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The non-abelian tensor product of normal
crossed submodules of groups

Ali Reza Salemkar∗ and Tahereh Fakhr Taha

Communicated by Themba Dube

Abstract. In this article, the notions of non-abelian tensor and exterior
products of two normal crossed submodules of a given crossed module of
groups are introduced and some of their basic properties are established. In
particular, we investigate some common properties between normal crossed
modules and their tensor products, and present some bounds on the nilpo-
tency class and solvability length of the tensor product, provided such infor-
mation is given at least on one of the normal crossed submodules.

1 Introduction

The notion of the non-abelian tensor product of groups was introduced by
Brown and Loday [5,6] following ideas of Miller [14], Dennis [8], and has
arisen from applications in homotopy theory of a generalized Van Kampen
theorem. Group theorical aspects of this concept have been studied ex-
tensively by several authors (see [2,3,4,9,16,17,22]). Especially, one of the
main themes of the group theoretical part of research on non-abelian ten-
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sor products has been to determine which group theoretical properties are
closed with respect to forming the tensor product. For instance, Ellis [10]
proved that the non-abelian tensor product of two finite groups is again a
finite group. Visscher [22] and Nakaoka [17] had investigated nilpotency and
solvability of the non-abelian tensor product. Donadze, et al. [9] showed
that the classes of the nilpotent-by-finite, solvable-by-finite, and supersolv-
able groups are each closed under the formation of the non-abelian tensor
product. These results are excellent tools for studying groups.

The algebraic study of the category of crossed modules was initiated by
Norrie [18] and has led to a substantial algebraic theory contained essentially
in the following papers: [1,7,11,12,13,15,20,21]. In particular, Pirashvili [19]
presented the concept of the tensor product of two abelian crossed modules
and investigated its relation to the low-dimensional homology of crossed
modules. He also generalized Whitehead’s universal quadratic functor of
abelian groups to abelian crossed modules.

In this article, we introduce the notions of non-abelian tensor and ex-
terior products of two normal crossed submodules of some crossed module,
which are a generalization of the work of Brown and Loday. We give some
of their important properties and study the connection of nilpotency and
solvability between the normal crossed modules and their tensor products.

2 Preliminaries on crossed modules

This section is devoted to recalling some basic definitions in the category
of crossed modules and giving some results related to non-abelian tensor
products of groups which will be needed in the sequel.

A crossed module (T,G, ∂) is a group homomorphism ∂ : T −→ G
together with an action of G on T , written gt for t ∈ T and g ∈ G, satisfying
∂(gt) = g∂tg−1 and ∂(t)t′ = tt′t−1, for all t, t′ ∈ T , g ∈ G. It is worth
noting that for any crossed module (T,G, ∂), Im∂ is a normal subgroup of
G and ker ∂ is a G-invariant subgroup in the centre of T . Evidently, for any
normal subgroup N of a group G, (N,G, i) is a crossed module, where i is
the inclusion and G acts on N by conjugation. In this way, every group G
can be seen as a crossed module in two obvious ways: (1, G, i) or (G,G, id).

A morphism of crossed modules (γ1, γ2) : (T,G, ∂) −→ (T ′, G′, ∂′) is
a pair of homomorphisms γ1 : T −→ T ′ and γ2 : G −→ G′ such that
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∂′γ1 = γ2∂ and γ1(gt) = γ2(g)γ1(t) for all g ∈ G, t ∈ T .

Taking objects and morphisms as defined above, we obtain the category
of crossed modules. In this category one can find the familiar notions of
injection, surjection, (normal) subobject, kernel, cokernel, exact sequence,
etc.; most of them can be found in detail in [11,18].

Let (T,G, ∂) be a crossed module with normal crossed submodules
(S,H, ∂) and (L,K, ∂). The following is a list of notations which will be
used:
• Z(T,G, ∂) = (TG, Z(G) ∩ stG(T ), ∂) is the center of (T,G, ∂), where
Z(G) is the centre of G, TG = {t ∈ T | gt = t for all g ∈ G}, and
stG(T ) = {g ∈ G| gt = t for all t ∈ T}.
• (T,G, ∂)′ = ([G,T ], G′, ∂) is the commutator crossed submodule of
(T,G, ∂), where G′ = [G,G] and [G,T ] = 〈 gtt−1 | t ∈ T, g ∈ G〉 is the
displacement subgroup of T relative to G.

• [(S,H, ∂), (L,K, ∂)] is the normal crossed submodule
([K,S][H,L], [H,K], ∂) of (T,G, ∂).
• γn(T,G, ∂) denotes the nth term of lower central series of (T,G, ∂) de-
fined inductively by

γ1(T,G, ∂) = (T,G, ∂) and γn+1(T,G, ∂) = [γn(T,G, ∂), (T,G, ∂)],

for n ≥ 1.
• (T,G, ∂)(n) denotes the nth term of derived series of (T,G, ∂) defined
inductively by (T,G, ∂)(0) = (T,G, ∂) and (T,G, ∂)(n+1) = ((T,G, ∂)(n))′,
for n ≥ 0.
• (T,G, ∂)ab = (T/[G,T ], Gab, ∂) denotes the abelianization of (T,G, ∂),
where Gab = G/G′ and ∂ is induced by ∂.
We say a crossed module (T,G, ∂) is finite if the groups T and G are
both finite. Also, the crossed module (T,G, ∂) is nilpotent (respectively,
solvable) when there is n ≥ 1 such that γn+1(T,G, ∂) = 1 (respectively,
(T,G, ∂)(n) = 1). The smallest n with this property is called the nilpotency
class (respectively, solvability length) of (T,G, ∂). Especially, the nilpotent
crossed module of class 1 is abelian and the solvable crossed module of length
2 is metabelian.

Let (S,G, ∂) and (L,G, σ) be two crossed modules. There are actions of
S on L and of L on S given by sl = ∂(s)l and ls = σ(l)s. We take S (and
L) to act on itself by conjugation. The non-abelian tensor product S ⊗ L
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is defined in [6] as the group generated by symbols s ⊗ l for s ∈ S, l ∈ L,
subject to the relations

ss′ ⊗ l = ( ss′ ⊗ sl)(s⊗ l), (2.1)

s⊗ ll′ = (s⊗ l)( ls⊗ ll′), (2.2)

for all s, s′ ∈ S and l, l′ ∈ L. Note that the identity homomorphism idG :
G −→ G is a crossed module with G acting on itself by conjugation, so we
can always form the tensor products S ⊗G, L⊗G and G⊗G.

Let S and L be as above, and let T be a group. A function φ : S×L −→
T is called a crossed pairing if φ(ss′, l) = φ( ss′, sl)φ(s, l) and φ(s, ll′) =
φ(s, l)φ( ls, ll′) for all s, s′ ∈ S, l, l′ ∈ L. It is apparent that the function
S×L −→ S⊗L, (s, l) 7−→ s⊗ l, is the universal crossed paring in the sense
that any crossed pairing φ : S×L −→ T determines a unique homomorphism
φ∗ : S ⊗ L −→ T such that φ∗(s⊗ l) = φ(s, l).

Let S�L denote the subgroup of S ⊗ L generated by the elements s⊗ l
with ∂(s) = σ(l). This is a normal subgroup of S⊗L and, following [6], the
non-abelian exterior product S∧L is defined to be the quotient S⊗L/S�L.

The following proposition summarizes the rather elementary properties
of the non-abelian tensor product, the proof of which is left to the reader
(see also [4,6]).

Proposition 2.1. With the above assumptions and notations, we have
(i) If sl = l, ls = s for all s ∈ S, l ∈ L, then S ⊗ L ∼= Sab ⊗ Lab, where

the right-hand side of the isomorphism denotes the usual tensor product of
abelian groups.

(ii) There is an isomorphism S ⊗ L ∼=−→ L⊗ S, s⊗ l 7−→ (l ⊗ s)−1.
(iii) There are group homomorphisms

λG : S ⊗ L −→ G, s⊗ l 7−→ [∂(s), σ(l)]

λS : S ⊗ L −→ S, s⊗ l 7−→ s( ls−1)

λL : S ⊗ L −→ L, s⊗ l 7−→ sll−1

(iv) These homomorphisms are crossed modules in which the action of
G on S ⊗L is given by g(s⊗ l) = gs⊗ gl, and S and L act on S ⊗L via ∂
and σ.

(v) λS(x) ⊗ l = x lx−1, s ⊗ λL(x) = sxx−1 for all x ∈ S ⊗ L, s ∈ S,
l ∈ L and thus the actions of S on kerλL, L on kerλS are trivial.
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(vi) S�L ⊆ kerλS ∩ kerλL, whence S�L ⊆ Z(S ⊗ L), and S, L act
trivially on S�L. In particular, for any s⊗ l ∈ S�L, s⊗ l = s−1 ⊗ l−1.

(vii) There is a natural exact sequence Γ(Sab)
ψ−→ S⊗S π� S∧S, where

ψ(γ(s̄)) = s⊗ s and π(s1 ⊗ s2) = (s1 ⊗ s2)S�S.

Here Γ(Sab) denotes J.H.C. Whitehead’s universal quadratic functor [23],
defined for each abelian group A = Sab as the abelian group generated by
symbols γ(a) for a ∈ A, subject to the relations

γ(a−1) = γ(a),

γ(abc)γ(a)γ(b)γ(c) = γ(ab)γ(ac)γ(bc),

for all a, b, c ∈ A. Note that the last condition yields that the map ∆γ :
A×A −→ Γ(A), (a, b) 7−→ γ(ab)γ(a)−1γ(b)−1, is bilinear. Therefore one has
a natural homomorphism ∆ : A⊗A −→ Γ(A) given by ∆(a⊗b) = ∆γ(a, b).

Lemma 2.2. With the above assumptions and notations, we have
(i) For all s, s′ ∈ S, l, l′ ∈ L, x, y ∈ S ⊗ L, the following identities hold

in S ⊗ L: s(s−1 ⊗ l) = (s⊗ l)−1 = l(s⊗ l−1), (2.3)

s′ ⊗ sll−1 = s′(s⊗ l)(s⊗ l)−1, (2.4)

s ls−1 ⊗ l′ = (s⊗ l) l′(s⊗ l)−1, (2.5)
s⊗l(s′ ⊗ l′) = (s ls−1 ⊗ s′ l′l′−1)(s′ ⊗ l′), (2.6)

λS(x)y = λL(x)y. (2.7)

(ii) For any s ⊗ l, s′ ⊗ l′ ∈ S�L, (s′ ⊗ l)(s ⊗ l′) ∈ S�L and ss′ ⊗ ll′ =
(s′ ⊗ l)(s⊗ l′)(s⊗ l)(s′ ⊗ l′).

(iii) In the group G⊗ S, ∂(y)⊗ y = 1 for all y ∈ [G,S].

Proof. Parts (i) and (ii) are found in [4; Proposition 3] and in the proof of
[6; Theorem 2.12], respectively.

(iii) Taking into account that any element of [G,S] is written as a finite
product of the elements of the form (gss−1)+1, where g ∈ G, s ∈ S, and using
Proposition 2.1(vi), we need only verify the result for the case y = gss−1.
Applying (2.4), we have

∂(y)⊗ y = ∂(gss−1)⊗ gss−1 = ∂(gss−1)(g ⊗ s)(g ⊗ s)−1

=
gss−1

(g ⊗ s)(g ⊗ s)−1 = g⊗s(g ⊗ s)(g ⊗ s)−1 = 1,

which gives the result.
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3 The tensor and exterior products of crossed submodules

Let (S,H, ∂) and (L,K, ∂) be two normal crossed submodules of a crossed
module (T,G, ∂). We can form the non-abelian tensor products S ⊗ K,
H ⊗ L, and H ⊗ K. By Proposition 2.1(iv), there are crossed modules
λH : H ⊗ L −→ H, λ′H : H ⊗K −→ H and λS : S ⊗K −→ S from which
we find the actions of H ⊗L on S⊗K, H ⊗K, of H ⊗K on S⊗K, H ⊗L,
and of S ⊗ K on H ⊗ L, H ⊗ K. We now form the semidirect product
(S ⊗K) o (H ⊗ L) and consider the maps

α : S ⊗ L −→ (S ⊗K) o (H ⊗ L) , β : (S ⊗K) o (H ⊗ L) −→ H ⊗K
x 7−→ (idS ⊗ ∂(x), (∂ ⊗ idL(x))−1) (y, z) 7−→ (∂ ⊗ idK(y))(idH ⊗ ∂(z))

in which idS ⊗ ∂ : S ⊗ L −→ S ⊗ K, ∂ ⊗ idL : S ⊗ L −→ H ⊗ L,
∂ ⊗ idK : S ⊗ K −→ H ⊗ K and idH ⊗ ∂ : H ⊗ L −→ H ⊗ K are the
functorial homomorphisms.

The following lemmas play a crucial role in our investigation.

Lemma 3.1. With the above assumptions and notations, we have
(i) for any x ∈ S⊗K, y ∈ H⊗L and z ∈ (S⊗K)∪(H⊗L), ∂⊗idK(x)z =

λS(x)z and idH⊗∂(y)z = λH(y)z.
(ii) For any x ∈ S ⊗ L and y ∈ S ⊗K, ∂⊗idL(x)y = idS⊗∂(x)y.
(iii) For any h ∈ H and x ∈ S ⊗ L, h(idS ⊗ ∂(x)) = idS ⊗ ∂( hx) and

h(∂ ⊗ idL(x)) = ∂ ⊗ idL(hx).
(iv) For any s ∈ S, l ∈ L and x ∈ S ⊗K, (∂(s)⊗l)−1

x = l⊗∂(s)x.
(v) For any l ∈ L, h ∈ H and x ∈ S∩L, (∂(x)⊗ hll−1)−1 = ∂( hll−1)⊗x

and (x⊗ ∂( hll−1))−1 = hll−1 ⊗ ∂(x).
(vi) There are actions of H ⊗ L and H ⊗ K on (S ⊗ K) o (H ⊗ L)

defined by x(y, z) = (λH(x)y, λH(x)z) and x′(y, z) = (λ
′
H(x′)y, λ

′
H(x′)z), for all

x ∈ H ⊗ L, x′ ∈ H ⊗K and (y, z) ∈ (S ⊗K) o (H ⊗ L).

Proof. Parts (i)-(iv) immediately follow from the definitions of the actions
and the properties of crossed module ∂.

(v) Applying the relations (2.4), (2.5) and using the action of T on G,
we have

(∂(x)⊗ hll−1)−1 = ( ∂(x)(h⊗ l)(h⊗ l)−1)−1 = (h⊗ l) x(h⊗ l)−1

= h lh−1 ⊗ x = h ∂(l)h−1 ⊗ x
= h∂(l)∂(l)−1 ⊗ x = ∂( hll−1)⊗ x.
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For the proof of the second formula, assuming l0 = hll−1 and using again
the relations (2.3)-(2.5) we see that

(l0 ⊗ ∂(x)) = ( l0(l−1
0 ⊗ ∂(x)))−1 = l0(l hl−1 ⊗ ∂(x))−1

= l0((l ⊗ h) ∂(x)(l ⊗ h)−1)−1 = l0( x(l ⊗ h)(l ⊗ h)−1)

= l0(x⊗ lhh−1) = l0(x⊗ ∂(l) h∂(l)−1)

= l0(x⊗ ∂(l−1
0 )) = ∂(l0)(x⊗ ∂(l−1

0 )),

and consequently (x⊗ ∂(l0))(l0 ⊗ ∂(x)) = 1.

(vi) We only verify the condition x((y1, z1)(y2, z2)) = x(y1, z1)x(y2, z2),
for all x ∈ H⊗L and (y1, z1), (y2, z2) ∈ (S⊗K)o (H⊗L); the rest is easily
shown.

x(y1, z1)x(y2, z2) = (λH(x)y1,
λH(x)z1)(λH(x)y2,

λH(x)z2)

= (λH(x)y1
λH (x)z1(λH(x)y2), λH(x)z1

λH(x)z2)

= (λH(x)y1
λ′H(λH (x)z1)(λH(x)y2), λH(x)z1

λH(x)z2)

= (λH(x)y1
λH(x)λ′H(z1)λ−1

H (x)(λH(x)y2), λH(x)z1
λH(x)z2)

= (λH(x)y1
λH(x)λ′H(z1)y2,

λH(x)z1
λH(x)z2)

= x(y1
z1y2, z1z2) = x((y1, z1)(y2, z2)).

The proof is complete.

Lemma 3.2. With the above assumptions and notations, we have

(i) β is a homomorphism.

(ii) Imα is a normal subgroup of (S ⊗K) o (H ⊗ L).

Proof. (i) Straightforward.

(ii) By virtue of Lemma 3.1(ii), for any x1, x2 ∈ S ⊗ L, we have

α(x1)α(x2) = (idS ⊗ ∂(x1)(∂⊗idL(x1))−1
(idS ⊗ ∂(x2)),

(∂ ⊗ idL(x1))−1(∂ ⊗ idL(x2))−1)

= (idS ⊗ ∂(x1)(idS⊗∂(x1))−1
(idS ⊗ ∂(x2)),

(∂ ⊗ idL(x2)∂ ⊗ idL(x1))−1)

= (idS ⊗ ∂(x2x1), (∂ ⊗ idL(x2x1))−1) ∈ Imα.
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In particular, α(x1)−1 = (idS ⊗ ∂(x−1
1 ), (∂ ⊗ idL(x−1

1 ))−1) ∈ Imα. We
now prove that for all elements x ∈ S ⊗ L and (y, z) ∈ (S ⊗K) o (H ⊗ L),
A := (y,z)(idS⊗∂(x), (∂⊗idL(x))−1) ∈ Imα. A simple computation indicates
that A = (y z(idS ⊗ ∂(x))

z(∂⊗idL(x))−1
y−1, z(∂ ⊗ idL(x))−1), from which we

infer from Lemma 3.1(ii),(vi) that

z−1
A = ( z

−1
y(idS ⊗ ∂(x))(∂⊗idL(x))−1

( z
−1
y−1), (∂ ⊗ idL(x))−1)

= ( z
−1
y(idS ⊗ ∂(x))(idS⊗∂(x))−1

( z
−1
y)−1, (∂ ⊗ idL(x))−1)

= (idS ⊗ ∂(x), (∂ ⊗ idL(x))−1) ∈ Imα.

Hence,

A = z(idS ⊗ ∂(x), (∂ ⊗ idL(x))−1)

= (idS ⊗ ∂(λH(z)x), (∂ ⊗ idL(λH(z)x))−1) ∈ Imα,

thanks to Lemma 3.1(iii).

In the above lemma, it is easy to see that Imα lies in the kernel of β. So,
if we denote by Cokerα the quotient group (S ⊗K) o (H ⊗ L)/Imα, then
β induces a homomorphism δ : Cokerα −→ H ⊗ K. On the other hand,
the parts (iii) and (vi) of Lemma 3.1 show that Imα is invariant under the
action of H ⊗K and so, we have an action of H ⊗K on Cokerα. We can
hence get the following

Proposition 3.3. (i) (Cokerα,H ⊗K, δ) is a crossed module.

(ii) If I is a subgroup of Cokerα generated by the elements (x⊗ y, (y ⊗
x)(∂(z) ⊗ z))Imα for all x, z ∈ S ∩ L, y ∈ H ∩ K, then (I,H�K, δ) is a
normal crossed submodule of (Cokerα,H ⊗K, δ).

Proof. (i) It is straightforward to check that δ(uv) = uδ(v) for all u ∈ H⊗K,
v ∈ Cokerα. We now establish that δ(v1)v = v1v for all v, v1 ∈ Cokerα.
Without loss of generality, we may assume that v = (s ⊗ k, h ⊗ l)Imα and
v1 = (s1 ⊗ k1, h1 ⊗ l1)Imα. We must prove that

((∂(s1)⊗k1)(h1⊗∂(l1))(s⊗ k) , (∂(s1)⊗k1)(h1⊗∂(l1))(h⊗ l))Imα =

((s1 ⊗ k1)h1⊗l1(s⊗ k)
(h1⊗l1)(h⊗l)(s1 ⊗ k1)−1 , h1⊗l1(h⊗ l))Imα,
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or equivalently, letting

x1 = (∂(s1)⊗k1)(h1⊗∂(l1))(s⊗ k) ,

x2 = (∂(s1)⊗k1)(h1⊗∂(l1))(h⊗ l) ,
y1 = (s1 ⊗ k1)h1⊗l1(s⊗ k)

(h1⊗l1)(h⊗l)(s1 ⊗ k1)−1 ,

y2 = h1⊗l1(h⊗ l),

we show that

(x1, x2)−1(y1, y2) = x−1
2 (x−1

1 y1, y2x
−1
2 ) ∈ Imα.

The simple calculations, together with the results of Lemmas 2.2(i) and
3.1(i), allow us to get

x1 =
s1⊗k1

(h1⊗l1(s⊗ k));

x2 =
s1⊗k1

(h1⊗l1(h⊗ l)) = s1⊗k1((h1
l1h−1

1 ⊗ hll−1)(h⊗ l))
=

s1k1k
−1
1 (h1

l1h−1
1 ⊗ hll−1)(s1k1k

−1
1 ⊗ hll−1)(h⊗ l);

y1 = x1(s1 ⊗ k1)y2(s1 ⊗ k1)−1;

y2 = (h1
l1h−1

1 ⊗ hll−1)(h⊗ l).

Now, assuming l2 = hll−1, l3 = h1 l1l
−1
1 and s2 = s1

k1s−1
1 , one easily sees

that l2, l3, s2 ∈ S ∩ L, ∂(l3) = h1
l1h−1

1 and ∂(s2) = s1k1k
−1
1 , implying that

x2 = ∂(s2)(∂(l3)⊗ l2)(∂(s2)⊗ l2)(h⊗ l) = (∂(s2l3)⊗ l2)(h⊗ l);
y2 = (∂(l3)⊗ l2)(h⊗ l).

Putting a = ∂(s2l3)⊗ l2 and b = ∂(l3)⊗ l2, we hence deduce that

x−1
2 (x−1

1 y1, y2x
−1
2 ) =

(h⊗l)−1

(a
−1

((s1 ⊗ k1) b(h⊗l)(s1 ⊗ k1)−1), a−1b)

=
(h⊗l)−1

(a
−1b(b

−1
(s1 ⊗ k1) h⊗l(s1 ⊗ k1)−1), a−1b).

Therefore, if we set c = b−1
(s1 ⊗ k1)h⊗l(s1 ⊗ k1)−1, it is enough to prove

that (a
−1bc, a−1b)−1 = (c−1, b−1a) ∈ Imα. But



32 A.R. Salemkar and T. Fakhr Taha

c−1 = h⊗l(s1 ⊗ k1)(∂(l2)⊗l3(s1 ⊗ k1))−1 (by Lemma 3.1(v))

=
hll−1

(s1 ⊗ k1)(
l2 l3l

−1
3 (s1 ⊗ k1))−1 (by Lemma 3.1(i))

= (l2 ⊗ ∂(s2))( l2 l3l
−1
3 ⊗ ∂(s2))−1 (by (2.4))

= (l2 ⊗ ∂(s2))(l2
∂(l3)l−1

2 ⊗ ∂(s2))−1 (by the properties of ∂)

= (l2 ⊗ ∂(s2)) ∂(s2)(l2 ⊗ ∂(l3))(l2 ⊗ ∂(l3))−1 (by (2.5))

= (l2 ⊗ ∂(s2l3))(l2 ⊗ ∂(l3))−1 (by (2.2))

= (l2 ⊗ ∂(l3))−1 l2⊗∂(l3)(l2 ⊗ ∂(s2l3))

= (l3 ⊗ ∂(l2)) (l3⊗∂(l2))−1
(l2 ⊗ ∂(s2l3)) (by Lemma 3.1(v))

= (l3 ⊗ ∂(l2)) (∂(l3)⊗l2)−1
(l2 ⊗ ∂(s2l3)) (by Lemma 3.1(ii)).

So, (c−1, b−1a) = (l3⊗∂(l2), (∂(l3)⊗l2)−1)(l2⊗∂(s2l3), (∂(l2)⊗s2l3)−1) ∈Imα.
(ii) Recall that H�K = 〈x ⊗ x | x ∈ H ∩ K〉. Taking into account

Lemma 2.2(ii), we have

δ((x⊗ y, (y ⊗ x)(∂(z)⊗ z))Imα) = (∂(x)⊗ y)(y ⊗ ∂(x))(∂(z)⊗ ∂(z))

= (y∂(x)⊗ y∂(x))(∂(x)⊗ ∂(x))−1(y ⊗ y)−1(∂(z)⊗ ∂(z))

∈ H�K

for all x, z ∈ S∩L, y ∈ H ∩K and then δ(I) ⊆ H�K. The other conditions
are easily verified.

Setting (S,H, ∂)�(L,K, ∂) = (I,H�K, δ), we are now ready to give the
following main definition.

Definition 3.4. The non-abelian tensor and exterior products of normal
crossed submodules (S,H, ∂) and (L,K, ∂) are defined, respectively, as

(S,H, ∂)⊗ (L,K, ∂) = (Cokerα,H ⊗K, δ),

(S,H, ∂) ∧ (L,K, ∂) =
(Cokerα,H ⊗K, δ)
(S,H, ∂)�(L,K, ∂)

= (
Cokerα

I
,H ∧K, δ̄).

Note that if [(S,H, ∂), (L,K, ∂)] = 1, then

(S,H, ∂)⊗ (L,K, ∂) ∼= (S,H, ∂)ab ⊗ (L,K, ∂)ab,

where the right-hand side of the isomorphism denotes the tensor product of
abelian crossed modules introduced in [19]. Also, one easily sees that the
tensor and exterior products are symmetric.
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Example 3.5. (i) If H and K are normal subgroups of a group G, then
(H,H, id)⊗ (K,K, id) ∼= (H ⊗K,H ⊗K, id). For, assume that (H,H, id)⊗
(K,K, id) = (Cokerα,H ⊗K, δ), where the homomorphism δ is defined by
δ((x, y)Imα) = xy. Then, it is an easy verification that δ is an isomorphism
and (δ, id) : (Cokerα,H ⊗K, δ) −→ (H ⊗K,H ⊗K, id) is a morphism of
crossed modules. Analogously, one can see that

(H,H, id) ∧ (K,K, id) ∼= (H ∧K,H ∧K, id),

(1, H, i)⊗ (1,K, i) ∼= (1, H ⊗K, i),
(1, H, i) ∧ (1,K, i) ∼= (1, H ∧K, i).

(ii) For any crossed module (T,G, ∂), (T,G, ∂)∧ (T,G, ∂) ∼= (G∧T,G∧
G, id ∧ ∂). Because, by the definition, we have (T,G, ∂) ∧ (T,G, ∂) =
(Cokerα/I,G∧G, δ̄), in which δ̄ is defined by δ̄((x, y)I) = ∂ ∧ idG(x)idG ∧
∂(y) for all (x, y) ∈ Cokerα. According to Proposition 2.1(ii), the map
θ : T ⊗G −→ G⊗ T , t⊗ g 7−→ (g ⊗ t)−1 is an isomorphism. So, we get the
epimorphism µ : (T ⊗ G) o (G ⊗ T ) −→ G ⊗ T given by µ(x, y) = θ(x)y.
Since, by Lemma 2.2(ii),

µ(t1 ⊗ ∂(t2), (∂(t1)⊗ t2)−1) = ((∂(t1)⊗ t2)(∂(t2)⊗ t1))−1 ∈ G�T,
for all t1, t2 ∈ T , µ induces an epimorphism µ̄ : Cokerα −→ G ∧ T . We
claim that ker µ̄ = I. Plainly, I ⊆ ker µ̄. So, suppose that µ̄((x, y)Imα) =
θ(x)yG�T = 1G∧T . Then y = θ(x)−1z for some z ∈ G�T , implying that
(x, y)Imα = (x, θ(x)−1z)Imα ∈ I. Thus, µ̄ gives rise to an isomorphism
µ̃ : Cokerα/I −→ G ∧ T . Now, an easy verification shows that the pair
(µ̃, idG∧G) is a crossed module morphism.

The following extends [6; Proposition 2.3] and is important in obtaining
the next results.

Proposition 3.6. (i) There is a morphism (τ1, τ2) : (S,H, ∂)⊗(L,K, ∂) −→
(T,G, ∂) defined by τ1((x, y)Imα) = λS(x)λL(y) and τ2(z) = λH(z), for all
x ∈ S ⊗K, y ∈ H ⊗ L and z ∈ H ⊗K.

(ii) ker(τ1, τ2) is an abelian crossed module.
(iii) If (L,K, ∂) is simply connected or H acts trivially on L, then

ker(τ1, τ2) ⊆ Z((S,H, ∂)⊗ (L,K, ∂)).

Proof. (i) The only non-trivial part is to verify that τ1 is a homomorphism.
But this follows from the following observations. (1) τ1 is well-defined,
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because it is induced by the homomorphism (S ⊗ K) o (H ⊗ L) −→ T ,
(x, y) 7−→ λS(x)λL(y). (2) For any x, x′ ∈ S ⊗K, y, y′ ∈ H ⊗ L,

λS(x yx′)λL(yy′) = λS(x λL(y)x′)λL(y)λL(y′)

= λS(x) λL(y)λS(x′)λL(y)λL(y′)

= λS(x)λL(y)λS(x′)λL(y′).

Note that the second equality follows from the first property of the crossed
module λS and the fact that λL(y) ∈ L ∩ S.

(ii) It is sufficient to note that ker τ2 = H�K is a central subgroup of
H ⊗K and acts trivially on Cokerα.

(iii) We first assume that (L,K, ∂) is simply connected. Owing to part
(ii), we only need to prove that ker τ1 is contained in CokerαH⊗K , or equiv-
alently, xy = y for all x ∈ H ⊗ K and y ∈ ker τ1. Let x = h′ ⊗ k′

and y = (s ⊗ k, h ⊗ l)Imα for h, h′ ∈ H, k, k′ ∈ K, s ∈ S, l ∈ L.
Then kss−1 = hll−1and also, k′ = ∂(l′) for some l′ ∈ L, forcing that
h′k′k′−1 = ∂( h

′
l′l′−1). Hence, we have

h′⊗k′(s⊗ k) =
h′k′k′−1

(s⊗ k)

= (s ks−1 ⊗ h′k′k′−1)−1(s⊗ k) (by (2.5))

= s ks−1
( hll−1 ⊗ h′k′k′−1)(s⊗ k) (by (2.3))

= s⊗k( hll−1 ⊗ h′k′k′−1)(s⊗ k)

= (s⊗ k)( hll−1 ⊗ h′k′k′−1)

= ( hll−1 ⊗ h′k′k′−1) ( hll−1⊗ h′k′k′−1)−1
(s⊗ k)

= ( hll−1 ⊗ h′k′k′−1) ( h
′
k′k′−1⊗ hll−1)(s⊗ k)

(by Lemma 3.1(i), (iv))

= ( hll−1 ⊗ ∂( h
′
l′l′−1)) (∂( h

′
l′l′−1)⊗ hll−1)(s⊗ k),

and using Lemma 3.1(i),

h′⊗k′(h⊗ l) = h′⊗∂(l′)(h⊗ l) = h′⊗l′(h⊗ l) =
h′ l′l′−1

(h⊗ l)

= ∂( h
′
l′l′−1)(h⊗ l) = (∂( h

′
l′l′−1)⊗ hll−1)(h⊗ l).

It therefore follows that
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xy = ( h
′⊗k′(s⊗ k), h

′⊗k′(h⊗ l))Imα
= ( hll−1 ⊗ ∂( h

′
l′l′−1), ∂( h

′
l′l′−1)⊗ hll−1)(s⊗ k, h⊗ l)Imα

= ( hll−1 ⊗ ∂( h
′
l′l′−1), (∂( hll−1)⊗ h′ l′l′−1)−1)(s⊗ k, h⊗ l)Imα

(by Lemma 3.1(v))

= (s⊗ k, h⊗ l)Imα = y.

The proof for the other case is analogous.

The following corollary is an immediate consequence of the above propo-
sition.

Corollary 3.7. Let (T,G, ∂) be a crossed module such that ∂ is onto or G
acts trivially on T . Then (T,G, ∂)�(T,G, ∂) is a central crossed submodule
of (T,G, ∂)⊗ (T,G, ∂).

In order to study the relation between the exterior product and tensor
product of crossed modules, under some conditions, we use a generalized
version of Whitehead’s universal quadratic functor, the generalization being
due to [19].

Definition 3.8. ([19]). Let (A,B, ∂) be an abelian crossed module, and
B⊗A be the quotient of B ⊗A by the subgroup generated by the elements
(∂(a1) ⊗ a2)(∂(a2) ⊗ a1)−1 with a1, a2 ∈ A. Then we define Γ(A,B, ∂) to
be the abelian crossed module (Γ̄(A,B, ∂),Γ(B), ∂Γ), in which Γ̄(A,B, ∂)
is the cokernel of the group homomorphism f : A ⊗ A −→ (B⊗A) × Γ(A)

given by f(a1 ⊗ a2) = (∂(a1)⊗ a2,∆(a1 ⊗ a2)−1), and ∂Γ(b⊗ a, γ(a1)) =
∆(b⊗ ∂(a))γ(∂(a1)).

Theorem 3.9. Let (T,G, ∂) be a crossed module such that ∂ is onto or G
acts trivially on T . Then there is a natural exact sequence

Γ((T,G, ∂)ab) (T,G, ∂)⊗ (T,G, ∂) (T,G, ∂) ∧ (T,G, ∂).

Proof. We only prove the result for the case of ∂ is onto. The proof for
the other case is identical. It is sufficient to define a surjective morphism
(η1, η2) : (Γ((T,G, ∂)ab),Γ(Gab), ∂Γ) −→ (I,G�G, δ). We take η2 to be
the epimorphism given in Proposition 2.1(vii). Putting T̄ = T/[G,T ] and
Ḡ = Gab, we construct η1 in the following three steps.
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Step 1. Here we show the existence of a homomorphism φ̃1 : Ḡ⊗T̄ −→ I.
Let φ1 : Ḡ× T̄ −→ I be defined by φ1(ḡ, t̄) = (t⊗ g, g⊗ t)Imα. We first

show that φ1 is well-defined. Suppose that g1 = g2x and t1 = t2y for some
x ∈ G′ and y ∈ [G,T ]. Then

φ1(ḡ1, t̄1) = (t2y ⊗ g2x, g2x⊗ t2y)Imα

= (t2(y ⊗ g2)(t2 ⊗ g2) g2t2(y ⊗ x) g2(t2 ⊗ x),
g2(x⊗ t2) g2t2(x⊗ y)(g2 ⊗ t2) t2(g2 ⊗ y))Imα

= (t2(y ⊗ g2)(t2 ⊗ g2) g2t2(y ⊗ x), 1) g2(t2 ⊗ x, x⊗ t2)

(1, g2t2(x⊗ y)(g2 ⊗ t2) t2(g2 ⊗ y))Imα.

The surjectivity of ∂ yields that ∂([G,T ]) = G′ and then there exists t′ ∈
[G,T ] such that ∂(t′) = x. Since, by Lemma 3.1(v),

g2(t2 ⊗ x, x⊗ t2) = g2(t2 ⊗ ∂(t′), ∂(t′)⊗ t2)

= g2(t2 ⊗ ∂(t′), (∂(t2)⊗ t′)−1) ∈ Imα,

it follows that

φ1(ḡ1, t̄1) = (t2(y ⊗ g2)(t2 ⊗ g2) g2t2(y ⊗ x), 1)

(1, g2t2(x⊗ y)(g2 ⊗ t2) t2(g2 ⊗ y))Imα

= (t2(y ⊗ g2)(t2 ⊗ g2), 1) g2t2(y ⊗ x, x⊗ y)

(1, (g2 ⊗ t2) t2(g2 ⊗ y))Imα.

Using the same arguments as above, one sees that g2t2(y⊗ x, x⊗ y) ∈ Imα,
whence

φ1(ḡ1, t̄1) = (t2(y ⊗ g2)(t2 ⊗ g2), 1)(1, (g2 ⊗ t2) t2(g2 ⊗ y))Imα

= t2(y ⊗ g2, 1)(t2 ⊗ g2, g2 ⊗ t2) t2(1, g2 ⊗ y)Imα

= (t2 ⊗ g2, g2 ⊗ t2) t2(y ⊗ g2, g2 ⊗ y)Imα,

since (t2⊗g2, g2⊗t2) ∈ I ⊆ Z(Cokerα), thanks to Corollary 3.6. Noting that
y ∈ [G,T ] and g2 = ∂(t3) for some t3 ∈ T , we can again conclude that t2(y⊗
g2, g2⊗y) ∈ Imα and therefore φ1(ḡ1, t̄1) = (t2⊗g2, g2⊗t2)Imα = φ1(ḡ2, t̄2).
It is easily verified that φ1 is a crossed paring, and the universal property
of the tensor product then implies the homomorphism φ̄1 : Ḡ ⊗ T̄ −→ I.
Now, we claim that φ̄1 annihilates the subgroup generated by the elements
(∂(t1)⊗ t̄2)(∂(t2)⊗ t̄1)−1, t1, t2 ∈ T ; because, we have



The non-abelian tensor product of normal crossed submodules ... 37

(t2 ⊗ ∂(t1), ∂(t1)⊗ t2)(t1 ⊗ ∂(t2), ∂(t2)⊗ t1)−1

= (t2 ⊗ ∂(t1), ∂(t1)⊗ t2)((∂(t2)⊗t1)−1
(t1 ⊗ ∂(t2))−1, (∂(t2)⊗ t1)−1)

= ((t2 ⊗ ∂(t1)) (∂(t1)⊗t2)(∂(t2)⊗t1)−1
(t1 ⊗ ∂(t2))−1, (∂(t1)⊗ t2)(∂(t2)⊗ t1)−1)

= ((t2 ⊗ ∂(t1))(t1 ⊗ ∂(t2))−1, (∂(t1)⊗ t2)(∂(t2)⊗ t1)−1)

= ((t1 ⊗ ∂(t2))−1 ∂(t1)⊗t2(t2 ⊗ ∂(t1)), (∂(t1)⊗ t2)(∂(t2)⊗ t1)−1)

= ((t1 ⊗ ∂(t2))−1, ∂(t1)⊗ t2)(t2 ⊗ ∂(t1), (∂(t2)⊗ t1)−1)

= (∂(t1)⊗t2(t1 ⊗ ∂(t2))−1, ∂(t1)⊗ t2)(t2 ⊗ ∂(t1), (∂(t2)⊗ t1)−1)

= (t1 ⊗ ∂(t2), (∂(t1)⊗ t2)−1)−1(t2 ⊗ ∂(t1), (∂(t2)⊗ t1)−1) ∈ Imα.

Note that the third and sixth equalities follow from the parts (ii) and (iv) of
Lemma 3.1. Consequently, φ̄1((∂(t1)⊗ t̄2)(∂(t2)⊗ t̄1)−1) = 1 and φ̄1 induces
a homomorphism φ̃1 : Ḡ⊗T̄ −→ I.

Step 2. Here we show the existence of a homomorphism φ̃2 : Γ(T̄ ) −→ I.

Let φ2 : T̄ −→ I be defined by φ2(t̄) = (1, ∂(t) ⊗ t)Imα. Then φ2 is
correctly defined; because if t1 = t2y for some y ∈ [G,T ], then

∂(t2y)⊗ t2y = (∂(y)⊗ t2)(∂(t2)⊗ y)(∂(t2)⊗ t2)(∂(y)⊗ y)

(by Lemma 2.2(ii))

= (∂(t2)⊗ y)−1(∂(t2)⊗ y)(∂(t2)⊗ t2)

(by Lemmas 2.2(iii), 3.1(v))

= ∂(t2)⊗ t2.

So, φ2 induces a map φ̃2 : Γ(T̄ ) −→ I. We prove that φ̃2 is a homomorphism
by showing that φ̃2 preserves the defining relations for Γ(−). This is deduced
for the first from Proposition 2.1(vi) and for the second from the following
equalities, which all follow from Proposition 2.1(vi) and Lemma 2.2(ii). For
any t1, t2, t3 ∈ T ,
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∂(t1t3)⊗ t1t3 = (∂(t3)⊗ t1)(∂(t1)⊗ t3)(∂(t1)⊗ t1)(∂(t3)⊗ t3),

∂(t2t3)⊗ t2t3 = (∂(t3)⊗ t2)(∂(t2)⊗ t3)(∂(t2)⊗ t2)(∂(t3)⊗ t3),

∂(t1t2t3)⊗ t1t2t3 = (∂(t3)⊗ t1t2)(∂(t1t2)⊗ t3)(∂(t1t2)⊗ t1t2)(∂(t3)⊗ t3)

= (∂(t1t2)⊗ t1t2)(∂(t3)⊗ t1) t1((∂(t3)⊗ t2)

(∂(t2)⊗ t3))(∂(t1)⊗ t3)(∂(t3)⊗ t3)

= (∂(t1t2)⊗ t1t2)(∂(t3)⊗ t1)(∂(t1)⊗ t3)

(∂(t3)⊗ t2)(∂(t2)⊗ t3)(∂(t3)⊗ t3).

Step 3. Here we define the homomorphism η1 : Γ((T,G, ∂)ab) −→ I.
Since the groups Ḡ⊗T̄ , Γ(T̄ ) and I are abelian, we get the induced

homomorphism φ̃ = 〈φ̃1, φ̃2〉 in the coproduct Ḡ⊗T̄ × Γ(T̄ ) −→ I, which is
clearly surjective. Using Proposition 2.1(vi) and Lemma 2.2(ii), it is readily
verified that φ̃(Imf) = 1, in which f is the homomorphism introduced in
the above definition. We thus obtain the epimorphism η1 induced by φ̃.

Finally, the pair (η1, η2) is a crossed module morphism; because, using
the definition of the homomorphism ∂Γ, Proposition 2.1(vi) and Lemma
2.2(ii), we have

η2∂Γ((ḡ ⊗ t̄,γ(t̄1))Imf) = η2(∆(ḡ ⊗ ∂̄(t̄))γ(∂̄(t̄1)))

= η2(γ(g∂(t))γ(ḡ)−1γ(∂(t))−1γ(∂(t1)))

= (g∂(t)⊗ g∂(t))(g ⊗ g)−1(∂(t)⊗ ∂(t))−1(∂(t1)⊗ ∂(t1))

= (∂(t)⊗ g)(g ⊗ ∂(t))(∂(t1)⊗ ∂(t1))

= δη1((ḡ ⊗ t̄, γ(t̄1))Imf),

for all t̄, t̄1 ∈ T̄ , ḡ ∈ Ḡ (note that ∂̄ : T̄ −→ Ḡ is the crossed module induced
by ∂). The proof of theorem is complete.

Combining the above theorem with Proposition 3.6 and [18; Theorem
2.68], we immediately deduce that if (T,G, ∂) is a simply connected per-
fect crossed module, then the central extension ker(τ1, τ2) � (T,G, ∂) ⊗
(T,G, ∂) � (T,G, ∂) is universal.

4 On nilpotency and solvability of tensor products

Throughout, we assume that (S,H, ∂), (L,K, ∂) are normal crossed submod-
ules of a given crossed module (T,G, ∂). The goal of this section is to give
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bounds on the nilpotency class and solvability length of (S,H, ∂)⊗(L,K, ∂),
provided such information is given in context with (S,H, ∂) and (L,K, ∂).
The following lemma shortens the proof of our main result.

Lemma 4.1. For any n ≥ 0, we have

(i) γn+1( (T,G,∂)
(S,H,∂)) = γn+1(T,G,∂)(S,H,∂)

(S,H,∂) and ( (T,G,∂)
(S,H,∂))(n) = (T,G,∂)(n)(S,H,∂)

(S,H,∂) .

(ii) γn+1(T,G, ∂) = ([nG,T ], γn+1(G), ∂), in which [0G,T ] = T and
inductively [nG,T ] = [G, [n−1G,T ]].

Proof. (i) Follows by induction on n.

(ii) By virtue of [20; Lemma 2.1],

γn+1(T,G, ∂) = ([nG,T ]
n∏

i=2

[n−iG, [γi(G), T ]], γn+1(G), ∂).

So, it is enough to prove that for any i ≥ 1, [γi(G), T ] ⊆ [iG,T ]. But this
follows by induction on i, and using the fact that

[γi+1(G), T ] ⊆ [γi(G), [G,T ]][G, [γi(G), T ]].

Theorem 4.2. (i) If the commutator submodule [(S,H, ∂), (L,K, ∂)] is solv-
able of length m, then (S,H, ∂)⊗ (L,K, ∂) is solvable of length m or m+ 1.

(ii) If the commutator submodule [(S,H, ∂), (L,K, ∂)] is nilpotent of class
c, then (S,H, ∂)⊗ (L,K, ∂) is nilpotent of class c or c+ 1.

(iii) If the commutator submodule [(S,H, ∂), (L,K, ∂)] is abelian, then
(S,H, ∂)⊗ (L,K, ∂) is metabelian.

Proof. Proposition 3.6 yields the following abelian extension

ker(τ1, τ2) (S,H, ∂)⊗ (L,K, ∂) [(S,H, ∂), (L,K, ∂)]. (8)
(τ1, τ2)

Now, the parts (i) and (iii) are directly obtained from this extension.

To prove (ii), it suffices to indicate that γc+2((S,H, ∂) ⊗ (L,K, ∂)) =
1, or equivalently, by Lemma 4.1(ii), that ([c+1H ⊗ K,Cokerα], γc+2(H ⊗
K), δ) = 1. It follows from the assumption and the above extension that
γc+1(H ⊗ K) ⊆ ker τ2 and then γc+2(H ⊗ K) = 1. We now prove that
[c+1H ⊗K,Cokerα] = 1. To do this, we will first show by induction that
for any n ≥ 1, every generator of [nH ⊗ K,Cokerα] can be expressed as
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(

m1∏

i=1

(xi ⊗ yi),
m2∏

j=1

(y′j ⊗ x′j))Imα, where xi, x
′
j ∈ [n−1[H,K], [K,S][H,L]] and

yi, y
′
j ∈ [H,K]. For n = 1, let x = c(a, b)(a, b)−1Imα be an arbitrary

generator of [H ⊗K,Cokerα], where a ∈ S⊗K, b ∈ H ⊗L and c ∈ H ⊗K.
Considering the homomorphisms λS : S ⊗ K −→ S, λH : H ⊗ K −→ H,
λK : H ⊗K −→ K, λL : H ⊗ L −→ L and using the relations (2.4), (2.5),
we have

x = (λK(c)a, λH(c)b)(b
−1
a−1, b−1)Imα

= ((λS(a)⊗ λK(c))−1a, (λH(c)⊗ λL(b))b)(b
−1
a−1, b−1)Imα

= ((λS(a)⊗ λK(c))−1a(λH(c)⊗λL(b))a−1, λH(c)⊗ λL(b))Imα.

On the other hand, by the relation (2.5),

(λH(c)⊗λL(b))a−1 = (λH (c)λL(b)λL(b)−1)a−1 = (λH (c)∂(λL(b))∂(λL(b))−1)a−1

= [λH(c),∂(λL(b))]a−1 = a−1(λS(a)⊗ [λH(c), ∂(λL(b))]).

It thus follows that

x = ((λS(a)⊗ λK(c))−1(λS(a)⊗ [λH(c), ∂(λL(b))]), λH(c)⊗ λL(b))Imα,

where

λS(a), λL(b) ∈ [K,S][H,L],

λH(c), λK(c), [λH(c), ∂(λL(b))] ∈ [H,K].

Now, assume that the result holds for n ≥ 1. Then any generator of [n+1H⊗
K,Cokerα] can be written as

x = c(

m1∏

i=1

(xi ⊗ yi),
m2∏

j=1

(y′j ⊗ x′j))(
m1∏

i=1

(xi ⊗ yi),
m2∏

j=1

(y′j ⊗ x′j))−1Imα,

where xi, x
′
j ∈ [n−1[H,K], [K,S][H,L]], yi, y

′
j ∈ [H,K]and c ∈ H ⊗ K.

Setting a =

m1∏

i=1

(xi ⊗ yi), b =

m2∏

j=1

(y′j ⊗ x′j) and applying arguments similar

to the above, one can easily see that

x = ((λS(a)⊗ λK(c))−1(λS(a)⊗ [λH(c), ∂(λL(b))]), λH(c)⊗ λL(b))Imα,

where
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λS(a), λL(b) ∈ [n[H,K], [K,S][H,L]],

λH(c), λK(c), [λH(c), ∂(λL(b))] ∈ [H,K].

This completes the induction. Since, by hypothesis, [c[H,K], [K,S][H,L]] =
1, we therefore infer that [c+1H ⊗K,Cokerα] = 1, as desired.

As an immediate consequence of the above theorem, we have

Corollary 4.3. (i) If the crossed module (T,G, ∂) is solvable of length m,
then (T,G, ∂)⊗ (T,G, ∂) is solvable of length m− 1 or m.

(ii) If the commutator crossed submodule (T,G, ∂)′ is nilpotent of class
c, then (T,G, ∂)⊗ (T,G, ∂) is nilpotent of class c or c+ 1.

(iii) If the crossed module (T,G, ∂) is metabelian, then so is (T,G, ∂)⊗
(T,G, ∂).

In the following, we indicate a result similar to part (i) of the above
corollary for nilpotent crossed modules.

Theorem 4.4. (i) If the crossed module (T,G, ∂) is nilpotent of class c,
then (T,G, ∂)⊗ (T,G, ∂) is nilpotent of class at most c.

(ii) If the crossed module (T,G, ∂) is nilpotent of class 2, then (T,G, ∂)⊗
(T,G, ∂) is abelian.

Proof. (i) By the assumption and Lemma 4.1(ii), [cG,T ] = 1T and γc+1(G) =
1G. Hence, G⊗G is a nilpotent group of class to be c or c+1, thanks to [22;
Proposition 3.2]. By an argument analogous to that used in the proof of The-
orem 4.2, one observes that any generator of the group [cG⊗G,Cokerα] may

be exhibited as (

m1∏

i=1

(xi⊗ yi),
m2∏

j=1

(y′j ⊗x′j))Imα, where xi, x
′
j ∈ [c−1G

′, [G,T ]]

and yi, y
′
j ∈ G′. Inasmuch as [c−1G

′, [G,T ]] ⊆ [cG,T ] = 1T , we must there-
fore have [cG ⊗ G,Cokerα] = 1 and then (T,G, ∂) ⊗ (T,G, ∂) is nilpotent
of class at most c.

(ii) It follows from hypothesis that ([G,T ], G′, ∂) lies in (TG, Z(G) ∩
stG(T ), ∂). So, the group G⊗G is abelian, due to [2; Proposition 3.1], and
acts trivially on Cokerα.

Theorem 4.2(iii), Theorem 4.4(ii), and the following example show that
both outcomes obtained in the above for the nilpotency class and the solv-
ability length of tensor products occur.
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Example 4.5. Let G = 〈a, b, c〉 be the free two-Engel group of rank three.
Let H and K be the smallest normal subgroups of G containing the sets
{a, b} and {c}, respectively. Then it is shown in [22; Example 4.5] that
[H,K] is an abelian subgroup of G and H ⊗K is nilpotent of class 2. So,
considering the normal crossed submodules (H,H, id) and (K,K, id) of the
crossed module (G,G, id), the commutator submodule

[(H,H, id), (K,K, id)] = ([H,K], [H,K], id)

is abelian and the tensor product (H,H, id)⊗(K,K, id) = (H⊗K,H⊗K, id)
is nilpotent of class 2.

A crossed module (T,G, ∂) is called nilpotent-by-finite (respectively,
solvable-by-finite) if it has a nilpotent (respectively, solvable) normal crossed
submodule (S,H, ∂) such that (T/S,G/H, ∂̄) is finite.

In [9], it was established that if H and K are groups acting on each other
compatibly, then H⊗K is nilpotent-by-finite or solvable-by-finite whenever
H or K satisfy such information. In the final result of this section, we
extend this result by showing the following

Theorem 4.6. With the assumptions of Proposition 3.6(iii), we have

(i) if (S,H, ∂) or (L,K, ∂) is nilpotent-by-finite, then so is (S,H, ∂) ⊗
(L,K, ∂).

(ii) if (S,H, ∂) or (L,K, ∂) is solvable-by-finite, then so is (S,H, ∂) ⊗
(L,K, ∂).

Proof. It is a routine exercise to check that the properties of nilpotent-by-
finite and solvable-by-finite are closed under taking normal crossed submod-
ules and central extensions. The results now follow from the extension (8)
that is central because of Proposition 3.6(iii).
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