The symmetric monoidal closed category of cpo $M$-sets

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Science, University of Jiroft, Jiroft, Iran

10.29252/cgasa.13.1.105

Abstract

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

Keywords


[1] Abramsky, S. and Jung, A., "Domain Theory", Handbook of logic in computer science (Vol. 3). Oxford University Press, 1995.
[2] Borceux, F., "Handbook of Categorical Algebra 1: Basic Category Theory", Cambridge University Press, Cambridge, 1994.
[3] Borceux, F., "Handbook of Categorical Algebra 2: Categories and Structures", Cambridge University Press, Cambridge, 1994.
[4] Davey, B.A. and Priestly, H.A., "Introduction to Lattices and Order", Cambridge University Press, Cambridge, 1990.
[5] Day, B.J., On closed categories of functors, Reports of the midwest category seminar (Lane, S.Mac, editor), Lecture Notes in Math., Springer-Verlag, Berlin-New York, 137 (1970), 1–38.
[6] Ebrahimi, M.M. and Mahmoudi, M., The category of M-Sets, Ital. J. Pure Appl. Math. 9 (2001), 123-132.
[7] Fiech, A., Colimits in the category Dcpo, Math. Structures Comput. Sci., 6 (1996), 455-468.
[8] Jung, A., "Cartesian closed categories of Domain", Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.
[9] Kilp, M., Knauer, U., and A. Mikhalev, "Monoids, Acts and Categories", Walter de Gruyter, Berlin, New York, 2000.
[10] Mahmoudi, M. and Moghbeli, H., The category of S-acts in the category Cpo, Bull. Iran. Math. Soc. 41(1) (2015), 159-175.
[11] Mahmoudi, M. and Moghbeli, H., The categories of actions of a dcpo-monoid on directed complete posets, Quaigroups Relatd Sytems, 23 (2015), 283-295.
[12] Moghbeli-Damaneh, H., Actions of a separately cpo-monoid on pointed directed complete posets, Categ. General Alg. Struct. Appl., 3(1) (2015), 21-42.
[13] Mac Lane, S., "Categories for the working mathematician". Vol.5. Springer Science and Business Media, 2013.
[14] Plotkin, G.D., A powerdomain construction. SIAM Journal on Computing, 5 (1976), 452-487.
[15] Plotkin, G.D., A powerdomain for countable non-determinism. In M. Nielsen and E. M. Schmidt, editors, Automata, Languages and programming, volume 140 of Lecture Notes in Computer Science, pages 412-428. EATCS, Springer Verlage, 1982.
[16] Smyth, M.B., Powerdomains. Journal of Computer and Systems Sciences, 16 (1978), 23-36.
[17] Streicher, T., "Domain-theoretic Foundations of Functional Programming". World Scientific, Singapore, 2006.
[18] Tix, R., Keimel. K., and G. D. Plotkin, "Semantic Domains for Combining Probability and Non-Determinism", Electronic Notes in Theoretical Computer Science, 222 (2009), 3-99.