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The notions of closedness and
D-connectedness in quantale-valued

approach spaces

Muhammad Qasim∗ and Samed Özkan

Abstract. In this paper, we characterize local T0 and T1 quantale-valued
gauge spaces, show how these concepts are related to each other and apply
them to L-approach distance spaces and L-approach system spaces. Further-
more, we give the characterization of a closed point and D-connectedness in
quantale-valued gauge spaces. Finally, we compare all these concepts to each
other.

1 Introduction

Approach spaces have been introduced by Lowen [30, 31] to generalize met-
ric and topological concepts, have many applications in almost all areas of
mathematics including probability theory [15], convergence theory [16], do-
main theory [17], and fixed point theory [18]. Due to its huge importance,
several generalizations of approach spaces appeared recently such as prob-
abilistic approach spaces [22], quantale-valued gauge spaces [23], quantale-
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valued approach system [24], and quantale-valued approach with respect to
(w.r.t.) closure operators [29]. Recently, some quantale-valued approach
spaces [25] are also characterized by using quantale-valued bounded interior
spaces and bounded strong topological spaces which are commonly used by
fuzzy mathematicians.

In 1991, Baran [2] introduced local separation axioms and the notion
of closedness in set-based topological categories which are used to define
several distinct Hausdorff objects [4], T3 and T4 objects [6], regular, com-
pletely regular, normal objects [7], the notion of compactness and minimal-
ity, perfectness [9]. He also showed that the notion of closedness induces
closure operators in the sense of Guili and Dikranjan [19] in some well-
known topological categories Conv (the category of convergence spaces and
filter convergence maps) [8, 32, 33], Lim (the category of limit spaces and
filter convergence maps) [9, 32, 33], Prord (the category of preordered sets
and monotone maps) [10, 32] and SUConv (the category of semiuniform
convergence spaces and uniformly continuous maps) [11, 33].

The main objective of this paper is:
• to characterize local T0 and local T1 quantale-valued gauge spaces,

quantale-valued distance approach and quantale-valued approach systems,
and to show their relationship with each other;
• to provide the characterization of the notion of closedness and D-

connectedness in quantale-valued approach spaces, and to show how they
are linked to each other;
• to give a comparison between local T0 and T1 quantale-valued approach

spaces, and between the notion of closedness and
D-connectedness, and to examine their relationships.

2 Preliminaries

Recall [23, 24], that for every non-empty set L, a relation ≤ on L is called
a partial order if it satisfies reflexivity (∀a ∈ L, a ≤ a), anti-symmetry
(∀a, b ∈ L, a ≤ b∧ b ≤ a⇒ a = b), and transitivity (∀a, b, c ∈ L, a ≤ b∧ b ≤
c ⇒ a ≤ c). If ≤ is a partial order on L, then (L,≤) is called a partially
ordered set or a poset. A poset (L,≤) is called a complete lattice if all
subsets of L have both supremum (

∨
) and infimum (

∧
). For any complete

lattice, the top element and the bottom element are denoted by > and ⊥,
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respectively.
In any complete lattice (L,≤), we define the well-below relation, α � β

if for all subsets A ⊆ L such that β ≤ ∨A there is δ ∈ A such that α ≤ δ.
Similarly, we define the well-above relation, α ≺ β if for all subsets A ⊆ L
such that

∧
A ≤ α there exists δ ∈ A such that δ ≤ β. Furthermore, a

complete lattice (L,≤) is called a completely distributive lattice if and only
if we have α =

∨{β : β � α} for any α ∈ L.
The triple (L,≤, ∗) is called a quantale if (L, ∗) is a semigroup, and the

operation ∗ satisfies: for all αi, β ∈ L, (
∨
i∈I αi) ∗ β =

∨
i∈I(αi ∗ β) and

β ∗ (
∨
i∈I αi) =

∨
i∈I(β ∗ αi) and (L,≤) is a complete lattice.

A quantale (L,≤, ∗) is called commutative if (L, ∗) is a commutative
semigroup and it is called integral if α ∗ > = > ∗ α = α for all α ∈ L.

Note that we denote a quantale by L = (L,≤, ∗) if it is commutative
and integral where (L,≤) is completely distributive.

In a quantale L = (L,≤, ∗), we define the implication map→: L×L −→
L by α→ β =

∨{γ ∈ L : α ∗ γ ≤ β} for all α, β ∈ L. Then α ∗ β ≤ γ if and
only if α ≤ β → γ for all α, β, γ ∈ L. In addition, a quantale L = (L,≤, ∗)
satisfies the strong De Morgan law if and only if (

∧
i∈I αi)→ β =

∨
i∈I(αi →

β) for all αi, β ∈ L, i ∈ I, where I 6= ∅.
A quantale L = (L,≤, ∗) is called a value quantale if (L,≤) is a com-

pletely distributive lattice such that for all α, β � >, α ∨ β � > [20]. Fur-
thermore, a quantale (L,≤, ∗) is called a linearly ordered quantale if for all
α, β ∈ L either α ≤ β or β ≤ α.

Example 2.1. (i) Lawvere′s quantale. (L = [0,∞],≥,+) with γ +∞ =
∞+γ =∞ for all γ ∈ L, is a linearly ordered value quantale [20]. Moreover,
it has the distributive property w.r.t. the quantale operation (that is, +)
distributes over arbitrary meets and satisfies the strong De Morgan law.

(ii) A commutative and integral quantale (L,≤, ∗), which satisfies (α→
β)→ β = α∨β for all α, β ∈ L, is a completeMV-algebra [21]. Furthermore,
a complete MV-algebra satisfies distribution over meets w.r.t. the quantale
operation and holds the strong De Morgan law.

(iii)Distance distribution functions quantale.A function ϕ : [0,∞]→
[0, 1] which satisfies ϕ(x) = sup

z<x
ϕ(z) is called a distance distribution func-

tion [34]. We note that a distance distribution function is non-decreasing
and satisfies ϕ(0) = 0. The set of all distance distribution functions is
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denoted by 4+; for example, for all a ∈ [0,∞],

εa(x) =

{
0, x ∈ [0, a]

1, x ∈ (a,∞]

is in 4+. The set 4+ is ordered pointwise, and the top and bottom ele-
ments are ε0 and ε∞, respectively, and the set 4+ with pointwise order then
becomes a complete lattice ( [20]). We note that

∧
i∈I ϕi is not the pointwise

infimum in general.
A binary operation ∗ : 4+ × 4+ → 4+ which is commutative, asso-

ciative, non-decreasing, and ϕ ∗ ε0 = ϕ for all ϕ ∈ 4+, is called a triangle
function [34]. A triangle function is called sup-continuous if (

∨
i∈I ϕi) ∗Ψ =∨

i∈I(ϕi ∗Ψ) for all ϕi,Ψ ∈ 4+ [34]. Then (4+,≤, ∗) is a commutative and
integral quantale.

Definition 2.2. [23] A quantale L = (L,≤, ∗) satisfies the condition (I) if
for all β, γ ∈ L with ⊥ ≺ β and γ �> we have β 6≤ γ ∗ β.

Lemma 2.3. [23] A quantale L = (L,≤, ∗) satisfies strong cancellation
property if for all γ, α ∈ L, ⊥ ≺ β: γ ∗ β ≤ α ∗ β implies γ ≤ α. Moreover,
if > 6 >, then the condition (I) is satisfied.

Example 2.4. (i) The Lawvere’s quantale, that is, ([0,∞],≥,+) satisfies
the condition (I).

(ii) A linearly ordered MV-algebra quantale (L,≤, ∗) satisfies the condi-
tion (I) but it is not true in general for every MV-algebra (see [24]).

Definition 2.5. A quantale L = (L,≤, ∗) is said to be a linear DM-I value
quantale if it is a linearly ordered value quantale for which the condition (I),
distributivity property over arbitrary meets w.r.t. the quantale operation,
and the strong De Morgan law hold.

Example 2.6. (i) The Lawvere’s quantale ([0,∞],≥,+) is a linearly ordered
value quantale which enjoys all these three conditions and thus, ([0,∞],≥,+)
is a linear DM-I value quantale.

(ii) Let L = ([0, 1],≤, ∗) be a triangular norm with a binary operation
∗ defined as for all α, β ∈ [0, 1], α ∗ β = α · β and named as a product
triangular norm [26]. The triple L = ([0, 1],≤, ·) is a commutative and
integral quantale which satisfies the strong cancellation property and thus,
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the condition (I) holds. Furthermore, it satisfies the strong De Morgan law
and enjoys distributivity property over arbitrary meets w.r.t. the quantale
operation. Hence, it is a linear DM-I value quantale.

(iii) Let L = ([0, 1],≤, ∗), where for all α, β ∈ [0, 1], α∗β = (α−1+β)∨0
(Lukasiewicz t-norm) [26]. Then, L is clearly a linearly ordered value quan-
tale which satisfies the condition (I), but the strong cancellation law is not
valid. Moreover, it satisfies the strong De Morgan law and enjoys the dis-
tributivity property over arbitrary meets. Furthermore, L is a commutative
and integral quantale. Thus, it is a linear DM-I value quantale.

(iv) Let L = (4+,≤, ∗) (a probabilistic quantale), where ϕ ∗ ψ = ϕ · ψ
for all ϕ,ψ ∈ 4+. Then L satisfies the condition (I), but it is not linearly
ordered [23].

(v) Let L = ([0, 1] ∪ {⊥ = −1,> = ∞},≤, ·). Clearly, L is a linearly
ordered quantale but it does not satisfy the condition (I) as >�>.

(vi) If L = ({0, 1},≤,∧), then L does not satisfy the condition (I) as
1 � 1 [23].

Definition 2.7. [23] Let X be a nonempty set. A map d : X ×X −→ L =
(L,≤, ∗) is called an L-metric on X if it satisfies for all x ∈ X, d(x, x) = >,
and for all x, y, z ∈ X, d(x, y) ∗ d(y, z) ≤ d(x, z). The pair (X, d) is called
an L-metric space.

A map f : (X, dX) −→ (Y, dY ) is called an L-metric morphism if
dX(x1, x2) ≤ dY (f(x1), f(x2)) for all x1, x2 ∈ X.

The category whose objects are L-metric spaces and morphisms are L-
metric morphisms is denoted by L-MET. Furthermore, we define L-MET(X)
as the set of all L-metrics on X.

Example 2.8. (i) If L = ({0, 1},≤,∧), then an L-metric space is a pre-
ordered set.

(ii) If L is a Lawvere’s quantale, that is, L = ([0,∞],≥,+), then an
L-metric space is an extended pseudo-quasi metric space.

(iii) If L = (4+,≤, ∗), then an L-metric space is a probabilistic quasi
metric space [20].

Definition 2.9. [23] Let H ⊆ L-MET(X) and d ∈ L-MET(X).
(i) d is called locally supported by H if for all x ∈ X, α � >, ⊥ ≺ ω,

there is e ∈ H such that e(x, .) ∗ α ≤ d(x, .) ∨ ω.
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(ii) H is called locally directed if for all finite subsets H0 ⊆ H,
∧
d∈H0

d
is locally supported by H.

(iii) H is called locally saturated if for all d ∈ L-MET(X), we have
d ∈ H whenever d is locally supported by H.

(iv) The set H̃ = {d ∈ L-MET(X) : d is locally supported by H} is
called the local saturation of H.

Definition 2.10. [23] Let X be a set. Then, G ⊆ L-MET(X) is called an
L-gauge if G satisfies the following:

(i) G 6= ∅.
(ii) d ∈ G and d ≤ e implies e ∈ G.
(iii) d, e ∈ G implies d ∧ e ∈ G.
(iv) G is locally saturated.
The pair (X,G) is called an L-gauge space.

A map f : (X,G) −→ (X ′,G′) is called an L-gauge morphism if d′ ◦ (f ×
f) ∈ G whenever d′ ∈ G′.

The category whose objects are L-gauge spaces and morphisms are L-
gauge morphisms is denoted by L-GS (cf. [23]).

Definition 2.11. [23] Let (X,G) be an L-gauge space and letH ⊆ L-MET(X).
If H̃ = G, then H is called a basis for the gauge G.

Proposition 2.12. [23] Let L = (L,≤, ∗) be a value quantale. If ∅ 6= H ⊆
L-MET(X) is locally directed, then G = H̃ is a gauge with H as a basis.

Proposition 2.13. Let X be a nonempty set. The discrete L-gauge struc-
ture on X is given by Gdis = L-MET(X).

Proof. Note that for all x, y ∈ X,

ddis(x, y) =

{
>, x = y

⊥, x 6= y

is the smallest L-metric structure on X. To show H = {ddis} is an L-gauge
basis, by Proposition 2.12, it suffices to show that H is locally directed.
Since a basis with one element is always locally directed, then H = {ddis} is
an L-gauge basis. In addition, the associated L-gauge is just the principal
filters of ddis, that is, Gdis = {e ∈ L-MET(X) : e ≥ ddis}. Therefore, all the
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L-metrics are in L-gauge. Thus, Gdis = L-MET(X). Furthermore, every
f : (X,Gdis = L-MET(X)) → (X ′,G′) is an L-gauge morphism for any
(X ′,G′) L-gauge space.

Definition 2.14. [23] A map δ : X × P (X) −→ L = (L,≤, ∗) is called an
L-approach distance if δ satisfies the following:

(i) ∀x ∈ X, δ(x, {x}) = >.
(ii) ∀x ∈ X, δ(x, ∅) = ⊥.
(iii) ∀x ∈ X and for all A,B ⊆ X, δ(x,A ∪B) = δ(x,A) ∨ δ(x,B).
(iv) ∀x ∈ X, for all A ⊆ X and for all α ∈ L, δ(x,A) ≥ δ(x,A

α
) ∗ α,

where Aα = {x ∈ X : δ(x,A) ≥ α}.
The pair (X, δ) is called an L-approach distance space.

A map f : (X, δ) −→ (X ′, δ′) is called an L-approach morphism if
δ(x,A) ≤ δ′(f(x), f(A)) for all x ∈ X and A ⊆ X.

The category whose objects are L-approach distance spaces and mor-
phisms are L-approach morphisms is denoted by L-AP.

Definition 2.15. [24] Let A ⊆ LX and ϕ ∈ LX .
(i) ϕ is supported by A if for all α�>, ⊥ ≺ ω there exists ϕωα ∈ A such

that ϕωα ∗ α ≤ ϕ ∨ ω.
(ii) A is saturated if ϕ ∈ A whenever ϕ is supported by A.
(iii) For B ⊆ LX , B̃ = {ϕ ∈ LX : ϕ is supported by B} is called the

saturation of B.
Definition 2.16. [24] Let A(x) ⊆ LX for all x ∈ X. Then A = (A(x))x∈X
is called an L-approach system if for all x ∈ X,

(i) A(x) is a filter in LX , that is, ϕ ∈ A(x) and ϕ ≤ ϕ′ implies ϕ′ ∈ A(x),
and ϕ,ϕ′ ∈ A(x) implies ϕ ∧ ϕ′ ∈ A(x).

(ii) ϕ(x) = > whenever ϕ ∈ A(x).
(iii) A(x) is saturated.
(iv) For all ϕ ∈ A(x), α � >, ⊥ ≺ ω there exists a family (ϕz)z∈X ∈∏

z∈X A(z) such that ϕx(z) ∗ ϕz(y) ∗ α ≤ ϕ(y) ∨ ω, ∀y, z ∈ X.
The pair (X,A) is called an L-approach system space.

The map f : (X,A) −→ (X ′,A′) is called an L-approach system mor-
phism if for all x ∈ X, ϕ′ ◦ f ∈ A(x) whenever ϕ′ ∈ A′(f(x)).

The category whose objects are L-approach system spaces and mor-
phisms are L-approach system morphisms is denoted by L-AS.
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Definition 2.17. [24] Let B(x) ⊂ LX for all x ∈ X. Then (B(x))x∈X is
called an L-approach system basis if for all x ∈ X,

(i) B(x) is a filter basis in LX .
(ii) ϕ(x) = > whenever ϕ ∈ B(x).
(iii) For all ϕ ∈ B(x), α � >, ⊥ ≺ ω there exists a family (ϕz)z∈X ∈∏

z∈X B(z) such that ϕx(z) ∗ ϕz(y) ∗ α ≤ ϕ(y) ∨ ω, ∀y, z ∈ X.

Definition 2.18. [24] Let (A(x))x∈X be an L-approach system and (B(x))x∈X
be the collection of filter bases on LX . Then, (B(x))x∈X is called a basis for
L-approach system if B̃(x) = {ϕ ∈ LX : ϕ is supported by B(x)} = A(x).

A functor U : E −→ Set (the category of sets and functions) is called
topological if U is concrete, consists of small fibers, and each U-source has
an initial lift [1, 32, 33].

A topological functor which has a left adjoint is called a discrete functor.

Lemma 2.19. [23, 24] Let L = (L,≤, ∗) be a value quantale, (Xi,Bi) be
the collection of L-approach spaces, and let fi : X −→ (Xi,Bi) be a source
and x ∈ X.

(i) A basis for the initial L-gauge on X is given by

H = {
∧

i∈K
di ◦ (fi × fi) : K ⊆ I finite, di ∈ Gi,∀i ∈ I}.

(ii) A basis for the initial L-approach system is provided by

B(x) = {
∧

i∈K
ϕi ◦ fi : K ⊆ I finite, ϕi ∈ Ai(fi(x)), ∀i ∈ I}.

Note that for a value quantale L, the categories L-GS, L-AP, and
L-AS are topological categories over Set [23, 24] and we will denote any
L-approach space by (X,B).

Remark 2.20. [23, 24] Let L be a value quantale and let (X,G) (respec-
tively, (X, δ) and (X,A)) be an L-gauge space (respectively, L-approach
space and L-approach system space). For all A ⊆ X and for all x ∈ X,

(i) The transition from an L-gauge to an L-approach distance is deter-
mined by

δ(x,A) =
∧

d∈G

∨

a∈A
d(x, a).
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Conversely, if δ : X ×P (X)→ L is an L-approach distance, then an associ-
ated L-gauge is defined by

G = {d ∈ L-MET(X) : δ(x,A) ≤
∨

a∈A
d(x, a)}.

(ii) If δ : X × P (X)→ L is an L-approach distance, then an associated
L-approach system is provided by

A(x) = {ϕ ∈ LX : δ(x,A) ≤
∨

a∈A
ϕ(a)}.

Conversely, the transition from an L-approach system to an L-approach
distance is determined by

δ(x,A) =
∧

ϕ∈A(x)

∨

a∈A
ϕ(a).

(iii) The transition from an L-approach system to an L-gauge is given
by

GA = {d ∈ L-MET(X) : d(x, .) ∈ A(x), ∀x ∈ X}.
Conversely, the transition from an L-gauge to an L-approach system is de-
termined by the following L-approach system basis

B(x) = {d(x, .) : d ∈ G}.

Remark 2.21. (i) If the quantale L is a linear DM-I value quantale, then
the above transition formulas provide isomorphisms functors among the cat-
egories, that is, L-GS, L-AP, and L-AS are isomorphic. It was shown
in [23, 24] that these assumptions on the quantale are necessary.

(ii) For any arbitrary quantale, for example, in L = (4+,≤, ∗) (proba-
bilistic case), by Example 5.11 of [23, 24], L-GS, L-AP and L-AS are not
isomorphic.

3 Local T0 and T1 quantale-valued approach spaces

Let X be a set and p be a point in X. Let X∨pX be the wedge product of X
at p ( [2], p. 334), that is, two disjoint copies of X identified at p, or in other
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words, the pushout of p : 1→ X along itself (where 1 is the terminal object
in Set). More precisely, if i1 and i2 : X → X ∨p X denote the inclusion of
X as the first and second factor, respectively, then i1p = i2p is the pushout
diagram [9].

A point x in X ∨pX is denoted as x1 if it lies in the first component and
as x2 if it lies in the second component.

Let X2 be the cartesian product of X.

Definition 3.1. [2] The principal p-axis map, Ap : X ∨p X −→ X2 is
defined by

Ap(xi) =

{
(x, p), i = 1

(p, x), i = 2

Definition 3.2. [2] The skewed p-axis map, Sp : X ∨pX −→ X2 is defined
by

Sp(xi) =

{
(x, x), i = 1

(p, x), i = 2

Definition 3.3. [2] The fold map at p, ∇p : X ∨p X −→ X is defined by
∇p(xi) = x for i = 1, 2.

Definition 3.4. [2] Let U : E −→ Set be topological, X ∈ Ob(E) with
U(X) = B, and p ∈ B.

(i) X is T0 at p if and only if the initial lift of the U -source {Ap :
B ∨p B −→ U(X2) = B2 and ∇p : B ∨p B −→ UD(B) = B} is discrete,
where D is the discrete functor.

(ii) X is T1 at p if and only if the initial lift of the U -source {Sp :
B ∨p B −→ U(X2) = B2 and ∇p : B ∨p B −→ UD(B) = B} is discrete.

Remark 3.5. In Top (the category of topological spaces and continuous
maps), the condition that a topological space (X, τ) is T0 at p (respectively,
T1 at p) is reduced to the condition that for each x ∈ X with x 6= p,
there exists a neighborhood of x does not contain p or (respectively, and)
there exists a neighborhood of p does not contain x. Moreover, (X, τ) is T0

(respectively, T1) if and only if (X, τ) is T0 at p (respectively, T1 at p) for
all p ∈ X [5].
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Theorem 3.6. Let (X,G) be an L-gauge space and p ∈ X. Then, (X,G) is
T0 at p if and only if for all x ∈ X with x 6= p, there exists d ∈ G such that
d(x, p) ∧ d(p, x) = ⊥.

Proof. Suppose that (X,G) is T0 at p, x ∈ X, and x 6= p. Let G be the
initial L-gauge on X ∨p X induced by Ap : X ∨p X → U(X2,G2) = X2 and
∇p : X ∨p X → U(X,Gdis) = X, where Gdis is the discrete structure on X
and G2 is the product structure on X2 induced by πi : X2 → X, projection
maps for i = 1, 2. Suppose that Hdis = {ddis} is a basis for the discrete
L-gauge, where ddis is the discrete L-metric on X. Let H be an L-gauge
basis of G and d ∈ H, and H = {ddis} be the initial L-gauge basis of G,
where ddis is the discrete L-metric on X ∨p X. For x1, x2 ∈ X ∨p X with
x1 6= x2, note that

ddis(∇p(x1),∇p(x2)) = ddis(x, x) = >,

d(π1Ap(x1), π1Ap(x2)) = d(x, p),

d(π2Ap(x1), π2Ap(x2)) = d(p, x).

Since x1 6= x2, ddis is the discrete L-metric on X ∨p X and (X,G) is T0

at p, by Lemma 2.19,

⊥ = ddis(x1, x2)

=
∧
{ddis(∇p(x1),∇p(x2)), d(π1Ap(x1), π1Ap(x2)),

d(π2Ap(x1), π2Ap(x2))}
=

∧
{>, d(x, p), d(p, x)}

= d(x, p) ∧ d(p, x).

Conversely, let H be the initial L-gauge basis on X ∨p X induced by Ap :
X ∨p X → U(X2,G2) = X2 and ∇p : X ∨p X → U(X,Gdis) = X where, by
Proposition 2.13, Gdis = L-MET(X) discrete L-gauge on X and G2 be the
product structure on X2 induced by πi : X2 → X the projection maps for
i = 1, 2.

Suppose that for all x ∈ X with x 6= p, there exists d ∈ G such that
d(x, p) ∧ d(p, x) = ⊥. Let d ∈ H and u, v ∈ X ∨p X.



160 M. Qasim and S. Özkan

If u = v, then

d(u, v) =
∧
{ddis(∇p(u),∇p(u)), d(π1Ap(u), π1Ap(u)),

d(π2Ap(u), π2Ap(u))}
= >.

If u 6= v and ∇p(u) 6= ∇p(v), then ddis(∇p(u),∇p(v)) = ⊥, since ddis is
discrete. By Lemma 2.19,

d(u, v) =
∧
{ddis(∇p(u),∇p(v)), d(π1Ap(u), π1Ap(v)),

d(π2Ap(u), π2Ap(v))}
=

∧
{⊥, d(π1Ap(u), π1Ap(v)), d(π2Ap(u), π2Ap(v))}

= ⊥.
Suppose that u 6= v and ∇p(u) = ∇p(v). If ∇p(u) = x = ∇p(v) for some
x ∈ X with x 6= p, then u = x1 and v = x2 or u = x2 and v = x1, since
u 6= v. Let u = x1 and v = x2. Then

ddis(∇p(u),∇p(v)) = ddis(∇p(x1),∇p(x2))

= ddis(x, x)

= >,

d(π1Ap(u), π1Ap(v)) = d(π1Ap(x1), π1Ap(x2))

= d(x, p),

and

d(π2Ap(u), π2Ap(v)) = d(π2Ap(x1), π2Ap(x2))

= d(p, x).

It follows that

d(u, v) = d(x1, x2)

=
∧
{ddis(∇p(x1),∇p(x2)), d(π1Ap(x1), π1Ap(x2)),

d(π2Ap(x1), π2Ap(x2))}
=

∧
{>, d(x, p), d(p, x)}

=
∧
{d(x, p), d(p, x)}

= d(x, p) ∧ d(p, x).
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By the assumption, d(x, p) ∧ d(p, x) = ⊥ and we have d(u, v) = ⊥.
Let u = x2 and v = x1. Similarly,

ddis(∇p(u),∇p(v)) = ddis(∇p(x2),∇p(x1))

= ddis(x, x)

= >,

d(π1Ap(u), π1Ap(v)) = d(π1Ap(x2), π1Ap(x1))

= d(p, x),

and

d(π2Ap(u), π2Ap(v)) = d(π2Ap(x2), π2Ap(x1))

= d(x, p).

It follows that

d(u, v) = d(x2, x1)

=
∧
{ddis(∇p(x2),∇p(x1)), d(π1Ap(x2), π1Ap(x1)),

d(π2Ap(x2), π2Ap(x1))}
=

∧
{>, d(p, x), d(x, p)}

=
∧
{d(x, p), d(p, x)}

= d(x, p) ∧ d(p, x).

By the assumption, we get d(u, v) = ⊥. Therefore, for all u, v ∈ X ∨pX, we
have

d(u, v) =

{
>, u = v

⊥, u 6= v

and by Proposition 2.13, d is the discrete L-metric on X ∨p X, that is,
H = {d}, which means Gdis = L-MET(X). By Definition 3.4 (i), (X,G) is
T0 at p.

In a quantale (L,≤, ∗), if a ∈ L and a 6= >, then a is called a prime
element if and only if α ∧ β ≤ a implies α ≤ a or β ≤ a for all α, β ∈ L.
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Corollary 3.7. Let (X,G) be an L-gauge space, where L has a prime bottom
element and p ∈ X. Then (X,G) is T0 at p if and only if for all x ∈ X with
x 6= p, there exists d ∈ G such that d(x, p) = ⊥ or d(p, x) = ⊥.

Proof. It follows from Theorem 3.6 and the definition of the prime bottom
element.

Theorem 3.8. Let L be a value quantale which has a prime bottom element,
and let (X,B) be an L-approach space, and p ∈ X. Then, the following are
equivalent:

(i) (X,B) is T0 at p.
(ii) ∀ x ∈ X with x 6= p, there exists d ∈ G such that d(x, p) = ⊥ or

d(p, x) = ⊥.
(iii) ∀ x ∈ X with x 6= p, δ(x, {p}) = ⊥ or δ(p, {x}) = ⊥.
(iv) ∀ x ∈ X with x 6= p, there exists ϕ ∈ A(p) such that ϕ(x) = ⊥ or

there exists ϕ ∈ A(x) such that ϕ(p) = ⊥.

Proof. (i) ⇔ (ii) follows from Corollary 3.7.
(ii) ⇒ (iii) Suppose that for all x ∈ X with x 6= p, there exists d ∈ G

such that d(x, p) = ⊥ or d(p, x) = ⊥. By Remark 2.20 (i), δ(x, {p}) =∧
d′∈G

d′(x, p) = ⊥, and consequently, δ(x, {p}) = ⊥. Similarly, δ(p, {x}) =
∧
d′∈G

d′(p, x) = ⊥ implies δ(p, {x}) = ⊥.

(iii) ⇒ (iv) Suppose that for all x ∈ X with x 6= p, δ(x, {p}) = ⊥ or
δ(p, {x}) = ⊥. Let A = {p}, then, by Remark 2.20(ii), for all ϕ′ ∈ LX ,
δ(x, {p}) ≤ ϕ′(p). In particular, there exists ϕ ∈ A(x) such that ϕ(p) = ⊥.
Similarly, if A = {x}, then, by Remark 2.20(ii), for all ϕ′′ ∈ LX , δ(p, {x}) ≤
ϕ′′(x) and, particularly, there exists ϕ ∈ A(p) such that ϕ(x) = ⊥.

(iv) ⇒ (ii) Suppose that the condition holds. By Remark 2.20(iii),
d′(x, p) ∈ A(x) for all x ∈ X and, by Definition 2.18, for all x ∈ X, α �>,
⊥ ≺ ω, there exists ϕ ∈ B(x) such that ϕ(p) ∗ α ≤ d′(x, p) ∨ ω. Since
ϕ(p) = ⊥ and ⊥ ∗ α = ⊥, ⊥ ≤ d′(x, p) ∨ ω, and, in particular, there exists
d ∈ G such that d(x, p) = ⊥. In a similar way, there exists d ∈ G such that
d(p, x) = ⊥.

Theorem 3.9. Let (X,G) be an L-gauge space and p ∈ X. Then (X,G) is
T1 at p if and only if for all x ∈ X with x 6= p, there exists d ∈ G such that
d(x, p) = ⊥ = d(p, x).
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Proof. Suppose that (X,G) is T1 at p, x ∈ X and x 6= p. Let u = x1,
v = x2 ∈ X ∨p X. Note that

ddis(∇p(u),∇p(v)) = ddis(∇p(x1),∇p(x2)) = ddis(x, x) = >,

d(π1Sp(u), π1Sp(v)) = d(π1Sp(x1), π1Sp(x2)) = d(x, p),

d(π2Sp(u), π2Sp(v)) = d(π2Sp(x1), π2Sp(x2)) = d(x, x) = >,

where ddis is the discrete L-metric on X ∨p X and πi : X2 → X are the
projection maps for i = 1, 2. Since u 6= v and (X,G) is T1 at p, by Lemma
2.19,

⊥ =
∧
{ddis(∇p(u),∇p(v)), d(π1Sp(u), π1Sp(v)), d(π2Sp(u), π2Sp(v))}

=
∧
{>, d(x, p)}

= d(x, p).

Let u = x2, v = x1 ∈ X ∨p X. Similarly,

ddis(∇p(u),∇p(v)) = ddis(∇p(x2),∇p(x1)) = ddis(x, x) = >

d(π1Sp(u), π1Sp(v)) = d(π1Sp(x2), π1Sp(x1)) = d(p, x)

d(π2Sp(u), π2Sp(v)) = d(π2Sp(x2), π2Sp(x1)) = d(x, x) = >

It follows that

⊥ =
∧
{ddis(∇p(u),∇p(v)), d(π1Sp(u), π1Sp(v)), d(π2Sp(u), π2Sp(v))}

=
∧
{>, d(p, x)}

= d(p, x).

Conversely, let H be the initial L-gauge basis on X ∨p X induced by Sp :
X ∨p X → U(X2,G2) = X2 and ∇p : X ∨p X → U(X,Gdis) = X where,
by Proposition 2.13, Gdis = L-MET(X) is the discrete L-gauge on X and
G2 is the product L-gauge structure on X2 induced by πi : X2 → X, the
projection maps for i = 1, 2.
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Suppose that for all x ∈ X with x 6= p, there exists d ∈ G such that
d(x, p) = ⊥ = d(p, x). Let d ∈ H and u, v ∈ X ∨p X. If u = v, then

d(u, v) =
∧
{ddis(∇p(u),∇p(u)), d(π1Sp(u), π1Sp(u)),

d(π2Sp(u), π2Sp(u))}
= >.

If u 6= v and ∇p(u) 6= ∇p(v), then ddis(∇p(u),∇p(v)) = ⊥, since ddis is
discrete. By Lemma 2.19

d(u, v) =
∧
{ddis(∇p(u),∇p(v)), d(π1Sp(u), π1Sp(v)),

d(π2Sp(u), π2Sp(v))}
=

∧
{⊥, d(π1Sp(u), π1Sp(v)), d(π2Sp(u), π2Sp(v))}

= ⊥.

Suppose that u 6= v and ∇p(u) = ∇p(v). If ∇p(u) = x = ∇p(v) for some
x ∈ X with x 6= p, then u = x1 and v = x2 or u = x2 and v = x1, since
u 6= v. If u = x1 and v = x2, then, by Lemma 2.19,

d(u, v) = d(x1, x2)

=
∧
{ddis(∇p(x1),∇p(x2)), d(π1Sp(x1), π1Sp(x2)),

d(π2Sp(x1), π2Sp(x2))}
=

∧
{>, d(x, p)}

= d(x, p)

= ⊥,

since x 6= p and d(x, p) = ⊥. Similarly, if u = x2 and v = x1, then

d(u, v) = d(x2, x1)

=
∧
{ddis(∇p(x2),∇p(x1)), d(π1Sp(x2), π1Sp(x1)),

d(π2Sp(x2), π2Sp(x1))}
=

∧
{>, d(p, x)}

= d(p, x)

= ⊥,
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since x 6= p and d(p, x) = ⊥. Hence, for all u, v ∈ X ∨p X, we get

d(u, v) =

{
>, u = v

⊥, u 6= v

and it follows that d is the discrete L-metric on X ∨p X, that is, H = {d},
which means Gdis = L-MET(X). By Definition 3.4(ii), (X,G) is T1 at
p.

Theorem 3.10. Let L be a value quantale, and let (X,B) be an L-approach
space and p ∈ X. Then, the following are equivalent:

(i) (X,B) is T1 at p.
(ii) for all x ∈ X with x 6= p, there exists d ∈ G such that d(x, p) = ⊥ =

d(p, x).
(iii) for all x ∈ X with x 6= p, δ(x, {p}) = ⊥ = δ(p, {x}).
(iv) for all x ∈ X with x 6= p, there exists ϕ ∈ A(p) such that ϕ(x) = ⊥

and there exists ϕ ∈ A(x) such that ϕ(p) = ⊥.

Proof. It is analogous to the proof of Theorem 3.8.

Remark 3.11. If L = ([0,∞],≥,+) (Lawvere’s quantale), then local T0

(respectively, local T1) L-approach spaces are reduced to classical local T0

(respectively, local T1) approach spaces defined in [12, 13].

Example 3.12. Let L = ([0, 1],≤, ·) be a triangular product norm. Let
X = {a, b, c}, A ⊂ X and δ : X × 2X → ([0, 1],≤, ·) be a map defined
by ∀x ∈ X, δ(x, ∅) = 0, δ(x,A) = 1 if x ∈ A, δ(b, {a}) = 0 = δ(c, {a}),
δ(a, {b}) = 1/2 = δ(a, {b, c}), δ(c, {b}) = 1/3 = δ(c, {a, b}), δ(a, {c}) = 1/4
and δ(b, {c}) = 1/5 = δ(b, {a, c}). Clearly, δ(x,A) is an L-approach distance
space. By Theorem 3.8, (X, δ) is T0 at p = a but neither T0 at p = b nor
p = c. Similarly, by Theorem 3.10, (X, δ) is not T1 at p, for all p ∈ X.

4 Closedness and D-connectedness

Let X be a set and p be a point in X. The infinite wedge product
∨∞
p X is

formed by taking countably many disjoint copies of X and identifying them
at the point p.

A point x in
∨∞
p X is denoted as xi if it lies in the i-th component.
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Definition 4.1. [3] Let X∞ = X × X × · · · be the countable cartesian
product of X.

(i) The infinite principle axis map at p, A∞p :
∨∞
p X −→ X∞ is defined

by A∞p (xi) = (p, p, . . . , p, x, p, . . .).
(ii) The infinite fold map at p, ∇∞p :

∨∞
p X −→ X∞ is defined by

∇∞p (xi) = x for all i ∈ I.

Note that the map A∞p is the unique map arising from the multiple
pushout of p : 1 → X for which A∞p ij = (p, p, . . . , p, id, p, . . .) : X → X∞,
where the identity map, id, is in the j-th place [9].

Definition 4.2. Let U : E −→ Set be topological, X ∈ Ob(E) with U(X) =
B, and p ∈ B.

(i) {p} is closed if and only if the initial lift of the U -source {A∞p :∨∞
p B −→ B∞ and ∇∞p :

∨∞
p B −→ UD(B∞) = B∞} is discrete,

where D is the discrete functor [3].

(ii) X is D-connected if and only if any morphism from X to any discrete
object is constant [28].

Theorem 4.3. Let (X,G) be an L-gauge space and p ∈ X. Then, {p} is
closed in X if and only if for all x ∈ X, with x 6= p, there exists d ∈ G such
that d(x, p) ∧ d(p, x) = ⊥.

Proof. Let (X,G) be an L-gauge space, p ∈ X, and {p} be closed in X. Let
G be the initial L-gauge on

∨∞
p X induced by A∞p :

∨∞
p X → U(X∞,G∗) =

X∞ and ∇∞p :
∨∞
p X → U(X,Gdis) = X, where Gdis is the discrete structure

on X, and G∗ be the product structure on X∞ induced by πi : X∞ → X
(i ∈ I) projection maps. Suppose that Hdis = {ddis} is a basis for the
discrete L-gauge where ddis is the discrete L-metric on X. Let H be an
L-gauge basis of G and d ∈ H, and H = {ddis} be the initial L-gauge basis
of G, where ddis is the discrete L-metric on

∨∞
p X.

We will show that for all x ∈ X with x 6= p, there exists d ∈ G such that
d(x, p) ∧ d(p, x) = ⊥. Suppose that d(x, p) ∧ d(p, x) > ⊥ for all d ∈ G and
x ∈ X with x 6= p. For i, j, k ∈ I with i 6= j and i 6= k 6= j, note that

ddis(∇∞p (xi),∇∞p (xj)) = ddis(x, x) = >

d(πiA
∞
p (xi), πiA

∞
p (xj)) = d(x, p)
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d(πjA
∞
p (xi), πjA

∞
p (xj)) = d(p, x)

d(πkA
∞
p (xi), πkA

∞
p (xj)) = d(p, p) = >.

Since xi 6= xj (i 6= j) and p is closed in X, by Lemma 2.19,

ddis(xi, xj) =
∧
{ddis(∇∞p (xi),∇∞p (xj)), d(πiA

∞
p (xi), πiA

∞
p (xj)),

d(πjA
∞
p (xi), πjA

∞
p (xj)), d(πkA

∞
p (xi), πkA

∞
p (xj))}

=
∧
{>, d(x, p), d(p, x)}

= d(x, p) ∧ d(p, x)

> ⊥,
which is a contradiction to the fact that ddis is the discrete L-metric on∨∞
p X. Hence, d(x, p) ∧ d(p, x) = ⊥.
Conversely, let H be the initial L-gauge basis on ∨∞p X induced by A∞p :∨∞

p X → U(X∞,G∗) = X∞ and ∇∞p :
∨∞
p X → U(X,Gdis) = X, where,

by Proposition 2.13, Gdis = L-MET(X) discrete L-gauge on X and G∗ be
the product structure on X∞ induced by πi : X∞ → X (i ∈ I) projection
maps. Suppose that for all x ∈ X with x 6= p, there exists d ∈ G such that
d(x, p) ∧ d(p, x) = ⊥. Let d ∈ H and u, v ∈ ∨∞p X. If u = v, then for i ∈ I,

d(u, v) =
∧
{ddis(∇∞p (u),∇∞p (u)), d(πiA

∞
p (u), πiA

∞
p (u))}

= >.
If u 6= v and ∇∞p (u) 6= ∇∞p (v), then ddis(∇∞p (u),∇∞p (v)) = ⊥ since ddis

is a discrete structure. By Lemma 2.19 for i ∈ I,

d(u, v) =
∧
{ddis(∇∞p (u),∇∞p (v)), d(πiA

∞
p (u), πiA

∞
p (v))}

=
∧
{⊥, d(πiA

∞
p (u), πiA

∞
p (v))}

= ⊥.
Suppose that u 6= v and ∇∞p (u) = ∇∞p (v). If ∇∞p (u) = x = ∇∞p (v) for some
x ∈ X with x 6= p, then u = xi and v = xj for i, j ∈ I with i 6= j, since
u 6= v. Let u = xi, v = xj and i, j, k ∈ I with i 6= j and i 6= k 6= j. Then

ddis(∇∞p (u),∇∞p (v)) = ddis(∇∞p (xi),∇∞p (xj))

= ddis(x, x)

= >,
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d(πiA
∞
p (u), πiA

∞
p (v)) = d(πiA

∞
p (xi), πiA

∞
p (xj))

= d(x, p),

d(πjA
∞
p (u), πjA

∞
p (v)) = d(πjA

∞
p (xi), πjA

∞
p (xj))

= d(p, x),

and

d(πkA
∞
p (u), πkA

∞
p (v)) = d(πkA

∞
p (xi), πkA

∞
p (xj))

= d(p, p)

= >.

It follows that

d(u, v) =
∧
{ddis(∇∞p (xi),∇∞p (xj)), d(πiA

∞
p (xi), πiA

∞
p (xj)),

d(πjA
∞
p (xi), πjA

∞
p (xj)), d(πkA

∞
p (xi), πkA

∞
p (xj))}

=
∧
{>, d(x, p), d(p, x)}

=
∧
{d(x, p), d(p, x)}

= d(x, p) ∧ d(p, x).

By the assumption, d(x, p)∧d(p, x) = ⊥ and we have d(u, v) = ⊥. Therefore,
∀ u, v ∈ ∨∞p X, we get

d(u, v) =

{
>, u = v

⊥, u 6= v

and, by Proposition 2.13, d is the discrete L-metric on
∨∞
p X, that is, H =

{d}, which means Gdis = L-MET(X). By Definition 4.2 (i), {p} is closed
in X.

Corollary 4.4. Let (X,G) be an L-gauge space where L has a prime bottom
element and p ∈ X. Then {p} is closed in X if and only if for all x ∈ X,
with x 6= p, there exists d ∈ G such that d(x, p) = ⊥ or d(p, x) = ⊥.

Proof. It follows from Theorem 4.3 and the definition of the prime bottom
element.
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Theorem 4.5. Let (X,G) be an L-gauge space and p ∈ X. Then, (X,G) is
T0 at p if and only if {p} is closed in X.

Proof. It follows from Theorems 3.6 and 4.3.

Theorem 4.6. An L-gauge space (X,G) is D-connected if and only if for
each distinct points x and y in X, there exists d ∈ G such that d(x, y) =
> = d(y, x).

Proof. Let (X,G) be an L-gauge space, (Y,Gdis) be a discrete L-gauge space
with CardY > 1 and f : (X,G)→ (Y,Gdis) be a contraction map. Suppose
that (X,G) is D-connected. Since f is a contraction map and by definition,
for all ddis ∈ Gdis, ddis ◦ (f × f) ∈ G, that is, there exists d ∈ G such
that d = ddis(f, f). It follows that for each distinct points x and y in X,
d(x, y) = ddis(f(x), f(y)). Since (X,G) is D-connected, f is a constant map.
Therefore, for x, y ∈ X, f(x) = f(y) = α ∈ Y , and consequently,

d(x, y) = ddis(f(x), f(y)) = ddis(α, α) = >,

and

d(y, x) = ddis(f(y), f(x)) = ddis(α, α) = >.

Thus, if (X,G) is D-connected, then there exists d ∈ G such that d(x, y) =
> = d(y, x).

Conversely, suppose that the condition holds, that is, for each distinct
points x and y in X, there exists d ∈ G such that d(x, y) = > = d(y, x). We
show that (X,G) is D-connected. Let f : (X,G)→ (Y,Gdis) be a contraction
map and (Y,Gdis) be a discrete L-gauge space. If CardY = 1, then (X,G)
is D-connected, since f is a constant map. Suppose that CardY > 1 and f
is not a constant map. Then, there exist distinct points x and y in X such
that f(x) 6= f(y) and consequently,

d(x, y) = ddis(f(x), f(y)) = ⊥,

and

d(y, x) = ddis(f(y), f(x)) = ⊥,

which is a contradiction, since d(x, y) = > = d(y, x) for x, y ∈ X with x 6= y.
Hence, f is a constant map. By Definition 4.2(ii), (X,G) isD-connected.



170 M. Qasim and S. Özkan

Theorem 4.7. Let L be a value quantale and let (X,B) be an L-approach
space. Then, the following are equivalent:

(i) (X,B) is D-connected.
(ii) for all x, y ∈ X with x 6= y, there exists d ∈ G such that d(x, y) =

> = d(y, x).
(iii) for all x, y ∈ X with x 6= y, δ(x, {y}) = > = δ(y, {x}).
(iv) for all x, y ∈ X with x 6= y, there exists ϕ ∈ A(x) such that ϕ(y) = >

and there exists ϕ ∈ A(x) such that ϕ(y) = >.

Proof. (i) ⇔ (ii) follows from Theorem 4.6. Using Remark 2.20, the proof
of the other implications are straightforward.

Example 4.8. Suppose that L = ([0, 1],≤, ∗) is a Lukasiewicz t-norm. Let
X be a non-empty set, and let δ : X×2X → L = (L,≤, ∗) be a map defined
by for all x ∈ X and A ⊆ X,

δ(x,A) =

{
1, A 6= ∅
0, A = ∅

By Theorem 4.7, (X, δ) is D-connected.

Remark 4.9. (i) In Top as well as in CHY (the category of Cauchy spaces
and Cauchy continuous maps) T1 at p (that is, local T1) and the notion of
closedness are equivalent [5, 27], and T1 at p implies T0 at p. However, in
L-AP, by Theorem 4.5, T0 at p and the notion of closedness are equivalent,
and by Example 3.12, T1 at p implies T0 at p, but the converse is not true
in general.

(ii) In CP (the category of pairs and pair preserving maps) and in Prox
(the category of proximity spaces and proximity maps), T0 at p, T1 at p and
the notion of closedness are equivalent [3, 28]. Moreover, in ∞psMet (the
category of extended pseudo semi metric spaces and non-expansive maps)
(see [30]) T0 at p and T1 at p are the only discrete objects at p, that is, for
all x ∈ X with x 6= p, d(x, p) =∞ [14].

(iii) By Theorems 3.4, 4.5 and 4.14 of [28], and by Examples 3.12 and
4.8, there is no relation between the notion of closedness and D-connected
objects, T1 at p and D-connected objects.
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