (𝑎𝑏𝑥)
= (𝑐𝑥𝑎) ∗11 (𝑎𝑥𝑏) = 𝑐 ∗11 (𝑥𝑎) ∗11 (𝑎𝑥) ∗11 𝑏 = 𝑐 ∗11 𝑏.

Then 𝑝 ∈ 𝑎 + 𝑧 with 𝑧 ∈ 𝑐 + 𝑏 = 𝑏 + 𝑐, and hence 𝑝 ∈ 𝑎 + (𝑏 + 𝑐).

ii) Since (𝐺 (𝑅), ·, 1) is an abelian group, we conclude that (Γ(𝑅), ·, 1) is a
commutative monoid. Beyond this, every nonzero element 𝑎 ∈ Γ(𝑅) is such
that 𝑎2 = 1.

iii) 𝑎 · 0 = 0 for all 𝑎 ∈ Γ(𝑅) is direct from definition.
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iv) For the distributive property, let 𝑎, 𝑏, 𝑑 ∈ Γ(𝑅) and consider 𝑥 ∈ 𝑑 (𝑎 + 𝑏).
We need to prove that

𝑥 ∈ 𝑑 · 𝑎 + 𝑑 · 𝑏. (*)

It is the case if 0 ∈ {𝑎, 𝑏, 𝑑} or if 𝑏 = −𝑎.
Now suppose 𝑎, 𝑏, 𝑑 ≠ 0 with 𝑏 ≠ −𝑎. Then there exist 𝑦 ∈ 𝐺 (𝑅) such
that 𝑥 = 𝑑𝑦 and 𝑦 ∈ 𝑎 + 𝑏. Moreover, there exist some 𝑧 ∈ 𝐺 (𝑅) such that
𝑦 · 𝑧 = 𝑎 · 𝑏 and 𝑦 ∗11 𝑧 = 𝑎 ∗11 𝑏. Therefore (𝑑𝑦) · (𝑑𝑧) = (𝑑𝑎) · (𝑑𝑏) and
(𝑑𝑦) ∗11 (𝑑𝑧) = (𝑑𝑎) ∗11 (𝑑𝑏), and 𝑥 = 𝑑𝑦 ∈ 𝑑 · 𝑎 + 𝑑 · 𝑏.

Then (Γ(𝑅), +,−, ·, 0, 1) is a hyperbolic hyperfield.
Finally, let 𝑎 ∈ Γ(𝑅) and 𝑥, 𝑦 ∈ 1 − 𝑎. If 𝑎 = 0 or 𝑎 = 1 then we automatically

have 𝑥 · 𝑦 ∈ 1 − 𝑎, so let 𝑎 ≠ 0 and 𝑎 ≠ 1. Then 𝑥, 𝑦 ∈ 𝐺 (𝑅) and there exist
𝑝, 𝑞 ∈ Γ(𝑅) such that

𝑥 · 𝑝 = 1 · 𝑎 and 𝑥 ∗11 𝑝 = 1 ∗11 𝑎

𝑦 · 𝑞 = 1 · 𝑎 and 𝑦 ∗11 𝑞 = 1 ∗11 𝑎.

Then (𝑥𝑦) · (𝑝𝑞𝑎) = 1 · 𝑎 and

(𝑥𝑦) ∗11 (𝑝𝑞𝑎) = 𝑥 ∗11 𝑦 ∗11 𝑝 ∗11 𝑞 ∗11 𝑎 = [𝑥 ∗11 𝑝] ∗11 𝑎 ∗11 [𝑦 ∗11 𝑞]
= [1 ∗11 𝑎] ∗11 𝑎 ∗11 [1 ∗11 𝑎] = 1 ∗11 𝑎,

then 𝑥𝑦 ∈ 1 − 𝑎, proving that (1 − 𝑎) (1 − 𝑎) ⊆ (1 − 𝑎).
Definition 4.19. With the notations of Proposition 4.18 we have a functor Γ :
Igr+ → PSMF defined by the following rules: for 𝑅 ∈ Igr+, Γ(𝑅) is the special
hyperfield obtained in Proposition 4.18 and for 𝑓 ∈ Igr+(𝑅, 𝑆), Γ( 𝑓 ) : Γ(𝑅) →
Γ(𝑆) is the unique morphism such that the following diagram commute

𝑅

𝑓1

��

𝑒𝑅 // Γ(𝑅)

Γ ( 𝑓 )

��

𝑆 𝑒𝑆
// Γ(𝑆)
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In other words, for 𝑥 ∈ 𝑅 we have

Γ( 𝑓 ) (𝑥) = (𝑒𝑆 ◦ 𝑓1 ◦ 𝑒−1
𝑅 ) (𝑥) = 𝑒𝑆 ( 𝑓1(𝑒−1

𝑅 (𝑥))).
Theorem 4.20. The functor 𝑘 : PSMF → Igr+ is the left adjoint of Γ : Igr+ →
PSMF . The unity of the adjoint is the natural transformation 𝜙 : 1PSMF → Γ◦𝑘
defined for 𝐹 ∈ PSMF by 𝜙𝐹 = 𝑒𝑘 (𝐹 ) ◦ 𝜌𝐹 .

Proof. We show that for all 𝑓 ∈ PSMF (𝐹, Γ(𝑅)) there is an unique
𝑓 ♯ : Igr+(𝑘 (𝐹), 𝑅) such that Γ( 𝑓 ♯) ◦ 𝜙𝐹 = 𝑓 . Note that 𝜙𝐹 = 𝑒𝑘 (𝐹 ) ◦ 𝜌𝐹 is
an isomorphism (because 𝑒𝑘 (𝐹 ) and 𝜌𝐹 are isomorphisms).

Let 𝑓 ♯0 : 1F2 : F2 → F2 and 𝑓 ♯1 := 𝑒−1
𝑅 ◦ 𝑓 ◦ (𝜙𝐹)−1 ◦ 𝑒𝑘 (𝐹 ) : 𝑘1(𝐹) → 𝑅1. For

𝑛 ⩾ 2, define ℎ𝑛 :
∏𝑛
𝑖=1 𝑘1(𝐹) → 𝑅𝑛 by the rule

ℎ𝑛 (𝜌(𝑎1), ..., 𝜌(𝑎𝑛)) := 𝑒−1
𝑅 ( 𝑓 (𝑎1)) ∗ ... ∗ 𝑒−1

𝑅 ( 𝑓 (𝑎𝑛)).
We have that ℎ𝑛 is multilinear and by the Universal Property of tensor products we
have an induced morphism

⊗𝑛
𝑖=1 𝑘𝑛 (𝐹) → 𝑅𝑛 defined on the generators by

ℎ𝑛 (𝜌(𝑎1) ⊗ ... ⊗ 𝜌(𝑎𝑛)) := 𝑒−1
𝑅 ( 𝑓 (𝑎1)) ∗ ... ∗ 𝑒−1

𝑅 ( 𝑓 (𝑎𝑛).
Now let 𝜂 ∈ 𝑄𝑛 (𝐹). Suppose without loss of generalities that
𝜂 = 𝜌(𝑎1) ⊗ ... ⊗ 𝜌(𝑎𝑛) with 𝑎1 ∈ 1 − 𝑎2. Then 𝑓 (𝑎1) ∈ 1 − 𝑓 (𝑎2) which
imply 𝑒−1

𝑅 ( 𝑓 (𝑎1)) ∈ 1 − 𝑒−1
𝑅 ( 𝑓 (𝑎2)). Since 𝑅𝑛 ∈ Igr+,

ℎ𝑛 (𝜂) := ℎ𝑛 (𝜌(𝑎1) ⊗ ... ⊗ 𝜌(𝑎𝑛)) = 𝑒−1
𝑅 ( 𝑓 (𝑎1)) ∗ ... ∗ 𝑒−1

𝑅 ( 𝑓 (𝑎𝑛)) = 0 ∈ 𝑅𝑛.
Then ℎ𝑛 factors through 𝑄𝑛, and we have an induced morphism
ℎ𝑛 : 𝑘𝑛 (𝐹) → 𝑅𝑛. We set 𝑓 ♯𝑛 := ℎ𝑛. In other words, 𝑓 ♯𝑛 is defined on the
generators by

𝑓 ♯𝑛 (𝜌(𝑎1)...𝜌(𝑎𝑛)) := 𝑒−1
𝑅 ( 𝑓 (𝑎1)) ∗ ... ∗ 𝑒−1

𝑅 ( 𝑓 (𝑎𝑛).
Finally, we have

Γ( 𝑓 ♯) ◦ 𝜙𝐹 = [𝑒𝑅 ◦ ( 𝑓 ♯1 ) ◦ 𝑒−1
𝑘 (𝐹 ) ] ◦ [𝑒𝑘 (𝐹 ) ◦ 𝜌𝐹] = 𝑒𝑅 ◦ ( 𝑓 ♯1 ) ◦ 𝜌𝐹

= 𝑒𝑅 ◦ [𝑒−1
𝑅 ◦ 𝑓 ◦ (𝜙𝐹)−1 ◦ 𝑒𝑘 (𝐹 ) ] ◦ 𝜌𝐹

= 𝑓 ◦ (𝜙𝐹)−1 ◦ [𝑒𝑘 (𝐹 ) ◦ 𝜌𝐹]
= 𝑓 ◦ (𝜙𝐹)−1 ◦ 𝜙𝐹 = 𝑓 .
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For the uniqueness, let 𝑢, 𝑣 ∈ Igr+(𝑘 (𝐹), 𝑅) such that Γ(𝑢) ◦ 𝜙𝐹 is equal to
Γ(𝑣) ◦ 𝜙𝐹 . Since 𝜙𝐹 is an isomorphism we have 𝑢1 = 𝑣1 and since 𝑘 (𝐹) ∈ Igr+
we have 𝑢 = 𝑣.

5 Final Remarks and future works

In [17] we emphasize that DM-multirings and DP-multirings provide a new way to
look at the abstract theories of quadratic forms (for example, for special groups we
obtained an easy way to describe the axiom SG6 in the theory of special groups).

In [13] is constructed a von Neumann hull functor from multiring category and
that, when restricted to semi-real rings, it commutes with real semigroup functor.
This allows us to obtain some quadratic forms properties of a semi-real ring by
looking to its von Neumann regular hull. In fact, the Witt ring of a real semigroups
is canonically isomorphic to the Witt ring of its Von Neumann regular hull and this
connection allows the full description of the graded Witt ring of a real semigroup.

With these two observations in mind, it is natural consider possible expansions
of “Milnor’s triangle” of graded rings – where K-theory is interpolating graded
Witt ring and graded Cohomology ring – to the multiring setting. In more details,
below are some further roads to follow:

1. Extension of the K-theory framework to more general multirings (for exam-
ple, to VN-multirings) with quadratic flavour.

2. Compare graded K-theory with graded Witt ring for VN-real semigroups as
in the field case (Milnor [11]) and special groups (Dickmann-Miraglia [3]).

3. The definition and analysis of the structure of Witt ring (and graded Witt
ring) of more general quadratic structures (not only obtained from special
groups and real semigroups): this subject have already appeared in section
4, in connection with [8].

4. Still in the hyperfield case, investigate the extension of the concept of Galois
group to hyperfields, comparing the Galois cohomology ring and analyse
the existence of some canonical arrow from K-theory to this cohomology
ring, in an attempt to recover the Milnor’s Conjecture available in the classic
algebraic quadratic forms context ( [15], [16]).
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