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Crossed squares, crossed modules over
groupoids and cat1−2−groupoids

Sedat Temel

Abstract. The aim of this paper is to introduce the notion of cat1−groupoids
which are the groupoid version of cat1−groups and to prove the categorical
equivalence between crossed modules over groupoids and cat1−groupoids. In
section 4 we introduce the notions of crossed squares over groupoids and of
cat2−groupoids, and then we show their categories are equivalent. These
equivalences enable us to obtain more examples of groupoids.

1 Introduction

Crossed modules over groups which are defined by Whitehead in [25, 26] as
algebraic models for homotopy 2-types are equivalent to several algebraic
and combinatorial categories such as the categories of group-groupoids (or
alternatively named G-groupoids in [5] or 2-groups in [3]) and of cat1-groups
(or categorical groups) [6, 17]. A crossed module can be thought as the
case n=1 of a crossed n-cube which should be the ‘algebraic core’ of a
catn−group (or n-cat-group) [11]. One can find some applications of crossed
modules in homotopy theory [6], homological algebra [14] and algebraic K-
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theory [16]. The equivalence between cat1-groups and crossed modules is
useful for extension of crossed modules to higher dimensions, see [17]. A
crossed square was first defined by Guin-Walery and Loday [13] in their
investigation of applications of some problems in algebraic K-theory. In [17]
it was proved that the category of cat2-groups is isomorphic to the category
of crossed squares.

For the groupoid case of crossed modules, basic references are Brown-
Higgins [7, 8] and Brown-Icen [9]. The categorical equivalence between
crossed modules over groupoids and 2-groupoids is given in [15]. Recently
normal and quotient structures in the category of crossed modules over
groupoids and of 2-groupoids were compared and the corresponding struc-
tures related 2-groupoids were characterized in [24] (see also [20]) using
the categorical equivalence between 2-groupoids and crossed modules over
groupoids. The definition of 2- and 3-crossed modules over groupoids were
introduced in [2] by extending the definition of 2- and 3-crossed modules
over groups to the notion of groupoids.

There are several but useful 2-dimensional concepts of groupoids such as
double groupoids, 2-groupoids and crossed modules of groupoids. However
there is a gap in this context and so we investigate a new 2-dimensional
version of a groupoid which we called cat1-groupoid since it is the groupoid
case of a cat1-group and prove the categorical equivalence between cat1-
groupoids and crossed modules over groupoids. Morover we introduce the
notion of crossed squares over groupoids and prove that the category of
them is equivalent to the category of cat2-groupoids which are the groupoid
version of cat2-groups.

2 Preliminaries

A category C = (X,C, d0, d1, ε) consists of the set of objects X, the set of
morphisms C = ∪x,y∈XC(x, y) where C(x, y) is the set of morphisms in C
from x to y as follows

x
a // y

with the source and the target maps d0, d1 : C → X, respectively, such
that d0(a) = x, d1(a) = y, the associative composition map m : C(y, z) ×
C(x, y) → C(x, z), m(b, a) = b ◦ a and the unit map ε : X → C sending
each object x of C to its identity morphism 1x ∈ C(x) := C(x, x) such that
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a ◦ 1x = a and 1x ◦ a′ = a′ where a′ ∈ C(w, x). A groupoid G = (X,G) is
a category with the inversion map η : G → G, η(a) = a−1 ∈ G(y, x) such
that a ◦ a−1 = 1y, a

−1 ◦ a = 1x. For further details, see [4, 19]. Since all
categories in this paper are over a fixed base set, namely X, we use the
notation X for the base set of all categories and groupoids in whole of the
paper.

Example 2.1. Let X be a set and G be a group. Then G = (X,X×G×X)
is a groupoid called trivial groupoid, see [18]. Recall that d0(x, g, y) =
x, d1(x, g, y) = y, ε(x) = (x, e, x), where e is the identity element of G and
η(x, g, y) = (y, g−1, x) where the composition of morphisms is defined by
(y, g′, z) ◦ (x, g, y) = (x, g′g, z).

Recall that a morphism is a functor between groupoids which is iden-
tity on the base set X, on the other hand the base preserving morphisms
are morphisms in G = (X,G). Furthermore, H = (X,H) is a (wide) sub-
groupoid of G = (X,G) if H is closed under composition and inversion.

Let G be a groupoid and N be a wide subgroupoid of G. Then N is
called normal if

g ◦ h ◦ g−1 ∈ N(y)

for all h ∈ N , g ∈ G such that d0(h) = d1(h) = d1(g) [4].
By a crossed module over groups we mean a pair of groups M,N with an

action • : N ×M →M of N on M and a morphisms ∂ : M → N of groups
satisfies the conditions ∂(n •m) = n∂(m)n−1 and ∂(m) •m1 = mm1m

−1,
for m,m1 ∈ M and n ∈ N [25, 26]. The well-known equivalence between
crossed modules over groups and 2-groups (or group-groupoids) was proved
by Brown and Spencer [5].

Let G be a group. We recall that from [17] and [6] a cat1-group is a
triple (G, s, t) with group homomorphisms s, t : G→ G satisfying following
conditions

[CG 1] st = t and ts = s,

[CG 2] [Kers s,Ker t] = 1.

The following theorem is proved in [6]:

Theorem 2.2. The categories of crossed modules over groups and of cat1-
groups are equivalent.
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Remark that this theorem is widely extended for some other algebraic
categories and also was proved for semi-abelian categories, but they don’t
cover our work properly.

A crossed square as defined in [10] (see also [23]) is a commutative
diagram of groups

L
λ //

λ′

��

M

µ

��
N ν

// P

together with four morphisms λ, λ′, µ, ν of groups, actions of the group P
on L, M , N (and hence actions of M on L and N via µ and of N on L and
M via ν) and a function h : M ×N → L satisfy the following axioms

[CS 1] λ, λ′ preserves the actions of P and µ, ν and κ = µλ = νλ′ are
crossed modules of groups,

[CS 2] λh(m,n) = m(n •m−1), λ′h(m,n) = (m • n)n−1,

[CS 3] h(λ(l), n) = l(n • l−1), h(m,λ′(l)) = (m • l)l−1,

[CS 4] h(mm′, n) =
(
m • h(m′, n)

)
h(m,n),

h(m,nn′) = h(m,n)(n • h(m,n′)),

[CS 5] h(p •m, p • n) = p • h(m,n),

for all l ∈ L, m,m′ ∈M , n, n′ ∈ N and p ∈ P .
We will give the definition of a cat2-group (or 2-cat-group) from [17] in

terms of our notation. A cat2-group is a 5-tuple (G, s1, t1, s2, t2) where G
is a group with four homomorphisms s1, t1, s2, t2 : G→ G such that

[C2G 1] siti = ti and tisi = si,

[C2G 2] sisj = sjsi, titj = tjti and sitj = tjsi,

[C2G 3] [Ker si,Ker ti] = 1,

for i, j ∈ {1, 2}, i 6= j. The following theorem was proved in [17].

Theorem 2.3. The category of cat2-groups is isomorphic to the category
of crossed squares.
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3 Crossed modules over groupoids and cat1-groupoids

In this section we define cat1-groupoids by extending the definition of cat1-
groups to the notion of groupoids and give some examples using cat1-
groups. Then we prove that there is a categorical equivalence between
cat1-groupoids and crossed modules over groupoids.

Definition 3.1. Let G = (X,G) be a groupoid, σ, τ : G → G be functors
which are identities on objects. A cat1-groupoid is a triple (G, σ, τ) satisfying

[C1Gd 1] στ = τ and τσ = σ,

[C1Gd 2] h ◦ k ◦h−1 ◦ k−1 = εd0(h) , for all h ∈ Ker(σ), k ∈ Ker(τ) where
d0(h) = d0(k).

Here Ker(σ) = {g ∈ G|σ(g) = εd0(g)} and Ker(τ) = {g ∈ G|τ(g) =
εd0(g)} are wide subgroupoids of G on the base set X. Also these sub-
groupoids are totally disconnected groupoids. Now, since Ker(σ) is a sub-
groupoid, we have also

[C1Gd 2’] h ◦ h1 ◦ h−1 ◦ h−1
1 = εd0(h)

for h, h1 ∈ Ker(σ).

Example 3.2. Since every group is a groupoid with a unique object, every
cat1-group can be regarded as a cat1-groupoid with a single object.

Example 3.3. Let (G, s, t) be a cat1-group, X be a set and G = (X,X ×
G × X) be the trivial groupoid. Then (G, σ, τ) is a cat1-groupoid where
σ(x, g, y) = (x, s(g), y) and τ(x, g, y) = (x, t(g), y).

Proposition 3.4. Given any cat1-groupoid (G, σ, τ), we have
(i) σ(G) = τ(G),
(ii) σ and τ are identities on σ(G) and τ(G),
(iii) σ2 = σ and τ2 = τ .

Definition 3.5. A morphism f : (G, σ, τ)→ (G′, σ′, τ ′) of cat1-groupoids is
a commutative diagram of groupoids

G σ //
τ
//

f
��

G
f
��

G′ σ′ //
τ ′
// G′



130 S. Temel

Therefore we construct the category Cat1-Gpd of cat1-groupoids.

We recall the definition of crossed modules over groupoids as given in [9].
Let G = (X,G) and H = (X,H) be groupoids over the same object set X
such that H is totally disconnected. A crossed module K = (H,G, ∂) over
groupoids consists of a morphism ∂ : H → G of groupoids which is identity
on objects together with a partial action • : G × H → H of groupoids
satisfying

[CMG 1] ∂(g • h) = g ◦ ∂(h) ◦ g−1,

[CMG 2] ∂(h) • h1 = h ◦ h1 ◦ h−1, for h, h1 ∈ H(x) and g ∈ G(x, y).

It is a fair remark that if (H,G, ∂) is a crossed module over groupoids,
then Im(∂) is a normal subgroupoid and also Ker(∂) lies in the center of G,
where the center of G is a wide subgroupoid in which the morphisms are

{g ∈ G : g ◦ h = h ◦ g, d0(g) = d1(g) = d0(h) = d1(h)}.

LetK = (H,G, ∂) andK ′ = (H′,G′, ∂′) be crossed modules over groupoids.
A morphism λ = (λ2, λ1, λ0) : K → K ′ is called a morphism of crossed mod-
ules over groupoids if (λ0, λ1) : H → H′ and (λ0, λ2) : G → G′ are morphisms
of groupoids such that λ2∂ = ∂′λ1 and λ1(g • h) = λ2(g) •′ λ1(h). Hence
the category of crossed modules over groupoids can be defined which we
denoted by Cmg.

Theorem 3.6. The category of cat1-groupoids is equivalent to the category
of crossed modules over groupoids.

Proof. A functor ψ : Cmg → Cat1-Gpd is an equivalence of categories. If
(A,B, ∂) is a crossed module over groupoids, then ψ(A,B, ∂) = (G, σ, τ) is
a cat1-groupoid over the same object set where the set of morphisms of
G is defined by B n A = {(b, a)|b ∈ B, a ∈ A, d1(b) = d0(a) = d1(a)},
σ(b, a) = (b, εd0(a)) and τ(b, a) = (∂(a) ◦ b, εd0(a)). Here, if x

b // y and

y
a // y are morphisms of B and A, respectively, then (b, a) is a morphism

of G as follows

x
(b,a) // y .
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where the structure maps are defined by d0(b, a) = d0(b), d1(b, a) = d1(a), ε(x) =
(1x, 1x), η(b, a) = (b−1, b−1 • a−1) and the composition of morphisms is de-
fined by

(b1, a1) ◦ (b, a) = (b1 ◦ b, a1 ◦ (b1 • a))

when y
b1 // z

a1 // z .

Now we define a functor γ : Cat1-Gpd → Cmg as a weak inverse of
ψ. Given a cat1-groupoid (G, σ, τ), then γ(G, σ, τ) = (Ker(σ), σ(G), τ) is a
crossed module over groupoids where an action of σ(G) on Ker(σ) is defined
by g • h = g ◦ h ◦ g−1, for all g ∈ σ(G), h ∈ Ker(σ).

[CMG 1] Since g ∈ σ(G), by Proposition 3.4 we get τ(g) = g and so

τ(g • h) = τ(g ◦ h ◦ g−1) = τ(g) ◦ τ(h) ◦ τ(g−1) = g ◦ τ(h) ◦ g−1

[CMG 2] τ(h) • h1 = τ(h) ◦ h1 ◦ τ(h)−1 = τ(h) ◦ h1 ◦ τ(h−1) ◦ h ◦ h−1

Since τ(h−1) ◦ h ∈ Ker(τ) and h1 ∈ Ker(σ), they commute, and so

τ(h) • h1 = τ(h) ◦ τ(h−1) ◦ h ◦ h1 ◦ h−1 = h ◦ h1 ◦ h−1.

A natural equivalence S : 1Cat1-Gpd → ψγ is defined via a mapping

SG(G, σ, τ) = ((X,σ(G) n Ker(σ)), σ′, τ ′)

which is defined such that to be identity on objects and

SG(g) = (σ(g), g ◦ σ(g−1))

for g ∈ G where σ′(g, h) = (g, εd0(h)), τ ′(g, h) = (τ(h)◦g, εd0(h)). We will
verify that SG preserves composition.

SG(g1◦g) = (σ(g1◦g), g1◦g◦σ(g1 ◦ g)−1) = (σ(g1)◦σ(g), g1◦g◦σ(g−1)◦σ(g−1
1 ))

SG(g1) ◦ SG(g) =
(
σ(g1), g1 ◦ σ(g−1

1 )
)
◦
(
σ(g), g ◦ σ(g−1)

)

=
(
σ(g1) ◦ σ(g), g1 ◦ σ(g−1

1 ) ◦ (σ(g1) • (g ◦ σ(g−1))
)

=
(
σ(g1) ◦ σ(g), g1 ◦ σ(g−1

1 ) ◦ σ(g1) ◦ g ◦ σ(g−1) ◦ σ(g−1
1 )
)

= (σ(g1) ◦ σ(g), g1 ◦ g ◦ σ(g−1) ◦ σ(g−1
1 ))
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Conversely, a natural equivalence T : 1Cmg → γψ is defined such that

TC(b) = (b, εd1(b)), TC(a) = (εd1(a), a),

for C = (B,A, ∂). TC preserves compositions as follows:

TC(b1)◦TC(b) = (b1, 1z)◦(b, 1y) = (b1◦b, 1z◦(b1•1y)) = (b1◦b, 1z◦1z) = TC(b1◦b)

for x
b // y

b1 // z and

TC(a1)◦TC(a) = (1x, a1)◦(1x, a) = (1x◦1x, a1◦(1x•a)) = (1x, a1◦a) = TC(a1◦a)

for x
a // x

a1 // x .

As an application of this result, we compare normal objects of cat1−groupoids
and of crossed modules over groupoids. First we recall the definitions of sub-
crossed modules and of normal crossed modules over groupoids from [24].

Definition 3.7. Let A = (X,A), B = (X,B) be groupoids, A be totally
disconnected and (A,B, ∂) be a crossed module over groupoids. A crossed
module (M,N , σ) over groupoids is called a subcrossed module of (A,B, ∂)
if

[SCMG 1] M = (Y,M) is a subgroupoid of A = (X,A),

[SCMG 2] N = (Y,N) is a subgroupoid of B = (X,B),

[SCMG 3] σ is the restriction of ∂ to M ,

[SCMG 4] the action of N onM is the restriction of the action of B on A.

If X = Y then (M,N , σ) is called a wide subcrossed module of (A,B, ∂).

Definition 3.8. A normal subcrossed module over groupoids is a subcrossed
module (M,N , σ) of (A,B, ∂) which satisfies

[NCMG 1] N is normal subgroupoid of B,

[NCMG 2] b •m ∈M(y), for all b ∈ B(x, y),m ∈M(x),

[NCMG 3] (n • a) ◦ a−1 ∈M(x), for all n ∈ N(x), a ∈ A(x).
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From [NCMG2] we have that ∂(a) •m = a ◦m ◦ a−1 ∈M and so M is
normal subgroupoid of A.

Now we introduce the notions of subcat1−groupoids and normal cat1−groupoids.

Definition 3.9. A subcat1−groupoid (G′, σ′, τ ′) of a cat1−groupoid (G, σ, τ)
is a subgroupoid G′ = (X ′, G′) of G = (X,G) such that σ′, τ ′ are restriction
of σ, τ to G′, respectively. We say G′ is wide if X ′ = X. If G′ is normal
subgroupoid of G, then (G′, σ′, τ ′) is called normal subcat1−groupoid of
(G, σ, τ).

According the proof of the Theorem 3.6, we give following results.

Proposition 3.10. Let (M,N , σ) be a normal subcrossed module of (A,B, ∂)
over the same object set X. Then the cat1−groupoid corresponding to
(M,N , σ) is a normal subcat1−groupoid of the one corresponding to (A,B, ∂).

Proof. We only need to show that the groupoid (X,N nM) is a normal
subgroupoid of (X,B n A). For b ∈ B(x, y), a ∈ A(y), (nx,mx) ∈ (N n
M)(x) = N(x) nM(x),

(b, a) ◦ (nx,mx) ◦ (b, a)−1 =
(
b ◦ nx, a ◦ (b •mx)

)
◦ (b−1, b−1 • a−1)

=
(
b ◦ nx ◦ b−1, a ◦ (b •mx) ◦ ((b ◦ nx) • (b−1 • a−1))

)

=
(
b ◦ nx ◦ b−1, a ◦ (b •mx) ◦ ((b ◦ nx ◦ b−1) • a−1)

)

Let b •mx = my and b ◦ nx ◦ b−1 = ny. Then, from [NCMG1] ny ∈ N(y),
from [NCMG2] my ∈M(y) and from [NCMG3] (ny •a−1)◦a = m′y ∈M(y).
Now we have

(b, a) ◦ (nx,mx) ◦ (b, a)−1 =
(
ny, a ◦my ◦ (ny • a−1) ◦ a ◦ a−1

)

=
(
ny, a ◦my ◦m′y ◦ a−1

)
∈ (N nM)(y).

Proposition 3.11. Let (G′, σ′, τ ′) be a normal subcat1−groupoid of (G, σ, τ).
Then the crossed module corresponding to G′ is a normal subcrossed module
of the one corresponding to G.
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Proof. [NCMG 1] Clearly σ(G′) is a normal subgroupoid of σ(G).

[NCMG 2] Let g ∈ G(x, y), g′ ∈ G′(x). Then g • g′ = g ◦ g′ ◦ g−1 ∈ G′(y).

[NCMG 3] Let g′ ∈ σ(G′)(x) and g ∈ G(x). Then (g′ • g) ◦ g−1 = g′ ◦ g ◦
g′−1 ◦ g−1.

Since σ(G′) is a normal subgroupoid of σ(G), then g ◦g′−1 ◦g−1 ∈ G′(x).
Since g′ ∈ G′(x), it implies that (g′ • g) ◦ g−1 ∈ G′(x).

Corollary 3.12. Let (G, σ, τ) be a cat1−groupoid and (A,B, ∂) be the crossed
module over groupoids corresponding to G. Then the category NC1Gd/(G, σ, τ)
of normal subcat1− groupoids of (G, σ, τ) is equivalent to the category NCmg/(A,B, ∂)
of normal subcrossed modules of (A,B, ∂).

4 Crossed squares over groupoids and cat2−groupoids

In this section first we give the definition of crossed squares over groupoids
as the groupoid case of crossed squares over groups. Then we define cat2-
groupoids and prove that the category of cat2-groupoids is equivalent to the
category of crossed squares over groupoids.

Definition 4.1. Let L,M,N ,P be groupoids over the same object set X
and let L,M,N be totally disconnected groupoids. A crossed square of
groupoids is a commutative diagram

L λ //

λ′

��

M

µ

��
N ν

// P

together with groupoid morphisms λ, λ′, µ, ν which are identities on objects
and actions of P on L,M,N , (and therefore actions of M on L and N via
µ and of N on L and M via ν) and a functor h : M× N → L which is
identity on X and satisfies the following conditions

[CSG 1] λ, λ′ preserves the actions of P and (M,P, µ), (N ,P, ν) and
(L,P, κ) are crossed modules over groupoids where κ = µλ =
νλ′,
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[CSG 2] λh(m,n) = m ◦ (n •m−1), λ′h(m,n) = (m • n) ◦ n−1,

[CSG 3] h(λ(l), n) = l ◦ (n • l−1), h(m,λ′(l)) = (m • l) ◦ l−1,

[CSG 4] h(m ◦m′, n) =
(
m • h(m′, n)

)
◦ h(m,n),

h(m,n ◦ n′) = h(m,n) ◦ (n • h(m,n′)),

[CSG 5] h(p •m, p • n) = p • h(m,n),

for all l ∈ L, m,m′ ∈ M , n, n′ ∈ N and p ∈ P , whenever all compositions
and actions are defined.

Using the definition of normal and wide subcrossed module over groupoids
as defined in [20] and [24], we give following example.

Example 4.2. Let (N ,P, ∂) be a crossed module over groupoids and (L,M, δ)
be a normal and wide subcrossed module of (N ,P, ∂) such thatM is totally
disconnected. Then the diagram

L� _

i

��

δ //M� _

i

��
N

∂
// P

forms a crossed square of groupoids where the action of P on L is induced
action from the action of P on N and the action of P onM is conjugation.
Here the morphism h is defined on morphisms by

h(m,n) = (m • n) ◦ n−1

for all m ∈M and n ∈ N .

Definition 4.3. A morphism f = (fL, fM , fN , fP ) : (L,M,N ,P)→ (L′,M′,N ′,P ′)
of crossed squares over groupoids consists of morphisms fL : L → L′, fM : M→
M′, fN : N → N ′, fP : P → P ′ morphisms of groupoids which are identities
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on objects and compatible with the actions and the functors h and h′.

M

��

fM //M′

��

L

��

fL //

::

L′

��

99

P
fP

// P ′

N
fN

//

::

N ′
99

Then we construct the category Csg of crossed squares over groupoids.

Definition 4.4. Let G = (X,G) be a groupoid, σi, τi : G → G be functors
which are identities on objects. A cat2-groupoid (G, σi, τi) is a groupoid
satisfying

[C2Gd 1] σiτi = τi, τiσi = σi,

[C2Gd 2] σiσj = σjσi, τiτj = τjτi, σiτj = τjσi,

[C2Gd 3] hi ◦ ki ◦ h−1
i ◦ k−1

i = εd0(hi), for all hi ∈ Ker(σi), ki ∈ Ker(τi)
i, j ∈ {1, 2} and i 6= j where d0(hi) = d0(ki).

Example 4.5. Let (G, s1, t1, s2, t2) be a cat2-group and X be a set. Using
the trivial groupoid G = (X,X ×G×X) we get a cat2-groupoid (G, σi, τi)
where σi(x, g, y) = (x, si(g), y) and τi(x, g, y) = (x, ti(g), y), for i ∈ {1, 2}.
Proposition 4.6. Given any cat2-groupoid (G, σ1, τ1, σ2, τ2), we have

(i) σi(G) = τi(G),
(ii) σi and τi are identities on σi(G) and τi(G),
(iii) σ2

i = σi and τ2
i = τi, for i ∈ {1, 2}.

Definition 4.7. A morphism f : (G, σ1, τ1, σ2, τ2) → (G′, σ′1, t
′
1, σ
′
2, t
′
2) of

cat2-groupoids is a morphism of groupoids such that σ′if = fσi and τ ′if =
fτi, for i ∈ {1, 2}.

G
σi //
τi
//

f
��

G
f
��

G′
σ′i //
τ ′i
// G′
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Then we have the category Cat2-Gpd of cat2-groupoids.

Theorem 4.8. The category of cat2-groupoids is equivalent to the category
of crossed squares over groupoids.

Proof. A functor ψ : Csg→ Cat2-Gpd can be defined by

ψ(L,M,N ,P) = (G, σ1, τ1, σ2, τ2)

to construct a cat2−groupoid from a crossed square (L,M,N ,P) of groupoids.
First, here are semi-direct products P nM and N n L and then an action
of P nM on N n L is defined by

(p,m) • (n, l) = (p • n, (m • (p • l)) ◦ h(m, p • n))

where

x
n //
l
// x

p // y
m // y.

Hence the set of objects of G is the same set of objects of L,M,N and P
and the set of morphisms of G is (P nM) n (N n L). If

x
p // y

m // y
n //
l
// y,

then (p,m, n, l) is a morphism of G from x to y where the structure maps
are defined by

σ1(p,m, n, l) = (p,m, 1y, 1y),

σ2(p,m, n, l) = (p, 1y, n, 1y),

τ1(p,m, n, l) = (ν(n) ◦ p, λ(l) ◦ (ν(n) •m), 1y, 1y),

τ2(p,m, n, l) = (µ(m) ◦ p, 1y, λ′(l) ◦ n, 1y).

Let y
p′ // z

m′ // z
n′ //
l′
// z. Then composite of (p,m, n, l) and (p′,m′, n′, l′)

is defined by

(p′,m′, n′, l′) ◦ (p,m, n, l) =
(

(p′,m′) ◦ (p,m), (n′, l′) ◦ ((p′,m′) • (n, l))
)

Given a cat2−groupoid (G, σ1, τ1, σ2, τ2) we obtain a crossed square of
groupoids via the functor γ : Cat2-Gpd→ Csg, γ(G) = (L,M,N ,P) as a
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weak inverse for ψ where the sets of morphisms L = Ker(σ1)∩Ker(σ2), M =
σ1(G)∩Ker(σ2), N = Ker(σ1)∩σ2(G), P = σ1(G)∩σ2(G) and restrictions
λ = τ1|L, λ′ = τ2|L, µ = τ2|M and ν = τ1|N . The functor h : M×N → L
is defined by h(m,n) = m ◦ n ◦ m−1 ◦ n−1. Since τ1τ2 = τ2τ1, we have
µλ = νλ′. The other axioms are easily satisfied where all the actions are
defined by conjugation.

A natural equivalence S : 1Cat2-Gpd → ψγ is defined by a mapping

SG(G, σ1, τ1, σ2, τ2) =
(
G′, σ′1, τ ′1, σ′2, τ ′2

)

which is defined to be identity on objects, on morphisms is given by

SG(g) = (σ1σ2(g), σ1(g)◦σ1σ2(g−1), σ2(g)◦σ1σ2(g−1), g◦σ1(g−1)◦σ1σ2(g)◦σ2(g−1))

where

σ′1(g1, h1, g2, h2) = (g1, h1, εd0(g2), εd0(h2)),

σ′2(g1, h1, g2, h2) = (g1, εd0(h1), g2, εd0(h2)),

τ ′1(g1, h1, g2, h2) = (τ1(g2) ◦ g1, τ1(h2 ◦ g2) ◦ h1 ◦ τ1(g−1
2 ), εd0(g2), εd0(h2)),

τ ′2(g1, h1, g2, h2) = (τ2(h1) ◦ g1, εd0(h1), τ2(h2) ◦ g2, εd0(h2)).

On the other hand, a natural equivalence T : 1Csg → γψ is defined such
that

TK(p) = (p, εd1(p), εd1(p), εd1(p)),

TK(m) = (εd1(m),m, εd1(m), εd1(m)),

TK(n) = (εd1(n), εd1(n), n, εd1(n)),

TK(l) = (εd1(l), εd1(l), εd1(l), l)

for K = (L,M,N ,P).
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5 Conclusion

There is need to investigate existence of epimorphisms and central exten-
sions in the category of cat1−groupoids. Using the results of the paper [24],
it could be possible to develop qoutient notions of cat1−groupoids. As an
application of the equivalence given in [5, Theorem 1], the notions in one of
these categories were interpreted in the other such as actor [12], normality,
quotients [22], covering [1] and action [21]. So it would be interesting to
explore similar notions in the categories introduced in this paper.
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[15] İçen, İ., The equivalence of 2-groupoids and crossed modules, Commun. Fac. Sci.
Univ. Ank. Sér. A1 Math. Stat. 49 (2000), 39-48.

[16] Loday, J.-L., Cohomologie et groupe de Steinberg relatifs, J. Algebra 54 (1978), 178-
202.

[17] Loday, J.-L., Spaces with finitely many non-trivial homotopy groups, J. Pure Appl.
Algebra 24(2) (1982), 179-202.

[18] Mackenzie, K., “Lie Groupoids and Lie Algebroids in Differential Geometry”, Cam-
bridge University Press, 1987.

[19] Maclane, S., “Categories for the Working Mathematician”, Springer, 1971.

[20] Mucuk, O. and Demir, S., Normality and quotient in crossed modules over groupoids
and double groupoids, Turkish J. Math. 42 (2018), 2336-2347.
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