Categories and General Algebraic Structures with Applications Volume 13, Number 1, July 2020, 125-141.

Crossed squares, crossed modules over groupoids and cat^{1-2} -groupoids

Sedat Temel

Abstract. The aim of this paper is to introduce the notion of cat^1 -groupoids which are the groupoid version of cat^1 -groups and to prove the categorical equivalence between crossed modules over groupoids and cat^1 -groupoids. In section 4 we introduce the notions of crossed squares over groupoids and of cat^2 -groupoids, and then we show their categories are equivalent. These equivalences enable us to obtain more examples of groupoids.

1 Introduction

Crossed modules over groups which are defined by Whitehead in [25, 26] as algebraic models for homotopy 2-types are equivalent to several algebraic and combinatorial categories such as the categories of group-groupoids (or alternatively named \mathcal{G} -groupoids in [5] or 2-groups in [3]) and of cat¹-groups (or categorical groups) [6, 17]. A crossed module can be thought as the case n=1 of a crossed n-cube which should be the 'algebraic core' of a cat^{*n*}-group (or n-cat-group) [11]. One can find some applications of crossed modules in homotopy theory [6], homological algebra [14] and algebraic K-

Keywords: Crossed module, crossed square, groupoid, cat¹-group, cat²-group.

Mathematics Subject Classification [2010]: 22A22, 57M10, 20L05, 18D05, 18D35.

Received: 2 September 2019, Accepted: 27 December 2019.

ISSN: Print 2345-5853, Online 2345-5861.

[©] Shahid Beheshti University

theory [16]. The equivalence between cat^1 -groups and crossed modules is useful for extension of crossed modules to higher dimensions, see [17]. A crossed square was first defined by Guin-Walery and Loday [13] in their investigation of applications of some problems in algebraic K-theory. In [17] it was proved that the category of cat^2 -groups is isomorphic to the category of crossed squares.

For the groupoid case of crossed modules, basic references are Brown-Higgins [7, 8] and Brown-Icen [9]. The categorical equivalence between crossed modules over groupoids and 2-groupoids is given in [15]. Recently normal and quotient structures in the category of crossed modules over groupoids and of 2-groupoids were compared and the corresponding structures related 2-groupoids were characterized in [24] (see also [20]) using the categorical equivalence between 2-groupoids and crossed modules over groupoids. The definition of 2- and 3-crossed modules over groupoids were introduced in [2] by extending the definition of 2- and 3-crossed modules over groups to the notion of groupoids.

There are several but useful 2-dimensional concepts of groupoids such as double groupoids, 2-groupoids and crossed modules of groupoids. However there is a gap in this context and so we investigate a new 2-dimensional version of a groupoid which we called cat^1 -groupoid since it is the groupoid case of a cat¹-group and prove the categorical equivalence between cat¹-groupoids and crossed modules over groupoids. Moreover we introduce the notion of crossed squares over groupoids and prove that the category of them is equivalent to the category of cat²-groupoids which are the groupoid version of cat²-groups.

2 Preliminaries

A category $\mathcal{C} = (X, C, d_0, d_1, \varepsilon)$ consists of the set of objects X, the set of morphisms $C = \bigcup_{x,y \in X} C(x, y)$ where C(x, y) is the set of morphisms in \mathcal{C} from x to y as follows

 $x \xrightarrow{a} y$

with the source and the target maps $d_0, d_1: C \to X$, respectively, such that $d_0(a) = x, d_1(a) = y$, the associative composition map $m: C(y, z) \times C(x, y) \to C(x, z), m(b, a) = b \circ a$ and the unit map $\varepsilon: X \to C$ sending each object x of \mathcal{C} to its identity morphism $1_x \in C(x) := C(x, x)$ such that

 $a \circ 1_x = a$ and $1_x \circ a' = a'$ where $a' \in C(w, x)$. A groupoid $\mathcal{G} = (X, G)$ is a category with the inversion map $\eta \colon G \to G$, $\eta(a) = a^{-1} \in G(y, x)$ such that $a \circ a^{-1} = 1_y$, $a^{-1} \circ a = 1_x$. For further details, see [4, 19]. Since all categories in this paper are over a fixed base set, namely X, we use the notation X for the base set of all categories and groupoids in whole of the paper.

Example 2.1. Let X be a set and G be a group. Then $\mathcal{G} = (X, X \times G \times X)$ is a groupoid called *trivial groupoid*, see [18]. Recall that $d_0(x, g, y) = x, d_1(x, g, y) = y, \varepsilon(x) = (x, e, x)$, where e is the identity element of G and $\eta(x, g, y) = (y, g^{-1}, x)$ where the composition of morphisms is defined by $(y, g', z) \circ (x, g, y) = (x, g'g, z)$.

Recall that a morphism is a functor between groupoids which is identity on the base set X, on the other hand the base preserving morphisms are morphisms in $\mathcal{G} = (X, G)$. Furthermore, $\mathcal{H} = (X, H)$ is a (wide) subgroupoid of $\mathcal{G} = (X, G)$ if H is closed under composition and inversion.

Let \mathcal{G} be a groupoid and \mathcal{N} be a wide subgroupoid of \mathcal{G} . Then \mathcal{N} is called *normal* if

$$g \circ h \circ g^{-1} \in N(y)$$

for all $h \in N$, $g \in G$ such that $d_0(h) = d_1(h) = d_1(g)$ [4].

By a crossed module over groups we mean a pair of groups M, N with an action $\bullet: N \times M \to M$ of N on M and a morphisms $\partial: M \to N$ of groups satisfies the conditions $\partial(n \bullet m) = n\partial(m)n^{-1}$ and $\partial(m) \bullet m_1 = mm_1m^{-1}$, for $m, m_1 \in M$ and $n \in N$ [25, 26]. The well-known equivalence between crossed modules over groups and 2-groups (or group-groupoids) was proved by Brown and Spencer [5].

Let G be a group. We recall that from [17] and [6] a cat¹-group is a triple (G, s, t) with group homomorphisms $s, t: G \to G$ satisfying following conditions

[CG 1] st = t and ts = s,

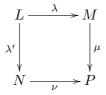
[CG 2] [Kers s, Ker t] = 1.

The following theorem is proved in [6]:

Theorem 2.2. The categories of crossed modules over groups and of cat^1 -groups are equivalent.

Remark that this theorem is widely extended for some other algebraic categories and also was proved for semi-abelian categories, but they don't cover our work properly.

A crossed square as defined in [10] (see also [23]) is a commutative diagram of groups



together with four morphisms $\lambda, \lambda', \mu, \nu$ of groups, actions of the group P on L, M, N (and hence actions of M on L and N via μ and of N on L and M via ν) and a function $h: M \times N \to L$ satisfy the following axioms

- [CS 1] λ , λ' preserves the actions of P and μ , ν and $\kappa = \mu \lambda = \nu \lambda'$ are crossed modules of groups,
- [CS 2] $\lambda h(m,n) = m(n \bullet m^{-1}), \ \lambda' h(m,n) = (m \bullet n)n^{-1},$
- [CS 3] $h(\lambda(l), n) = l(n \bullet l^{-1}), h(m, \lambda'(l)) = (m \bullet l)l^{-1},$

[CS 4]
$$h(mm', n) = (m \bullet h(m', n))h(m, n),$$

 $h(m, nn') = h(m, n)(n \bullet h(m, n')),$

 $[CS 5] h(p \bullet m, p \bullet n) = p \bullet h(m, n),$

for all $l \in L$, $m, m' \in M$, $n, n' \in N$ and $p \in P$.

We will give the definition of a cat²-group (or 2-cat-group) from [17] in terms of our notation. A cat²-group is a 5-tuple (G, s_1, t_1, s_2, t_2) where G is a group with four homomorphisms $s_1, t_1, s_2, t_2 \colon G \to G$ such that

- [C2G 1] $s_i t_i = t_i$ and $t_i s_i = s_i$,
- [C2G 2] $s_i s_j = s_j s_i, t_i t_j = t_j t_i$ and $s_i t_j = t_j s_i$,

[C2G 3] [Ker s_i , Ker t_i] = 1,

for $i, j \in \{1, 2\}, i \neq j$. The following theorem was proved in [17].

Theorem 2.3. The category of cat^2 -groups is isomorphic to the category of crossed squares.

3 Crossed modules over groupoids and cat¹-groupoids

In this section we define cat¹-groupoids by extending the definition of cat¹-groups to the notion of groupoids and give some examples using cat¹-groups. Then we prove that there is a categorical equivalence between cat¹-groupoids and crossed modules over groupoids.

Definition 3.1. Let $\mathcal{G} = (X, G)$ be a groupoid, $\sigma, \tau : \mathcal{G} \to \mathcal{G}$ be functors which are identities on objects. A *cat*¹-*groupoid* is a triple $(\mathcal{G}, \sigma, \tau)$ satisfying

- [C1Gd 1] $\sigma \tau = \tau$ and $\tau \sigma = \sigma$,
- [C1Gd 2] $h \circ k \circ h^{-1} \circ k^{-1} = \varepsilon d_0(h)$, for all $h \in \text{Ker}(\sigma), k \in \text{Ker}(\tau)$ where $d_0(h) = d_0(k)$.

Here $\operatorname{Ker}(\sigma) = \{g \in G | \sigma(g) = \varepsilon d_0(g)\}$ and $\operatorname{Ker}(\tau) = \{g \in G | \tau(g) = \varepsilon d_0(g)\}$ are wide subgroupoids of \mathcal{G} on the base set X. Also these subgroupoids are totally disconnected groupoids. Now, since $\operatorname{Ker}(\sigma)$ is a subgroupoid, we have also

$$[C1Gd 2'] \qquad h \circ h_1 \circ h^{-1} \circ h_1^{-1} = \varepsilon d_0(h)$$

for $h, h_1 \in \text{Ker}(\sigma)$.

Example 3.2. Since every group is a groupoid with a unique object, every cat^{1} -group can be regarded as a cat^{1} -groupoid with a single object.

Example 3.3. Let (G, s, t) be a cat¹-group, X be a set and $\mathcal{G} = (X, X \times G \times X)$ be the trivial groupoid. Then $(\mathcal{G}, \sigma, \tau)$ is a cat¹-groupoid where $\sigma(x, g, y) = (x, s(g), y)$ and $\tau(x, g, y) = (x, t(g), y)$.

Proposition 3.4. Given any cat¹-groupoid $(\mathcal{G}, \sigma, \tau)$, we have

- (i) $\sigma(G) = \tau(G)$,
- (ii) σ and τ are identities on $\sigma(G)$ and $\tau(G)$,
- (iii) $\sigma^2 = \sigma$ and $\tau^2 = \tau$.

Definition 3.5. A morphism $f: (\mathcal{G}, \sigma, \tau) \to (\mathcal{G}', \sigma', \tau')$ of cat¹-groupoids is a commutative diagram of groupoids

Therefore we construct the category CAT¹-GPD of cat¹-groupoids.

We recall the definition of crossed modules over groupoids as given in [9]. Let $\mathcal{G} = (X, G)$ and $\mathcal{H} = (X, H)$ be groupoids over the same object set X such that \mathcal{H} is totally disconnected. A crossed module $K = (\mathcal{H}, \mathcal{G}, \partial)$ over groupoids consists of a morphism $\partial \colon \mathcal{H} \to \mathcal{G}$ of groupoids which is identity on objects together with a partial action $\bullet \colon G \times H \to H$ of groupoids satisfying

[CMG 1]
$$\partial(g \bullet h) = g \circ \partial(h) \circ g^{-1}$$
,
[CMG 2] $\partial(h) \bullet h_1 = h \circ h_1 \circ h^{-1}$, for $h, h_1 \in H(x)$ and $g \in G(x, y)$.

It is a fair remark that if $(\mathcal{H}, \mathcal{G}, \partial)$ is a crossed module over groupoids, then $\operatorname{Im}(\partial)$ is a normal subgroupoid and also $\operatorname{Ker}(\partial)$ lies in the center of G, where the center of G is a wide subgroupoid in which the morphisms are

$$\{g \in G \colon g \circ h = h \circ g, d_0(g) = d_1(g) = d_0(h) = d_1(h)\}.$$

Let $K = (\mathcal{H}, \mathcal{G}, \partial)$ and $K' = (\mathcal{H}', \mathcal{G}', \partial')$ be crossed modules over groupoids. A morphism $\lambda = (\lambda_2, \lambda_1, \lambda_0) \colon K \to K'$ is called a *morphism of crossed mod*ules over groupoids if $(\lambda_0, \lambda_1) \colon \mathcal{H} \to \mathcal{H}'$ and $(\lambda_0, \lambda_2) \colon \mathcal{G} \to \mathcal{G}'$ are morphisms of groupoids such that $\lambda_2 \partial = \partial' \lambda_1$ and $\lambda_1(g \bullet h) = \lambda_2(g) \bullet' \lambda_1(h)$. Hence the category of crossed modules over groupoids can be defined which we denoted by CMG.

Theorem 3.6. The category of cat^1 -groupoids is equivalent to the category of crossed modules over groupoids.

Proof. A functor $\psi \colon CMG \to CAT^{1}$ -GPD is an equivalence of categories. If $(\mathcal{A}, \mathcal{B}, \partial)$ is a crossed module over groupoids, then $\psi(\mathcal{A}, \mathcal{B}, \partial) = (\mathcal{G}, \sigma, \tau)$ is a cat¹-groupoid over the same object set where the set of morphisms of \mathcal{G} is defined by $B \ltimes A = \{(b, a) | b \in B, a \in A, d_1(b) = d_0(a) = d_1(a)\}, \sigma(b, a) = (b, \varepsilon d_0(a)) \text{ and } \tau(b, a) = (\partial(a) \circ b, \varepsilon d_0(a)).$ Here, if $x \xrightarrow{b} y$ and $y \xrightarrow{a} y$ are morphisms of B and A, respectively, then (b, a) is a morphism of \mathcal{G} as follows

$$x \xrightarrow{(b,a)} y$$
.

where the structure maps are defined by $d_0(b, a) = d_0(b), d_1(b, a) = d_1(a), \varepsilon(x) = (1_x, 1_x), \eta(b, a) = (b^{-1}, b^{-1} \bullet a^{-1})$ and the composition of morphisms is defined by

$$(b_1, a_1) \circ (b, a) = (b_1 \circ b, a_1 \circ (b_1 \bullet a))$$

when $y \xrightarrow{b_1} z \xrightarrow{a_1} z$.

Now we define a functor $\gamma: \operatorname{CAT}^{1}\operatorname{-}\operatorname{GPD} \to \operatorname{CMG}$ as a weak inverse of ψ . Given a cat¹-groupoid $(\mathcal{G}, \sigma, \tau)$, then $\gamma(\mathcal{G}, \sigma, \tau) = (\operatorname{Ker}(\sigma), \sigma(\mathcal{G}), \tau)$ is a crossed module over groupoids where an action of $\sigma(\mathcal{G})$ on $\operatorname{Ker}(\sigma)$ is defined by $g \bullet h = g \circ h \circ g^{-1}$, for all $g \in \sigma(G), h \in \operatorname{Ker}(\sigma)$.

[CMG 1] Since
$$g \in \sigma(G)$$
, by Proposition 3.4 we get $\tau(g) = g$ and so
 $\tau(g \bullet h) = \tau(g \circ h \circ g^{-1}) = \tau(g) \circ \tau(h) \circ \tau(g^{-1}) = g \circ \tau(h) \circ g^{-1}$
[CMG 2] $\tau(h) \bullet h_1 = \tau(h) \circ h_1 \circ \tau(h)^{-1} = \tau(h) \circ h_1 \circ \tau(h^{-1}) \circ h \circ h^{-1}$
Since $\tau(h^{-1}) \circ h \in \operatorname{Ker}(\tau)$ and $h_1 \in \operatorname{Ker}(\sigma)$, they commute, and so
 $\tau(h) \bullet h_1 = \tau(h) \circ \tau(h^{-1}) \circ h \circ h_1 \circ h^{-1} = h \circ h_1 \circ h^{-1}$.

A natural equivalence $S: 1_{CAT^1-GPD} \to \psi \gamma$ is defined via a mapping

$$S_{\mathcal{G}}(\mathcal{G}, \sigma, \tau) = ((X, \sigma(G) \ltimes \operatorname{Ker}(\sigma)), \sigma', \tau')$$

which is defined such that to be identity on objects and

$$S_{\mathcal{G}}(g) = (\sigma(g), g \circ \sigma(g^{-1}))$$

for $g \in G$ where $\sigma'(g,h) = (g, \varepsilon d_0(h)), \quad \tau'(g,h) = (\tau(h) \circ g, \varepsilon d_0(h)).$ We will verify that $S_{\mathcal{G}}$ preserves composition.

$$S_{\mathcal{G}}(g_1 \circ g) = (\sigma(g_1 \circ g), g_1 \circ g \circ \sigma(g_1 \circ g)^{-1}) = (\sigma(g_1) \circ \sigma(g), g_1 \circ g \circ \sigma(g^{-1}) \circ \sigma(g_1^{-1}))$$

$$S_{\mathcal{G}}(g_1) \circ S_{\mathcal{G}}(g) = \left(\sigma(g_1), g_1 \circ \sigma(g_1^{-1})\right) \circ \left(\sigma(g), g \circ \sigma(g^{-1})\right)$$
$$= \left(\sigma(g_1) \circ \sigma(g), g_1 \circ \sigma(g_1^{-1}) \circ (\sigma(g_1) \bullet (g \circ \sigma(g^{-1}))\right)$$
$$= \left(\sigma(g_1) \circ \sigma(g), g_1 \circ \sigma(g_1^{-1}) \circ \sigma(g_1) \circ g \circ \sigma(g^{-1}) \circ \sigma(g_1^{-1})\right)$$
$$= \left(\sigma(g_1) \circ \sigma(g), g_1 \circ g \circ \sigma(g^{-1}) \circ \sigma(g_1^{-1})\right)$$

Conversely, a natural equivalence $T: 1_{CMG} \to \gamma \psi$ is defined such that

$$T_{\mathcal{C}}(b) = (b, \varepsilon d_1(b)), \quad T_{\mathcal{C}}(a) = (\varepsilon d_1(a), a),$$

for $\mathcal{C} = (\mathcal{B}, \mathcal{A}, \partial)$. $T_{\mathcal{C}}$ preserves compositions as follows:

$$T_{\mathcal{C}}(b_1) \circ T_{\mathcal{C}}(b) = (b_1, 1_z) \circ (b, 1_y) = (b_1 \circ b, 1_z \circ (b_1 \bullet 1_y)) = (b_1 \circ b, 1_z \circ 1_z) = T_{\mathcal{C}}(b_1 \circ b)$$

for $x \xrightarrow{b} y \xrightarrow{b_1} z$ and
$$T_{\mathcal{C}}(a_1) \circ T_{\mathcal{C}}(a) = (1_x, a_1) \circ (1_x, a) = (1_x \circ 1_x, a_1 \circ (1_x \bullet a)) = (1_x, a_1 \circ a) = T_{\mathcal{C}}(a_1 \circ a)$$

for $x \xrightarrow{a} x \xrightarrow{a_1} x$.

As an application of this result, we compare normal objects of cat^1 -groupoids and of crossed modules over groupoids. First we recall the definitions of subcrossed modules and of normal crossed modules over groupoids from [24].

Definition 3.7. Let $\mathcal{A} = (X, A)$, $\mathcal{B} = (X, B)$ be groupoids, \mathcal{A} be totally disconnected and $(\mathcal{A}, \mathcal{B}, \partial)$ be a crossed module over groupoids. A crossed module $(\mathcal{M}, \mathcal{N}, \sigma)$ over groupoids is called a *subcrossed module* of $(\mathcal{A}, \mathcal{B}, \partial)$ if

[SCMG 1] $\mathcal{M} = (Y, M)$ is a subgroupoid of $\mathcal{A} = (X, A)$,

[SCMG 2] $\mathcal{N} = (Y, N)$ is a subgroupoid of $\mathcal{B} = (X, B)$,

[SCMG 3] σ is the restriction of ∂ to M,

[SCMG 4] the action of \mathcal{N} on \mathcal{M} is the restriction of the action of \mathcal{B} on \mathcal{A} .

If X = Y then $(\mathcal{M}, \mathcal{N}, \sigma)$ is called a wide subcrossed module of $(\mathcal{A}, \mathcal{B}, \partial)$.

Definition 3.8. A normal subcrossed module over groupoids is a subcrossed module $(\mathcal{M}, \mathcal{N}, \sigma)$ of $(\mathcal{A}, \mathcal{B}, \partial)$ which satisfies

[NCMG 1] \mathcal{N} is normal subgroupoid of \mathcal{B} ,

[NCMG 2] $b \bullet m \in M(y)$, for all $b \in B(x, y), m \in M(x)$,

[NCMG 3] $(n \bullet a) \circ a^{-1} \in M(x)$, for all $n \in N(x), a \in A(x)$.

From [NCMG2] we have that $\partial(a) \bullet m = a \circ m \circ a^{-1} \in M$ and so \mathcal{M} is normal subgroupoid of \mathcal{A} .

Now we introduce the notions of subcat¹-groupoids and normal cat¹-groupoids.

Definition 3.9. A subcat¹-groupoid $(\mathcal{G}', \sigma', \tau')$ of a cat¹-groupoid $(\mathcal{G}, \sigma, \tau)$ is a subgroupoid $\mathcal{G}' = (X', G')$ of $\mathcal{G} = (X, G)$ such that σ', τ' are restriction of σ, τ to \mathcal{G}' , respectively. We say \mathcal{G}' is wide if X' = X. If \mathcal{G}' is normal subgroupoid of \mathcal{G} , then $(\mathcal{G}', \sigma', \tau')$ is called normal subcat¹-groupoid of $(\mathcal{G}, \sigma, \tau)$.

According the proof of the Theorem 3.6, we give following results.

Proposition 3.10. Let $(\mathcal{M}, \mathcal{N}, \sigma)$ be a normal subcrossed module of $(\mathcal{A}, \mathcal{B}, \partial)$ over the same object set X. Then the cat¹-groupoid corresponding to $(\mathcal{M}, \mathcal{N}, \sigma)$ is a normal subcat¹-groupoid of the one corresponding to $(\mathcal{A}, \mathcal{B}, \partial)$.

Proof. We only need to show that the groupoid $(X, N \ltimes M)$ is a normal subgroupoid of $(X, B \ltimes A)$. For $b \in B(x, y)$, $a \in A(y)$, $(n_x, m_x) \in (N \ltimes M)(x) = N(x) \ltimes M(x)$,

$$(b,a) \circ (n_x, m_x) \circ (b,a)^{-1} = (b \circ n_x, a \circ (b \bullet m_x)) \circ (b^{-1}, b^{-1} \bullet a^{-1}) = (b \circ n_x \circ b^{-1}, a \circ (b \bullet m_x) \circ ((b \circ n_x) \bullet (b^{-1} \bullet a^{-1}))) = (b \circ n_x \circ b^{-1}, a \circ (b \bullet m_x) \circ ((b \circ n_x \circ b^{-1}) \bullet a^{-1}))$$

Let $b \bullet m_x = m_y$ and $b \circ n_x \circ b^{-1} = n_y$. Then, from [NCMG1] $n_y \in N(y)$, from [NCMG2] $m_y \in M(y)$ and from [NCMG3] $(n_y \bullet a^{-1}) \circ a = m'_y \in M(y)$. Now we have

$$(b,a) \circ (n_x, m_x) \circ (b,a)^{-1} = \left(n_y, a \circ m_y \circ (n_y \bullet a^{-1}) \circ a \circ a^{-1} \right) \\ = \left(n_y, a \circ m_y \circ m'_y \circ a^{-1} \right) \in (N \ltimes M)(y).$$

Proposition 3.11. Let $(\mathcal{G}', \sigma', \tau')$ be a normal subcat¹-groupoid of $(\mathcal{G}, \sigma, \tau)$. Then the crossed module corresponding to \mathcal{G}' is a normal subcrossed module of the one corresponding to \mathcal{G} . *Proof.* [NCMG 1] Clearly $\sigma(\mathcal{G}')$ is a normal subgroupoid of $\sigma(\mathcal{G})$.

[NCMG 2] Let $g \in G(x, y), g' \in G'(x)$. Then $g \bullet g' = g \circ g' \circ g^{-1} \in G'(y)$.

[NCMG 3] Let $g' \in \sigma(G')(x)$ and $g \in G(x)$. Then $(g' \bullet g) \circ g^{-1} = g' \circ g \circ g'^{-1} \circ g^{-1}$.

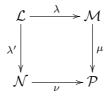
Since $\sigma(\mathcal{G}')$ is a normal subgroupoid of $\sigma(\mathcal{G})$, then $g \circ g'^{-1} \circ g^{-1} \in G'(x)$. Since $g' \in G'(x)$, it implies that $(g' \bullet g) \circ g^{-1} \in G'(x)$.

Corollary 3.12. Let $(\mathcal{G}, \sigma, \tau)$ be a cat¹-groupoid and $(\mathcal{A}, \mathcal{B}, \partial)$ be the crossed module over groupoids corresponding to \mathcal{G} . Then the category NC1GD/ $(\mathcal{G}, \sigma, \tau)$ of normal subcat¹- groupoids of $(\mathcal{G}, \sigma, \tau)$ is equivalent to the category NCMG/ $(\mathcal{A}, \mathcal{B}, \partial)$ of normal subcrossed modules of $(\mathcal{A}, \mathcal{B}, \partial)$.

4 Crossed squares over groupoids and cat²-groupoids

In this section first we give the definition of crossed squares over groupoids as the groupoid case of crossed squares over groups. Then we define cat^2 -groupoids and prove that the category of cat^2 -groupoids is equivalent to the category of crossed squares over groupoids.

Definition 4.1. Let $\mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{P}$ be groupoids over the same object set X and let $\mathcal{L}, \mathcal{M}, \mathcal{N}$ be totally disconnected groupoids. A *crossed square* of groupoids is a commutative diagram



together with groupoid morphisms $\lambda, \lambda', \mu, \nu$ which are identities on objects and actions of \mathcal{P} on $\mathcal{L}, \mathcal{M}, \mathcal{N}$, (and therefore actions of \mathcal{M} on \mathcal{L} and \mathcal{N} via μ and of \mathcal{N} on \mathcal{L} and \mathcal{M} via ν) and a functor $h: \mathcal{M} \times \mathcal{N} \to \mathcal{L}$ which is identity on X and satisfies the following conditions

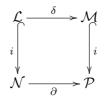
[CSG 1] λ , λ' preserves the actions of P and $(\mathcal{M}, \mathcal{P}, \mu)$, $(\mathcal{N}, \mathcal{P}, \nu)$ and $(\mathcal{L}, \mathcal{P}, \kappa)$ are crossed modules over groupoids where $\kappa = \mu \lambda = \nu \lambda'$,

$$\begin{split} & [\text{CSG 2}] \ \lambda h(m,n) = m \circ (n \bullet m^{-1}), \ \lambda' h(m,n) = (m \bullet n) \circ n^{-1}, \\ & [\text{CSG 3}] \ h(\lambda(l),n) = l \circ (n \bullet l^{-1}), \ h(m,\lambda'(l)) = (m \bullet l) \circ l^{-1}, \\ & [\text{CSG 4}] \ h(m \circ m',n) = (m \bullet h(m',n)) \circ h(m,n), \\ & h(m,n \circ n') = h(m,n) \circ (n \bullet h(m,n')), \\ & [\text{CSG 5}] \ h(p \bullet m,p \bullet n) = p \bullet h(m,n), \end{split}$$

for all $l \in L$, $m, m' \in M$, $n, n' \in N$ and $p \in P$, whenever all compositions and actions are defined.

Using the definition of normal and wide subcrossed module over groupoids as defined in [20] and [24], we give following example.

Example 4.2. Let $(\mathcal{N}, \mathcal{P}, \partial)$ be a crossed module over groupoids and $(\mathcal{L}, \mathcal{M}, \delta)$ be a normal and wide subcrossed module of $(\mathcal{N}, \mathcal{P}, \partial)$ such that \mathcal{M} is totally disconnected. Then the diagram

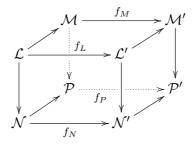


forms a crossed square of groupoids where the action of \mathcal{P} on \mathcal{L} is induced action from the action of \mathcal{P} on \mathcal{N} and the action of \mathcal{P} on \mathcal{M} is conjugation. Here the morphism h is defined on morphisms by

$$h(m,n) = (m \bullet n) \circ n^{-1}$$

for all $m \in M$ and $n \in N$.

Definition 4.3. A morphism $f = (f_L, f_M, f_N, f_P) \colon (\mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{P}) \to (\mathcal{L}', \mathcal{M}', \mathcal{N}', \mathcal{P}')$ of crossed squares over groupoids consists of morphisms $f_L \colon \mathcal{L} \to \mathcal{L}', f_M \colon \mathcal{M} \to \mathcal{M}', f_N \colon \mathcal{N} \to \mathcal{N}', f_P \colon \mathcal{P} \to \mathcal{P}'$ morphisms of groupoids which are identities on objects and compatible with the actions and the functors h and h'.



Then we construct the category CSG of crossed squares over groupoids.

Definition 4.4. Let $\mathcal{G} = (X, G)$ be a groupoid, $\sigma_i, \tau_i \colon \mathcal{G} \to \mathcal{G}$ be functors which are identities on objects. A *cat²-groupoid* $(\mathcal{G}, \sigma_i, \tau_i)$ is a groupoid satisfying

- [C2Gd 1] $\sigma_i \tau_i = \tau_i, \ \tau_i \sigma_i = \sigma_i,$
- [C2Gd 2] $\sigma_i \sigma_j = \sigma_j \sigma_i, \ \tau_i \tau_j = \tau_j \tau_i, \ \sigma_i \tau_j = \tau_j \sigma_i,$
- [C2Gd 3] $h_i \circ k_i \circ h_i^{-1} \circ k_i^{-1} = \varepsilon d_0(h_i)$, for all $h_i \in \operatorname{Ker}(\sigma_i), k_i \in \operatorname{Ker}(\tau_i)$ $i, j \in \{1, 2\}$ and $i \neq j$ where $d_0(h_i) = d_0(k_i)$.

Example 4.5. Let (G, s_1, t_1, s_2, t_2) be a cat²-group and X be a set. Using the trivial groupoid $\mathcal{G} = (X, X \times G \times X)$ we get a cat²-groupoid $(\mathcal{G}, \sigma_i, \tau_i)$ where $\sigma_i(x, g, y) = (x, s_i(g), y)$ and $\tau_i(x, g, y) = (x, t_i(g), y)$, for $i \in \{1, 2\}$.

Proposition 4.6. Given any cat²-groupoid $(G, \sigma_1, \tau_1, \sigma_2, \tau_2)$, we have

(i) $\sigma_i(G) = \tau_i(G)$, (ii) σ_i and τ_i are identities on $\sigma_i(G)$ and $\tau_i(G)$, (iii) $\sigma_i^2 = \sigma_i$ and $\tau_i^2 = \tau_i$, for $i \in \{1, 2\}$.

Definition 4.7. A morphism $f: (G, \sigma_1, \tau_1, \sigma_2, \tau_2) \to (G', \sigma'_1, t'_1, \sigma'_2, t'_2)$ of cat²-groupoids is a morphism of groupoids such that $\sigma'_i f = f \sigma_i$ and $\tau'_i f = f \tau_i$, for $i \in \{1, 2\}$.

$$\begin{array}{c} \mathcal{G} \xrightarrow{\sigma_i} \mathcal{G} \\ f \downarrow & & \\ \mathcal{G}' \xrightarrow{\sigma_i'} \mathcal{G}' \\ \hline \tau_i' \mathcal{G}' \end{array}$$

Then we have the category CAT^2 -GPD of cat^2 -groupoids.

Theorem 4.8. The category of cat^2 -groupoids is equivalent to the category of crossed squares over groupoids.

Proof. A functor $\psi \colon CSG \to CAT^2$ -GPD can be defined by

$$\psi(\mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{P}) = (\mathcal{G}, \sigma_1, \tau_1, \sigma_2, \tau_2)$$

to construct a cat²-groupoid from a crossed square $(\mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{P})$ of groupoids. First, here are semi-direct products $P \ltimes M$ and $N \ltimes L$ and then an action of $P \ltimes M$ on $N \ltimes L$ is defined by

$$(p,m) \bullet (n,l) = (p \bullet n, (m \bullet (p \bullet l)) \circ h(m, p \bullet n))$$

where

$$x \xrightarrow{n}_{l} x \xrightarrow{p} y \xrightarrow{m} y$$

Hence the set of objects of \mathcal{G} is the same set of objects of $\mathcal{L}, \mathcal{M}, \mathcal{N}$ and \mathcal{P} and the set of morphisms of \mathcal{G} is $(P \ltimes M) \ltimes (N \ltimes L)$. If

$$x \xrightarrow{p} y \xrightarrow{m} y \xrightarrow{n} y \xrightarrow{n} y,$$

then (p, m, n, l) is a morphism of \mathcal{G} from x to y where the structure maps are defined by

$$\sigma_1(p, m, n, l) = (p, m, 1_y, 1_y),$$

$$\sigma_2(p, m, n, l) = (p, 1_y, n, 1_y),$$

$$\tau_1(p, m, n, l) = (\nu(n) \circ p, \lambda(l) \circ (\nu(n) \bullet m), 1_y, 1_y),$$

$$\tau_2(p, m, n, l) = (\mu(m) \circ p, 1_y, \lambda'(l) \circ n, 1_y).$$

Let $y \xrightarrow{p'} z \xrightarrow{m'} z \xrightarrow{n'} z$. Then composite of (p, m, n, l) and (p', m', n', l') is defined by

$$(p', m', n', l') \circ (p, m, n, l) = \left((p', m') \circ (p, m), (n', l') \circ ((p', m') \bullet (n, l)) \right)$$

Given a cat²-groupoid $(\mathcal{G}, \sigma_1, \tau_1, \sigma_2, \tau_2)$ we obtain a crossed square of groupoids via the functor $\gamma: \operatorname{CAT}^2$ -GPD $\to \operatorname{CSG}, \ \gamma(\mathcal{G}) = (\mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{P})$ as a

weak inverse for ψ where the sets of morphisms $L = \operatorname{Ker}(\sigma_1) \cap \operatorname{Ker}(\sigma_2)$, $M = \sigma_1(G) \cap \operatorname{Ker}(\sigma_2)$, $N = \operatorname{Ker}(\sigma_1) \cap \sigma_2(G)$, $P = \sigma_1(G) \cap \sigma_2(G)$ and restrictions $\lambda = \tau_1|_{\mathcal{L}}, \quad \lambda' = \tau_2|_{\mathcal{L}}, \quad \mu = \tau_2|_{\mathcal{M}} \text{ and } \nu = \tau_1|_{\mathcal{N}}.$ The functor $h: \mathcal{M} \times \mathcal{N} \to \mathcal{L}$ is defined by $h(m, n) = m \circ n \circ m^{-1} \circ n^{-1}$. Since $\tau_1 \tau_2 = \tau_2 \tau_1$, we have $\mu \lambda = \nu \lambda'$. The other axioms are easily satisfied where all the actions are defined by conjugation.

A natural equivalence $S: 1_{CAT^2-GPD} \to \psi \gamma$ is defined by a mapping

$$S_{\mathcal{G}}(\mathcal{G}, \sigma_1, \tau_1, \sigma_2, \tau_2) = \left(\mathcal{G}', \sigma_1', \tau_1', \sigma_2', \tau_2'\right)$$

which is defined to be identity on objects, on morphisms is given by

$$S_{\mathcal{G}}(g) = (\sigma_1 \sigma_2(g), \sigma_1(g) \circ \sigma_1 \sigma_2(g^{-1}), \sigma_2(g) \circ \sigma_1 \sigma_2(g^{-1}), g \circ \sigma_1(g^{-1}) \circ \sigma_1 \sigma_2(g) \circ \sigma_2(g^{-1}))$$

where

$$\begin{aligned} \sigma_1'(g_1, h_1, g_2, h_2) &= (g_1, h_1, \varepsilon d_0(g_2), \varepsilon d_0(h_2)), \\ \sigma_2'(g_1, h_1, g_2, h_2) &= (g_1, \varepsilon d_0(h_1), g_2, \varepsilon d_0(h_2)), \\ \tau_1'(g_1, h_1, g_2, h_2) &= (\tau_1(g_2) \circ g_1, \tau_1(h_2 \circ g_2) \circ h_1 \circ \tau_1(g_2^{-1}), \varepsilon d_0(g_2), \varepsilon d_0(h_2)), \\ \tau_2'(g_1, h_1, g_2, h_2) &= (\tau_2(h_1) \circ g_1, \varepsilon d_0(h_1), \tau_2(h_2) \circ g_2, \varepsilon d_0(h_2)). \end{aligned}$$

On the other hand, a natural equivalence $T\colon 1_{\rm CSG}\to\gamma\psi$ is defined such that

$$T_{\mathcal{K}}(p) = (p, \varepsilon d_1(p), \varepsilon d_1(p), \varepsilon d_1(p)),$$

$$T_{\mathcal{K}}(m) = (\varepsilon d_1(m), m, \varepsilon d_1(m), \varepsilon d_1(m)),$$

$$T_{\mathcal{K}}(n) = (\varepsilon d_1(n), \varepsilon d_1(n), n, \varepsilon d_1(n)),$$

$$T_{\mathcal{K}}(l) = (\varepsilon d_1(l), \varepsilon d_1(l), \varepsilon d_1(l), l)$$

for $\mathcal{K} = (\mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{P}).$

5 Conclusion

There is need to investigate existence of epimorphisms and central extensions in the category of cat^1 -groupoids. Using the results of the paper [24], it could be possible to develop qoutient notions of cat^1 -groupoids. As an application of the equivalence given in [5, Theorem 1], the notions in one of these categories were interpreted in the other such as actor [12], normality, quotients [22], covering [1] and action [21]. So it would be interesting to explore similar notions in the categories introduced in this paper.

Acknowledgement

We would like to thank the referee for useful remarks which helped us to improve the paper.

References

- Akız, H.F., Alemdar, N., Mucuk, O., Şahan, T., Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. J. 20(2) (2013), 223-238.
- [2] Ataseven, Ç., Relations among higher order crossed modules over groupoids, Konuralp J. Math. 4(1) (2016), 282-290.
- Baez, J.C. and Lauda, A.D., Higher dimensional algebra V: 2-groups, Theory Appl. Categ. 12(14) (2004), 423-491.
- [4] Brown, R., "Topology and Groupoids", BookSurge LLC, 2006.
- [5] Brown, R. and Spencer, C.B., G-groupoids, crossed modules and the fundamental groupoid of a topological group, Indag. Math. (N.S.) 79(4) (1976), 296-302.
- [6] Brown, R., Higgins, P.J., Sivera, R., "Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids", Eur. Math. Soc. Tracts in Math. 15, 2011.
- [7] Brown, R. and Higgins, P.J., Tensor products and homotopies for ω-groupoids and crossed complexes, J. Pure Appl. Algebra 47 (1987), 1-33.
- [8] Brown R. and Higgins P.J., Crossed complexes and non-abelian extensions, In: Category Theory. Lecture Notes in Math. 962, Springer, 1982.

- [9] Brown, R. and Icen, I., Homotopies and Automorphisms of Crossed Module Over Groupoids, Appl. Categ. Structures 11 (2003), 185-206.
- [10] Brown, R. and Loday, J.L., Van Kampen theorems for diagrams of spaces, J. Topol. 26(3) (1987), 311-335.
- [11] Ellis, G. and Steiner, R., Higher-dimensional crossed modules and the homotopy groups of (n+1)-ads, J. Pure Appl. Algebra 46 (1987), 117-136.
- [12] Gilbert, N.D., Derivations, automorphisms and crossed modules, Comm. Algebra 18(8) (1990), 2703-2734.
- [13] Guin-Walery, D. and Loday, J.-L., Obstruction à l'excision en K-théorie algébrique, In: Algebraic K-theory, Lecture Notes in Math. 854, Springer, 1981.
- [14] Huebschmann, J., Crossed n-fold extensions of groups and cohomology, Comment. Math. Helv. 55 (1980), 302-314.
- [15] Içen, I., The equivalence of 2-groupoids and crossed modules, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 49 (2000), 39-48.
- [16] Loday, J.-L., Cohomologie et groupe de Steinberg relatifs, J. Algebra 54 (1978), 178-202.
- [17] Loday, J.-L., Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra 24(2) (1982), 179-202.
- [18] Mackenzie, K., "Lie Groupoids and Lie Algebroids in Differential Geometry", Cambridge University Press, 1987.
- [19] Maclane, S., "Categories for the Working Mathematician", Springer, 1971.
- [20] Mucuk, O. and Demir, S., Normality and quotient in crossed modules over groupoids and double groupoids, Turkish J. Math. 42 (2018), 2336-2347.
- [21] Mucuk, O. and Şahan, T., Group-groupoid actions and liftings of crossed modules, Georgian Math. J. 26(3) (2019), 437-447.
- [22] Mucuk, O. and Şahan, T., Alemdar, N., Normality and quotients in crossed modules and group-groupoids, Appl. Categ. Structures 23(3) (2015), 415-428.
- [23] Norrie, K., Actions and automorphisms of crossed modules, Bull. Soc. Math. France 118 (1990), 129-146.
- [24] Temel, S., Normality and quotient in crossed modules over groupoids and 2groupoids, Korean J. Math. 27(1) (2019), 151-163.
- [25] Whitehead, J.H.C., Combinatorial homotopy II, Bull. Amer. Math. Soc. (N.S.) 55 (1949), 453-496.

[26] Whitehead, J.H.C., Note on a previous paper entitled "On adding relations to homotopy groups", Ann. of Math. (2) 47 (1946), 806-810.

Sedat Temel Sedat Temel, Department of Mathematics, Recep Tayyip Erdogan University, 53100, Rize, Turkey.

Email: sedat.temel@erdogan.edu.tr