[1] Carson, A.B. and Marshall, M., Decomposition of Witt rings, Canad. J. Math. 34 (1982), 1276-1302.
[2] Cassels, J.W.S., On the representation of rational functions as sums of squares, Acta Arith. 9 (1964), 79-82.
[3] Cordes, C., The Witt group and equivalence of fields with respect to quadratic forms, J. Algebra 26 (1973), 400-421.
[4] Cordes, C., Quadratic forms over non-formally real fields with a finite number of quaternion algebras, Pacific J. Math. 63 (1973), 357-365.
[5] Dickmann, M., Anneaux de Witt abstraits et groupes speciaux, In: Seminaire de structures algebriques ordonnees 42, University of Paris 7, 1993.
[6] Dickmann, M. and Miraglia, F., "Special groups: Boolean-theoretic methods in the theory of quadratic forms", Mem. Amer. Math. Soc. 145(689), 2000, http://dx.doi.org/10.1090/memo/0689.
[7] Dickmann, M. and Petrovich, A., Real semigroups and abstract real spectra I, Contemp. Math. 344 (2004), 99-119.
[8] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., and Scott, D.S., "A Compendium of Continuous Lattices", Springer, 1980.
[9] Gładki, P. and Marshall, M., Witt equivalence of function fields over global fields, Trans. Amer. Math. Soc. 369 (2017), 7861-7881.
[10] Kleinstein, J.L. and Rosenberg, A., Succinct and representational Witt rings, Pacific J. Math. 86 (1980), 99-137.
[11] Knebusch, M., Rosenberg, A., and Ware, R., Structure of Witt rings, quotients of abelian group rings and orderings of fields, Bull. Amer. Math. Soc. (N.S.) 77 (1971), 205-210.
[12] Knebusch, M., Rosenberg, A., and Ware, R., Structure of Witt rings and quotients of Abelian group rings, Amer. J. Math. 94 (1972), 119-155.
[13] Kula, M., Szczepanik, L., and Szymiczek, K., Quadratic form schemes and quaternionic schemes, Fund. Math. 130 (1988), 181-190.
[14] Lam, T.Y., "Introduction to Quadratic Forms over Fields", Graduate Studies in Mathematics 67, Amer. Math. Soc., 2005.
[15] Marshall, M., Abstract Witt rings, Queen’s Pap. Pure Appl. Math. 57, Queen’s University, 1980.
[16] Marshall, M., Real reduced multirings and multifields, J. Pure Appl. Algebra 205 (2006), 452-468.
[17] Pfister, A., Quadratische Formen in beliebigen Körpern, Invent. Math. 1(2) (1966), 116-132.
[18] Szczepanik, L., Fields and quadratic form schemes with the index of radical not exceeding 16, Ann. Math. Sil. 1(13) (1985), 23-46.
[19] Szczepanik, L., Quadratic form schemes with non-trivial radical, Colloq. Math. 2(49) (1985), 143-160.
[20] Witt, E., Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31-44.