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From torsion theories to closure operators
and factorization systems

Marco Grandis and George Janelidze

Abstract. Torsion theories are here extended to categories equipped with
an ideal of ‘null morphisms’, or equivalently a full subcategory of ‘null ob-
jects’. Instances of this extension include closure operators viewed as gen-
eralised torsion theories in a ‘category of pairs’, and factorization systems
viewed as torsion theories in a category of morphisms. The first point has
essentially been treated in [15].

Introduction

Classically, a torsion theory (T,F) in an abelian category A (see Borceux [3],
Section 1.2) is a pair (T,F) of full, replete subcategories of A such that:

(i) every morphism T → F from an object of T to an object of F is null,

(ii) for every object A in A there exists a short exact sequence T � A� F,
with T in T and F in F.

The objects of T and F are called, respectively, the torsion objects and
the torsion-free objects of the theory. One easily proves that:
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(a) every object A in A has a short exact sequence, determined up to
isomorphism

T (A)� A� F (A) (with T (A) in T and F (A) in F), (0.1)

and this determines a subfunctor T and a quotient functor F of the identity
of A,

(b) T and F correspond to each other in the Galois connection determined
by the orthogonality relation A⊥B in ObA, meaning that every morphism
A→ B is null.

All this can be extended, with the same words, to any pointed category
E with kernels and cokernels, a short exact sequence (m, p) being any pair
of consecutive maps where m is a kernel of p and the latter a cokernel of m
(see e.g. [16]).

In fact, we are interested in wider extensions, to non-pointed categories
where we still have some form of exactness with respect to an ideal of ‘null
morphisms’, as in [11]– [13]; these extensions, which we call multi-pointed
categories and pre-pointed categories, are briefly analysed in Sections 1 and
4.

Section 2 studies torsion theories in a multi-pointed category E, essen-
tially defined as above. More generally, a torsion operator (τ, ϕ) consists of
two endofunctors T, F : E → E and two natural transformations τ : T → 1
and ϕ : 1 → F giving a short exact sequence (0.1) for every object A. This
operator is a torsion theory if and only if τ and ϕ give invertible transforma-
tions Tτ = τT and Fϕ = ϕF , which means that T and F can be (uniquely)
extended to an idempotent comonad and monad, respectively.

In Section 3 we show that a closure operator for topological spaces
amounts to a torsion operator on the category Top2 of pairs of topological
spaces (in the sense of Algebraic Topology, see 1.2), which is multi-pointed
with respect to a natural ideal of null morphisms. More generally, this works
for any category C2 ‘of pairs’, constructed over a category C equipped with
a suitable choice of ‘distinguished monomorphisms’. The stronger case of a
torsion theory corresponds to a closure operator which is weakly hereditary
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and idempotent. All this is outlined in the first table below

1 in a multi-pointed category in C2

2 torsion operator closure operator in C

closure operator
3 torsion theory weakly hereditary

and idempotent

1 in a pre-pointed category in C2

2 torsion operator functorial factorization in C

3a algebraic torsion operator algebraic factorization

3b torsion theory factorization system

In Sections 4 and 5 we develop the second table. Torsion operators
and torsion theories are generalised to pre-pointed categories. Any category
of morphisms C2 comes equipped with a subcategory of null objects, the
isomorphisms of C; in this sense C2 is pre-pointed and has a notion of short
pre-exact sequence, which amounts to a factorization x = x′′·x′ of a morphism
in C. Now a torsion operator in C2 amounts to a functorial factorization in
C; the former is a torsion theory if and only if the latter is an (orthogonal)
factorization system.

This correspondence can be refined: we already remarked that a torsion
theory is a torsion operator (τ, ϕ) where (T, τ) ‘is’ an idempotent comonad
and (F,ϕ) an idempotent monad. This suggests to consider an intermediate
case: an algebraic torsion operator, where the endofunctors T and F are
respectively enriched to a comonad and a monad. In the previous case of a
multi-pointed category, the additional structure is automatically idempotent
and we just get a torsion theory. For a pre-pointed category E this is not
the case: in fact, for a category of morphisms E = C2, we get an algebraic
factorization on C, introduced in [14] under the name of a ‘natural weak
factorization system’; the more explicit term ‘algebraic’, instead of ‘natural’,
was used in [10].



92 M. Grandis and G. Janelidze

1 Short exact sequences in categories with an ideal of null
morphisms

Short exact sequences are a basic ingredient of torsion theories. We explore
some fairly general situations where they can be defined.

Categories with an assigned ideal of null morphisms and (co)kernels with
respect to this ideal have been considered by various authors, including C.
Ehresmann [7] and R. Lavendhomme [17]. The present results have been
developed in [11]– [13]; we generally refer to the recent book [13], following
its terminology and notation. The symbol ⊂ denotes weak inclusion.

After recalling the notion of semiexact category, we briefly explore two
extensions: a multi-pointed category, and – more generally – a pre-pointed
category.

1.1 Semiexact categories An ex0-category, as defined in [13], is a
category E equipped with a set of null morphisms N , where:

(ex.0) N is a closed ideal of E.

The condition that N be an ideal means that every composite with a
null morphism is null, while the ‘closedness’ of N means that every null
morphism factorizes through a null object, that is, an object whose identity
belongs toN . Equivalently, one can assign a full subcategory E0 closed under
retracts, called the subcategory of null objects. (The equivalence comes out
of an obvious covariant Galois connection between subsets of morphisms and
subsets of objects, in any category.)

A semiexact category is an ex0-category E where:

(ex.1) every morphism of E has a kernel and a cokernel, with respect to N ,
written as:

kerf : Kerf � A, cokf : B � Cokf. (1.1)

The kernel is characterised up to isomorphism by the ‘usual’ universal
property, written with respect to the ideal of null morphisms (see the left
diagram below):

- f· kerf is null,
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- for every map u in E such that fu is null, there is a unique map v such
that u = (kerf)v

Kerf // // A
f // B A

f // B // //

u
��

Cokf

vyy
•

v

ee
u

OO

•

(1.2)

The cokernel is defined by the dual property, represented in the right
diagram above. It follows easily that kerf is mono and cokf is epi. A
normal mono is, by definition, a kernel (of some morphism), and a normal
epi is a cokernel; the arrows �, � are reserved here for such morphisms.

One proves that the morphism f has a unique normal factorization f =
mgp ( [13], Section 1.1.5) through its normal coimage p (the cokernel of
the kernel morphism) and its normal image m (the kernel of the cokernel
morphism)

Kerf // kerf // A
f //

p
����

B
cokf // // Cokf

Ncmf g
// Nimf

OO
m

OO
(1.3)

p = ncmf = cok(kerf), m = nimf = ker(cokf).

This factorization is natural; f is said to be an exact morphism if this g
is an isomorphism.

A sequence
M

m // A
p // B (1.4)

in E will be said to be short exact if m is a kernel of p, and p a cokernel of
m.

The morphism f : A→ B is null if and only if kerf = 1A, if and only if
cokf = 1B.

The semiexact category E is said to be pointed (or p-semiexact) if it has a
zero object 0 and its null morphisms are precisely the zero morphisms (those
which factorize through 0). In this case kernels and cokernels acquire the
usual meaning. Incidentally, we recall that a p-semiexact category where
each morphism is exact is the same as an exact category in the sense of
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Puppe and Mitchell [19, 20], called a p-exact category in [13]; such a category
is abelian if and only if it has all finite products, if and only if it has all finite
sums.

The ideal N cannot be empty unless E is. In the trivial case N = E all
kernels and cokernels are identities. The opposite category Eop is equipped
with the ideal N op, and is semiexact.

A functor between semiexact categories is said to be exact if it preserves
kernels and cokernels.

1.2 A basic example The general behaviour of semiexact categories
can be very different from that of the pointed ones, as one can see analysing
the classical category Top2 of pairs of topological spaces, in the sense of
Algebraic Topology (cf. [8]).

An object (X,A) is a space X equipped with a subspace A; a morphism
f : (X,A)→ (Y,B) is a continuous mapping f : X → Y such that f(A) ⊂ B;
the composition is plain. Top is fully embedded in Top2, identifying the space
X with the pair (X,∅).

The object (X,A) is usually read as X modulo A, and viewed as a sort
of ‘formal quotient’. It is, therefore, quite natural to define the morphism
f : (X,A)→ (Y,B) to be null whenever f(X) ⊂ B. The null objects are thus
the ‘diagonal’ pairs (T, T ) and f is null if and only if it factorizes through
one of them, for instance (X,X) (or (B,B)).

Kernels and cokernels exist and the normal factorization of f can be
presented as

(f−1(B), A) // // (X,A)
f //

p ����

(Y,B) // // (Y,B∪fX)

(X, f−1(B)) g
// (B∪fX,B)

OO
m

OO
(1.5)

The morphism f is exact if and only if it is injective and f(X) ⊃ B.
Every short exact sequence in Top2 is (up to isomorphism) of the form

(B,A) // // (X,A) // // (X,B) (A ⊂ B ⊂ X), (1.6)

where both maps carry all elements to themselves. This also determines the
normal subobjects and the normal quotients of the object (X,A).



Torsion theories, etc. 95

Now the pair (X,A) is indeed the normal quotient

X/A = (X,∅)/(A,∅)

in Top2. Every homology theory for pairs of spaces, in the sense of Eilenberg
and Steenrod [8], carries the sequence (1.6) to a long exact sequence of
abelian groups, called the homology sequence of the triple (X,B,A).

Note the following facts, in contrast with the behaviour of abelian (or
just pointed) categories. A null morphism (X,A) → (Y,B) between two
given objects need neither exist (take X 6= ∅ = B) nor be unique. A
monomorphism (given by an injective map) need not have a null kernel.
A null morphism need not be exact, a null monomorphism need not be
normal. An exact monomorphism need not be a normal mono: for example,
the normal quotient (X,A) � (X,B) is mono but it is not a normal mono
(unless A = B). The initial object (∅,∅) and the terminal object ({∗}, {∗})
are distinct and both null, but do not determine the null morphisms in any
useful way.

Every object (X,A) has a least normal subobject, the kernel of its iden-
tity, and a least normal quotient, which are null objects, generally non-
isomorphic

(X,A)0 = Ker 1(X,A) = (A,A), (X,A)0 = Cok 1(X,A) = (X,X). (1.7)

Further properties show that Top2 is a ‘homological category’, in the
sense of [11]– [13]. Similarly, the homological category Gp2 of ‘pairs of
groups’ is the domain of relative (co)homology of groups, and a source of
modified categories where exact sequences and spectral sequences coming
out of homotopy theory can be studied.

General ‘categories of pairs’ C2 on a category C ‘with distinguished sub-
objects’ have been studied in [13], Section 2.5. This topic will be reviewed
in Section 3 under more general assumptions on C, still sufficient to charac-
terise the short exact sequences of C2 as in diagram (1.6): here we need not
have a semiexact (or homological) category, but just a ‘multi-pointed’ one,
as defined below.

1.3 Multi-pointed categories A first extension of semiexact cate-
gories will allow us to view closure operators as torsion operators, in full
generality.
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By a multi-pointed category we mean a category E equipped with a closed
ideal N (or equivalently with a full subcategory E0 closed under retracts in
E) where we assume the existence of the kernel and cokernel of any identity
(and a choice of them). The latter are written as

0A = ker 1A : A0 � A, 0A = cok 1A : A� A0. (1.8)

This can be viewed as a ‘multi-object extension’ of the notion of pointed
category: in fact the latter amounts to a multi-pointed category where the
category E0 is equivalent to the singleton category.

Kernels and cokernels are defined as in 1.1, but we do not assume their
existence, in general. We only note that the kernel of a morphism f : A→ B
amounts to the pullback of 0B : B0 � B along f while the cokernel of f is
the same as the pushout of 0A : A� A0 along f . Moreover,

cok 0A = 1A = ker 0A.

A short exact sequence (m, p) is defined as in 1.1 (see (1.4)); the mor-
phisms m : M � A and p : A � P appearing there will be said to be a
normal monomorphism and a normal epimorphism, respectively. Note that
a kernel morphism that does not have a cokernel is not considered as a nor-
mal mono.

Incidentally we note that, in a category equipped with a closed ideal,
(co)kernels can only be defined as (co)limits under some additional assump-
tion, as in (1.8). To wit, the category Set of sets, equipped with the closed
ideal of constant mappings (that factorize through a singleton), has all cok-
ernels, which are pushouts, but lacks kernels – even though all limits exist.

1.4 Normal subobjects and quotients Extending topics studied
in [13] for semiexact categories, in the multi-pointed category E every ob-
ject A has a (possibly large) ordered set Nsb(A) of normal subobjects and
an ordered set Nqt(A) of normal quotients. They are linked by an anti-
isomorphism produced by cokernels and kernels

Nsb(A) // Nqt(A),oo (1.9)

which will be called kernel-cokernel duality, or kernel duality for short.
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Let us remark that kernel duality only operates on normal subobjects
and normal quotients of E and reverses their order relation. On the other
hand, categorical duality, which operates on all items, takes a normal mono
of E to a normal epi of the opposite multi-pointed category Eop and preserves
their order. When speaking of ‘duality’ without specification we shall mean
the categorical one.

These ordered sets are bounded: the object A has a least normal sub-
object 0A : A0 � A and a greatest one 1A : A � A. Similarly, it has a
least normal quotient 0A : A � A0 and a greatest one 1A : A � A. (If E is
semiexact these ordered sets are lattices; if it is p-exact they are modular
lattices [13].)

A is a null object if and only if 0A = 1A, if and only if 0A = 1A, and then
A0 = A = A0. An object is null if and only if it has precisely one normal
subobject (the null one), if and only if it has precisely one normal quotient.

1.5 The subcategory of null objects A multi-pointed category E
can be simply described by properties of its full subcategory E0 of null ob-
jects, in the same line as in [15] for semiexact categories.

In fact 0A : A0 � A is a universal arrow from the embedding E0 → E to
the object A, while 0A : A � A0 is a universal arrow the other way round.
Therefore the subcategory E0 satisfies the following condition:

(ex.0a) E0 is a full, replete, reflective and coreflective subcategory, with a
componentwise-mono counit and a componentwise-epi unit (for the coreflec-
tor D and the reflector C, respectively)

U : E0 → E C a U a D,
0A : D(A) = A0 � A, 0A : A� A0 = C(A),

(DU = idE0 = CU).

(1.10)

This is indeed an equivalent definition of multi-pointed categories, as we
shall see in Proposition 1.3. The pointed case is characterised by E0 being
equivalent to the singleton category, that is, being an indiscrete category.

We now introduce a further extension by dropping the cancellation con-
ditions inside axiom (ex.0a). This will allow us to include factorization
structures in the reach of torsion structures.
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Definition 1.1 (Pre-pointed categories). By a pre-pointed category we mean
a pair (E,E0) satisfying the following axiom:

(ex.0b) E is a category and E0 is a full replete reflective and coreflective
subcategory.

The adjunctions of the inclusion U : E0 → E will be written as

C a U a D DU = idE0 = CU,

κA : D(A) = A0 → A, γA : A→ A0 = C(A).
(1.11)

E0 is closed in E under retracts (as any reflective subcategory), and there-
fore determined by the ideal N of the morphisms which factorize through
its objects.

The pair (E,E0) will often be denoted as E, provided no ambiguity arises.

We shall see in Section 4 that every category of morphisms C2 is pre-
pointed, in a natural way.

Lemma 1.2 (Annihilation properties). Let (E,E0) be a pre-pointed category.

(a) For every object A, the objects A0 and A0 are null. The counit compo-
nent κA : A0 → A is cancellable with respect to pairs of morphisms Z −→−→ A0

defined on a null object. Dually for γA.

(b) An object A is null if and only if κA is an isomorphism, if and only if
γA is an isomorphism.

(c) A morphism f : A → B is null if and only if it factorizes through
κB : B0 → B, if and only if it factorizes through γA : A→ A0.

Proof. (a) is obvious. This implies the non-trivial part of (b): if A is null
then 1A factorizes as κA.v, whence κA is a split epi in E0, and therefore
invertible. For (c), if f : A→ B is null it factorizes through some g : Z → B
where Z is null, and the latter factorizes through κB.

Proposition 1.3 (Characterising multi-pointed categories). A category E
is multi-pointed with respect to a subcategory E0 (of null objects) if and only
if the latter satisfies axiom (ex.0a) of 1.5.

When this holds, the kernel of a morphism f : A → B amounts to the
pullback of 0B : B0 � B along f , and the cokernel of f amounts to the
pushout of 0A : A� A0 along f . Therefore E is semiexact if and only if all
these pullbacks and pushouts exist.
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Proof. Follows easily from the previous lemma.

2 Torsion theories and torsion operators in multi-pointed
categories

Torsion theories in abelian categories are dealt with in the book by Borceux
[3], Section 1.2. We show here that the basic results can be easily extended
to multi-pointed categories.

Throughout this section E is a multi-pointed category. For a category C,
writing X ∈ C we mean X ∈ ObC.

Definition 2.1 (Torsion theories). By a torsion theory in the multi-pointed
category E we mean a pair (T,F) of full, replete subcategories of E such that

(tor.1) every morphism T → F , with T ∈ T and F ∈ F, is null,

(tor.2) for every A in E there exists a short exact sequence T � A � F
with T ∈ T and F ∈ F.

The objects of T are called the torsion objects of the theory, those of F
the torsion-free objects. Categorical duality gives a torsion theory (Fop,Top)
in the opposite category Eop.

Condition (tor.1) means that T⊥F with respect to the orthogonality re-
lation in ObE, defined by:

(i) A⊥B if and only if every morphism A→ B is null.

A stronger result, in the presence of (tor.2), will be given in Corollary
2.3(b).

We shall see that the torsion objects are always closed under normal
quotients. A torsion theory is said to be hereditary if the torsion objects are
also closed under normal subobjects.

Proposition 2.2 (The torsion exact sequence). Let (T,F) be a torsion the-
ory in the multi-pointed category E.

(a) Every object A has a short exact sequence, determined up to isomorphism

T (A)� A� F (A) (T (A) ∈ T and F (A) ∈ F), (2.1)
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and called the torsion exact sequence of A. (Implicitly, we are making a
choice of a distinguished sequence for every A, in its isomorphism class.)

(b) The normal subobject in this sequence

τA : T (A)� A, (2.2)

is the greatest normal subobject of A with domain in T. This defines the
torsion function τ : ObE→ MorE of the theory.

(b*) The normal quotient

ϕA : A� F (A), (2.3)

is the greatest normal quotient of A with codomain in F. This defines the
torsion-free function ϕ : ObE→ MorE of the theory.

(c) All this determines a subfunctor T and a quotient-functor F of the
identity of E.

Proof. The points (a), (b) and (b*) can be proved by a single argument.
By hypothesis there exists a short exact sequence (m, p) as in the diagram
below, with T ∈ T and F ∈ F

T // m // A
p // // F

T ′ //
m′
//

OO

A

(2.4)

Given any normal monomorphism m′ : T ′ � A with domain in T, the
morphism pm′ is null, whence m′ ≺ m. Therefore, in our sequence, m is
determined as the greatest normal subobject of A with domain in T. By
duality p is determined as in (b*), and the sequence itself is determined (up
to isomorphism).

(c) Given a morphism f : A → B, the composite ϕB · f·τA : T (A) → F (B)
is null. This gives a (unique) commutative diagram with distinguished short
exact rows

TA // τA //

Tf
��

A
ϕA // //

f
��

FA

Ff
��

TB //
τB
// B

ϕB
// // FB

(2.5)

and defines the functors T and F on the morphisms of E.
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Corollary 2.3. Let (T,F) be a torsion theory in the multi-pointed category
E, with torsion function τA : T (A)� A and torsion-free function ϕA : A�
F (A).

(a) An object A belongs to T if and only if τA is invertible, if and only if
ϕA is null.

(a*) An object A belongs to F if and only if ϕA is invertible, if and only if
τA is null.

(b) ObT and ObF correspond to each other in the Galois connection deter-
mined by the orthogonality relation A⊥B in ObE, of 2.1(i). In other words:

ObT = {A ∈ ObE | every map A→ B with B ∈ F is null},
ObF = {B ∈ ObE | every map A→ B with A ∈ T is null}.

(2.6)

(c) If A ∈ T and there is a morphism h : A→ A′ with a null cokernel, then
A′ ∈ T. In particular, T is closed under normal quotients.

(c*) If B ∈ F and there is a morphism h : B′ → B with a null kernel, then
B′ ∈ F. In particular, F is closed under normal subobjects.

(d) An object of E belongs to T and F if and only if it is null.

Proof. (a) and (a*) follow trivially from the previous proposition.

(b) By (tor.1) every morphism T → F , with T ∈ T and F ∈ F, is null.
Let an object A be given, such that every morphism A → F with F ∈ F is
null. Then ϕA : A � F (A) is the null normal quotient of A, and the latter
belongs to T by (a).

(c) In the given hypotheses, take a morphism f : A′ → B with B ∈ F. Then
fh is null, and f is also; therefore A′ ∈ T, by (b).

(d) If A belongs to T and F then 1A is null. The converse follows from
(b).

Theorem 2.4 (The torsion function). In the multi-pointed category E it is
equivalent to assign:

(i) a torsion theory (T,F),
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(ii) a torsion function τ : ObE → MorE that satisfies the following three
axioms:

(tf.1) for every A in E, τA : T (A)� A is a normal subobject producing
a subfunctor T of the identity (that is, every map f : A → B in E has a
restriction T (f) : T (A)→ T (B),

(tf.2) for every A in E, τ(TA) is invertible (and the functor T can be
made idempotent),

(tf.3) for every A in E, T (A/T (A)) is a null object,

Given the torsion theory (T,F), the corresponding torsion function is
defined as in 2.2(b). Given the torsion function τ the corresponding torsion
theory (T,F) is defined as:

T = {A ∈ E | τA is invertible}, F = {A ∈ E | τA is null}. (2.7)

Proof. (i)⇒ (ii). If (T,F) is a torsion theory and τ the associated function,
the properties (tf.1–3) are proved in 2.2 and 2.3.

(ii) ⇒ (i). Define T and F as in (2.7). For (tor.1) we take a morphism
f : A→ B with A ∈ T and B ∈ F; then we have a commutative diagram

TA // τA //

Tf
��

A

f
��

TB //
τB
// B

(2.8)

with τA invertible and τB null, so that f is null. For (tor.2) we take the
short exact sequence

TA // τA // A
p // // A/T (A) (2.9)

where TA is in T by (tf.2) and A/T (A) is in F, by (tf.3).

2.1 The torsion-free function Dually, one can give axioms for a
torsion-free function on the multi-pointed category E. It is thus equivalent
to assign:

(i) a torsion theory (T,F),
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(ii) a torsion-free function ϕ : ObE→ MorE that satisfies the following three
axioms:

(ff.1) for every A in E, ϕA : A � F (A) is a normal quotient producing
a quotient functor F of the identity (that is, every map f : A → B in E
induces F (f) : F (A)→ F (B)),

(ff.2) for every A in E, ϕ(F (A)) is invertible (and the functor F can be
made idempotent),

(ff.3) for every A in E, F (KerϕA) is a null object.

Given a torsion theory (T,F), the corresponding torsion-free function
is defined as in (2.3). Given a torsion-free function ϕ, the corresponding
torsion theory (T,F) is defined as:

T = {A ∈ E |ϕA is null}, F = {A ∈ E |ϕA is invertible}. (2.10)

Definition 2.5 (Torsion operators). More generally a torsion operator (τ, ϕ)
on the multi-pointed category E will consist of assigning:

(top.1) for every object A, a natural short exact sequence (τA, ϕA) with
central object A.

Naturality, of course, means that for every morphism f : A→ B there is
a (unique) commutative diagram with distinguished short exact rows

TA // τA //

Tf
��

A
ϕA // //

f
��

FA

Ff
��

TB //
τB
// B

ϕB
// // FB

(2.11)

This defines the endofunctors T and F of E, as, respectively, a subfunctor
and a quotient-functor of the identity.

Equivalently, we can assign one of the following functions:

(top.1′) a function τ : ObE → MorE that satisfies axiom (tf.1) of Theorem
2.4,

(top.1′′) a function ϕ : ObE → MorE that satisfies axiom (ff.1) of Section
2.1.
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A torsion operator is a torsion theory if and only if the additional axioms
of τ in 2.4 (or equivalently those of ϕ in 2.1) are satisfied. Plainly, this is
equivalent to each of the following conditions:

(top.2) for every A in E, τ(TA) and ϕ(FA) are invertible,

(top.2′) for every A in E, F (TA) and T (FA) are null objects.

Let us note that T (τA) = τ(TA) (cancelling the monomorphism τA
from the naturality equation τA · T (τA) = τA · τ(TA)); similarly Fϕ =
ϕF . Therefore (F,ϕ) ‘is’ an idempotent monad, with multiplication µ =
(Fϕ)−1 = (ϕF )−1, and dually for (T, τ). Finally, condition (top.2) also
amounts to:

(top.2′′) (T, τ) is an idempotent comonad and (F,ϕ) an idempotent monad.

3 Closure operators as torsion operators in categories of
pairs

Given a category C with assigned ‘distinguished subobjects’, we construct a
‘category of pairs’ C2 which is multi-pointed with respect to a natural ideal
of null morphisms. Torsion operators in C2 amount to closure operators on
the distinguished subobjects of C, while a torsion theory corresponds to the
idempotence and weak hereditariness of the associated closure operator.

For closure operators we follow the terminology of Dikranjan and Tholen
[6].

3.1 Categories with distinguished subobjects We have recalled
the classical category Top2 of pairs of topological spaces, based on a choice
of distinguished subobjects in Top, namely the subspaces. This construc-
tion has a natural extension to a semiexact category of pairs C2 over a
‘ds-category’ C ( [13], Section 2.5). Forsaking the existence of all kernels
and cokernels, this procedure can be further generalised as follows.

A ds1-category is a category C equipped with a set d of distinguished
subobjects, called d-subobjects for short. We assume that:

(ds.0) for each object X, 1X represents a d-subobject,

(ds.1) if a : A → X and b : B → X represent d-subobjects and a ≤ b, the
monomorphism u : A→ B such that a = bu is equivalent to a d-subobject.
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We speak of a ds2-category if, moreover:

(ds.2) every morphism factorizes through a smallest d-subobject of its
codomain.

We shall write dX for the ordered set of d-subobjects ofX, and d′X for the
preordered set of the d-monomorphisms with values in X, equivalent to the
previous ones. We show below that conditions (ds.0) and (ds.1) are sufficient
to construct a multi-pointed category of pairs C2 and to characterise its
short exact sequences, while the additional condition (ds.2) will be used to
introduce closure operators in C.

Remark. If in (ds.1) we assume that the monomorphism u : A→ B is indeed
a d-subobject, our construction below can be simplified (up to equivalence
of categories) taking as objects of C2 the d-subobjects instead of all the d-
monomorphisms. This stronger assumption is ‘sound’ in the usual concrete
categories, and gives a category of pairs Top2 as classically constructed.

3.2 General categories of pairs Given a ds1-category C, we con-
struct the multi-pointed category of pairs C2 = Pair(C, d) as a full subcat-
egory of the category of morphisms C2.

Its objects are the distinguished monomorphisms in d′ (the union of all
d′X), its morphisms f = (f, f ′) : a → b are the commutative squares as in
the left diagram below, with obvious composition

X
f //

h ""

Y X
h // B

b // Y

A
f ′
//

a

OO

B

b

OO

A
f ′
//

a

OO

B B

b

OO

(3.1)

Such a morphism f : a→ b is assumed to be null if one can insert a map
h (necessarily unique), forming a commutative diagram. The null objects
are the isomorphisms of C and f : a → b is null if and only if it factorizes
through 1: B → B as in the right diagram above (or equivalently through
1: X → X).

The kernel 0a : a0 → a of 1a and its cokernel 0a : a → a0 are shown in
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the left diagram below, proving that C2 is multi-pointed

A
a // X X B

b // X X

A A a
//

a

OO

X A

u

OO

A u
//

a

OO

B

b

OO

(3.2)

The short exact sequences of C2, the normal subobjects and the normal
quotients of the object a are – up to isomorphism – of the form shown in
the right diagram above, determined by an inequality a ≤ b in dX (since the
monomorphism u is in d′, by (ds.1).)

In fact, it is easy to check that (b, 1A) : c→ a is a kernel of (1X , c) : a→ b,
and the latter a cokernel of the former. Conversely, the diagonal embedding
C→ C2 (that sends X to 1X) has for reflector the codomain-projection

C : C2 → C, C : a 7→ X

(with unit 0a : a → 1X); therefore the functor C preserves the existing col-
imits. Now, if a morphism (f, f ′) : t → a has a cokernel, the latter is the
pushout of 0t = (1Y , t) : t → 1Y along (f, f ′), and therefore must be of the
form (1X , u) : a→ b, for some b ≥ a in dX

Y
f //

1 ""

X
1

""
Y // X

T //

t ""

t

OO

A
u

""

a

OO

Y //
1

OO

•

b

OO
(3.3)

3.3 Closure operators on distinguished subobjects Now we
take C to be a ds2-category. We shall simplify notation, denoting distin-
guished subobjects a : A → X, b : B → X, ... by their domain A,B, ... and
writing A ⊂ B for a ≤ b; which is appropriate for the usual concrete cate-
gories (see the last remark in 3.1).

Following (and extending) the definition of [6] in Chapter 2, by a closure
operator on the ds2-category C we mean a family c = (cX) of operators on
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the ordered sets dX (for X ∈ ObC)

cX : dX → dX , A 7→ cX(A) = A, (3.4)

that satisfies the following axioms, for every A,B in dX and every morphism
f : X → Y

(cl.1) A ⊂ A (extension),

(cl.2) A ⊂ B ⇒ A ⊂ B (monotonicity),

(cl.3) f∗(cXA) ⊂ cY (f∗A) (continuity).

Here f∗A is the smallest d-subobject of Y through which the composite
A ⊂ X → Y factorizes. As usual, a subobject A is said to be closed in X if
A = A, and dense in X if A = X.

One says that the closure operator c is idempotent if it satisfies the fol-
lowing condition (cl.4), and weakly hereditary if it satisfies (cl.5):

(cl.4) A ⊂ A (idempotence),

(cl.5) cA(A) = A (weak hereditariness),

Theorem 3.1 (Closure operators as torsion operators). Let C be a ds2-
category and C2 = Pair(C, d) its multi-pointed category of pairs. To assign
a closure operator c on (the distinguished subobjects of) C is equivalent to
assigning a torsion operator (τ, ϕ) in C2, as defined in Section 2. Moreover,
c is idempotent and weakly hereditary if and only if (τ, ϕ) is a torsion theory.

Proof. (a) Given a closure operator, we define the associated torsion operator
(τ, ϕ) in C2 by letting

T (X,A) = (A,A), F (X,A) = (X,A). (3.5)

τ(X,A) : (A,A)� (X,A), ϕ(X,A) : (X,A)� (X,A), (3.6)

T = {(X,A) ∈ C2 |A is dense in X} = {(X,A) ∈ C2 |A = X}, (3.7)

F = {(X,A) ∈ C2 |A is closed in X} = {(X,A) ∈ C2 |A = A}. (3.8)

Then T is indeed a subfunctor of the identity.

(b) Conversely, let (τ, ϕ) be a torsion operator in C2. We define the as-
sociated closure operator on distinguished subobjects of C by noting that
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T (X,A), as a normal subobject of (X,A), determines a d-subobject cX(A)
of X

T (X,A) = (cX(A), A), A ⊂ cX(A) ⊂ X. (3.9)

This is indeed a closure operator on (C, d), in the sense of 3.3.

- Monotonicity: if A ⊂ B in dX , the normal quotient (X,A) � (X,B)
induces a normal epimorphism F (X,A) → F (X,B) (by 2.2(c)), that is,
(X, cX(A))� (X, cX(B), which shows that cX(A) ⊂ cX(B).

- Continuity: every morphism f : (X,A) → (Y,B) restricts to a morphism
T (X,A)→ T (Y,B), which amounts to saying that f∗(cXA) ⊂ cY (f∗A).

(c) The two procedures are inverse to each other. Starting from the operator
c, the associated torsion operator (τ, ϕ) defined in (3.5)–(3.8) gives back the
original transformation A 7→ cX(A). Starting from a torsion operator (τ, ϕ),
the associated operator c defined in (3.9) gives back, in (3.6), the original
torsion function τ(X,A) : T (X,A) � (X,A), whence the original torsion
operator.

(d) Finally the following computations, for a closure operator c and the
associated torsion operator (τ, ϕ) defined in (3.5)–(3.8),

F (T (X,A)) = F (A,A) = (A, cA(A)),

T (F (X,A)) = T (X,A) = (A,A),
(3.10)

show that the weak hereditariness and idempotence of c amount to (τ, ϕ)
being a torsion theory (by (top.2′) in 2.5).

4 Pre-pointed categories and categories of morphisms

After a brief analysis of pre-pointed categories, defined in 1.1, we show that
any category of morphisms E = C2 is pre-pointed, and that a ‘short pre-
exact sequence’ in C2 amounts to a factorization x = x′′.x′ of a morphism
in C.

4.1 Pre-kernels and pre-cokernels Let (E,E0) be a pre-pointed cat-
egory.
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For every morphism f : A→ B, (a choice of) the pullback of κB : B0 →
B along f , as in the left diagram below

A
f // B A

f //

γA

��

B

cf

��
Kf g

//

kf

OO

B0

κB

OO

A0 g
// Cf

(4.1)

will be written as kf : Kf → A and called a pre-kernel of f . We only fix the
choice k(1A) = κA. We show below that pre-kernels are weak kernels, in a
natural way. But this property puts a weak constraint on the object Kf ,
while pullbacks are determined up to isomorphism, of course.

Dually, the pushout of γA : A → A0 along f (see the right diagram
above) will be written as cf : B → Cf and called the pre-cokernel of f .
Again we fix c(1A) = γA.

A sequence
M

m // A
p // P (4.2)

will be said to be short pre-exact if m is a pre-kernel of p and p is a pre-
cokernel of m.

Proposition 4.1. Let E = (E,E0) be a pre-pointed category. For every
morphism f : A→ B, if the pre-kernel kf : Kf → A exists then it is a weak
kernel of f with respect to the ideal of null morphisms of E.This means that
f.kf is null, and for every map u in E such that fu is null, there is some
map v such that u = kf.v, as in the left diagram below

Kf
kf // A

f // B A
f // B

cf //

u
��

Cf

vzz
•

v

dd
u

OO

•

(4.3)

Dually cf : B → Cf , if it exists, is a weak cokernel of f , with a weak
universal property as in the right diagram above.

In particular, κA = k(1A) : A0 → A is a weak kernel of 1A and γA =
c(1A) : A→ A0 a weak cokernel of the latter.

Proof. If fu is null, then it factorizes through κB : B0 → B as fu = κB.g,
whence the pair (u, g) factorizes uniquely through the pullback Kf and u
just factorizes through kf .
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Proposition 4.2. Let E = (E,E0) be a pre-pointed category with all pre-
kernels and all pre-cokernels.

(a) The universal property of pullbacks determines a functor K : E2 → E
defined on the category of morphisms of E, and a natural transformation
k : K → Dom: E2 → E given by the family (kf)f .

Equivalently, we can present the pair (K, k) as a functor k : E2 → E2

that sends the morphism (u, v) : f → g of E2 to the morphism k(u, v) =
(K(u, v), u) : kf → kg, as in the left square below

Kf
kf //

K(u,v)
��

A
f //

u
��

B
cf //

v
��

Cf

C(u,v)
��

Kg
kg
// C g

// D cg
// Cg

(4.4)

(a*) Dually, the universal property of pushouts determines a functor C : E2 →
E and a natural transformation c : Cod → C : E2 → E given by the family
(cf)f . Equivalently, we have a functor c : E2 → E2 that sends (u, v) : f → g
to c(u, v) = (v, C(u, v)) : cf → cg, as in the right square above.

(b) E is semiexact (with respect to the ideal of null morphisms of E) if
and only if E is multi-pointed (with respect to E0): all the unit components
κA : A0 → A are mono and all the counit components γA : A → A0 are
epi. Then the pre-kernels kf are kernels (and monomorphisms), while the
pre-cokernels cf are cokernels (and epimorphisms).

(c) E is p-semiexact if and only if E is pointed.

Proof. Obvious.

Remark 4.3. Therefore, in a pre-pointed category E with all pre-kernels,
the family (kf)f can be extended to a natural assignment of weak kernels,
that is, a natural transformation k : K → Dom: E2 → E such that, for every
map f in E2, kf : Kf → Domf is a weak kernel of f .

Again, let us note that the weak universal property in (a) ties down the
object Kf in a weak form, and would not give any naturality, by itself.
The root of the question is the fact that κA : A0 → A is determined by the
universal property of the adjunction U a D in (1.11); this means that κA,
besides being a weak kernel of 1A, also satisfies the restricted cancellation
property of 1.2(a).
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4.2 Categories of morphisms We begin to study the category of
morphisms E = C2 of a category C, along the lines above. An object of
E is a morphism x : X ′ → X ′′ of C. A morphism f = (f ′, f ′′) : x → y
is a commutative square of C. E will always be equipped with the full
subcategory E0 of null objects: the isomorphisms of C. We now prove that
E = (E,E0) is pre-pointed.

E0 is indeed a full replete reflective and coreflective subcategory of E:
the embedding U : E0 → E has adjoints C a U a D with

D(x : X ′ → X ′′) = 1X′ , C(x : X ′ → X ′′) = 1X′′ ,

κx : 1X′ → x, γx : x→ 1X′′ ,
(4.5)

X ′ 1 //

1
��

X ′ x //

x
��

X ′′

1
��

X ′ x
// X ′′

1
// X ′′

Amorphism f : x→ y is null if and only if it factorizes through κy : 1Y ′ →
y, which amounts to the existence of a morphism h making the left diagram
below commutative

X ′
f ′ //

x
��

Y ′

y
��

X ′
f ′ //

x
��

Y ′ 1 //

1
��

Y ′

y
��

X ′′
f ′′
//

h

;;

Y ′′ X ′′
h
// Y ′ y

// Y ′′
(4.6)

Equivalently, f factorizes through γx : x→ 1X′′ .
Note that C2 is not multi-pointed, in general: the counit κ need not be

pointwise mono, nor the unit γ pointwise epi.
Any category of pairs over C is a full subcategory of C2, with a consistent

choice of null objects and null morphisms.

4.3 Pre-kernels and pre-cokernels If the category C has pullbacks
and pushouts, the same holds for its category of morphisms E = C2, which
is thus a pre-pointed category with all pre-kernels and pre-cokernels (with
respect to E0).

More precisely, without any hypothesis on C, it is easy to see that a
morphism f : x→ y in E has a pre-kernel if and only if, in the left diagram
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below, the pair (y, f ′′) has a pullback (P, u, x′′): then we define Kf as the
induced map Kf : X ′ → P , and kf = (1, x′′) : Kf → x. Note that f·kf is
proved to be null by u

X ′ 1 //

Kf

��

X ′
f ′ //

x

��

Y ′

y

��

X ′
f ′ //

x

��

Y ′
y′ //

y

��

Q

Cf
��

P
x′′
//

u

55

X ′′
f ′′
// Y ′′ X ′′

f ′′
//

v

55

Y ′′
1
// Y ′′

(4.7)

Dually, the morphism f : x → y has a pre-cokernel cf if and only if, in
the right diagram above, the pair (f ′, x) has a pushout (Q, y′, v): then we
define Cf as the induced map Cf : Q → Y ′′ and cf = (y′, 1) : y → Cf .
Again cf·f is proved to be null by v.

Therefore a pre-kernel of any morphism f : x → y of E is necessarily of
the form (1, x′′) : x′ → x where x = x′′·x′ is a factorization of x in C. More
precisely, it is of this form up to an arbitrary isomorphism (i, j) : x→ x′ of
E

X
i //

x
��

X ′ 1 //

x
��

X ′

x
��

E
j
// E

x′′
// X ′′

(4.8)

This remark clearly shows that the ‘special form’ (1, x′′) : x′ → x does
not give, by itself, a choice of pre-kernels: it only fixes i = 1 but leaves free
the other isomorphism j. (To obtain a ‘distinguished’ form of pre-kernels one
should also choose a distinguished form for any factorization x = x′′·x′ in C,
which cannot be done in a natural way in the usual categories of structured
sets.)

4.4 Short pre-exact sequences For every object x : X ′ → X ′′ of the
pre-pointed category E = C2, a factorization x = x′′.x′ in C gives a short
pre-exact sequence of C2, that is, a sequence (f, g) : • → x → • where f is
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the pre-kernel of g and the latter is the pre-cokernel of f

X ′ 1 //

x′

��

X ′ x′ //
x

��

E

x′′

��
E

x′′
//

1

55

X ′′
1
// X ′′

(4.9)

Conversely, we have seen that any short pre-exact sequence of C2 is of
this type, up to isomorphism in E.

Without any hypothesis on the category C, a sequence • → x → • of
the form (4.9) will be called a special short pre-exact sequence of C2 (with
respect to E0, the full subcategory of isomorphisms of C).

5 Functorial factorizations as torsion operators in categories
of morphisms

We show now that a functorial factorization in a category C can be viewed
as a torsion operator in the pre-pointed category E = C2. Such a torsion
operator is algebraic, or is a torsion theory, if and only if the functorial
factorization is algebraic, or is a factorization system.

For the sake of uniformity, as expressed in the tables of the Introduction,
we are slightly adapting the existing terminology on weak factorization sys-
tems, from [2, 4, 10, 14, 21]. ‘Algebraic factorizations’, in the present sense,
were introduced in [14] under the name of ‘natural weak factorization sys-
tems’, and studied in [4, 5, 10] as ‘algebraic weak factorization systems’. We
also note that a ‘functorial realisation of a weak factorization system’, in the
sense of [21], is intermediate between functorial and algebraic factorizations,
in the present sense.

The domain and codomain functors of a category of morphisms are writ-
ten as Dom and Cod.

5.1 Torsion operators and torsion theories (a) Extending Defi-
nition 2.5, a torsion operator (ε, η) in the pre-pointed category E = (E,E0)
will consist of:

(to.1) two endofunctors L,R : E → E and two natural transformations
ε : L → 1 and η : 1 → R such that, for every object A, the pair (εA, ηA) is
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a short pre-exact sequence of E (with central object A)

LA
εA // A

ηA // RA (5.1)

Equivalently, we can assign

(to.1′) two functors ε, η : E → E2 with Cod.ε = idE = Dom.η, that satisfy
the ‘pre-exactness’ condition above.

One recovers L = Dom.ε and R = Cod.η. Then, for every morphism
f : A→ B in E, εf and ηf are the ‘naturality squares’ of the transformations
ε and η

LA
εA //

Lf
��

A
ηA //

f
��

RA

Rf
��

LB
εB
// B

ηB
// RB

(5.2)

(b) A torsion theory in the pre-pointed category E = (E,E0) is a torsion oper-
ator (ε, η) where (L, ε) and (R, η) are, respectively, an idempotent comonad
and an idempotent monad. In other words, we are requiring that:

(to.2) Lε = εL is invertible, Rη = ηR is invertible.

If E is multi-pointed this agrees with the characterisation of torsion the-
ories given at the end of 2.5.

(c) As an intermediate notion, an algebraic torsion operator (ε, δ, η, µ) in
the pre-pointed category E = (E,E0) will consist of

(i) a torsion operator (ε, η), as defined above,

(ii) a comonad L = (L, ε, δ) on E that extends ε : L→ 1,

(iii) a monad R = (R, η, µ) on E that extends η : 1→ R.

Again this is a torsion theory when the comonad L and the monad R
are idempotent (that is, when δ and µ are invertible).

Proposition 5.1. If E is a multi-pointed category, an algebraic torsion op-
erator (ε, δ, η, µ) in E gives a torsion theory (ε, η), with trivial additional
data:

δ = (εL)−1, µ = (ηR)−1.
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Proof. Each component ηRA : RA� R2A is epi and a section of µA, whence
ηR is invertible, and the monad (R, η, µ) is idempotent, with µ = (ηR)−1.
Similarly, εL is invertible, and the comonad (L, ε, δ) is idempotent, with
δ = (εL)−1.

5.2 Functorial factorizations Let C be any category and E = C2 its
pre-pointed category of morphisms (see 4.2).

A functorial factorization (L,R) in the category C consists of two endo-
functors L,R : C2 → C2 such that:

(i) Dom.L = Dom, Cod.L = Dom.R (= E), Cod.R = Cod,

(ii) for every morphism x : X ′ → X ′′ of C, x = Rx·Lx.

Equivalently, we have a functor E : C2 → C and two natural transforma-
tions L : Dom→ E and R : E → Cod satisfying (ii).

These data can be reorganised as a pair (ε, η) of natural transformations
ε : L→ 1: E→ E and η : 1→ R : E→ E such that, for every object x : X ′ →
X ′′ in C2, the pair (εx, ηx) is a short pre-exact sequence of E, and actually
a special one (in the sense of 4.4)

Lx
εx // x

ηx // Rx

X ′ 1 //

Lx
��

X ′ Lx //

x
��

Ex

Rx
��

Ex
Rx
// X ′′

1
// X ′′

(5.3)

εx = (1, Rx) : Lx→ x, ηx = (Lx, 1) : x→ Rx.

But every short exact sequence in E = C2 is of this type, up to isomor-
phism. We have thus proved the following characterisation.

Theorem 5.2 (Functorial factorizations as torsion operators). A functorial
factorization (L,R) in the category C amounts to a torsion operator (ε, η)
in C2 (as defined in 5.1), where the natural transformations ε : L → 1 and
η : 1→ R are defined as in (5.3).
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The action of the functors L,R : C2 → C2 on a morphism f = (f ′, f ′′) : x→
y of C2 is

X ′
f ′ //

Lx
��

Y ′

Ly
��

Lf = (f ′, E(f ′, f ′′)) : Lx→ Ly,

Ex
E(f ′,f ′′) //

Rx
��

Ey

Ry
�� Rf = (E(f ′, f ′′), f ′′) : Rx→ Ry.

X ′′
f ′′

// Y ′′

(5.4)

Proof. The first part was proved above; the second plainly follows from
5.2(i).

Definition 5.3 (Algebraic factorizations). An algebraic factorization (L,R, ε, δ, η, µ)
in the category C is a functorial factorization (L,R) where the functors
L,R : C2 → C2 and the derived natural transformations ε : L → 1 and
η : 1 → R defined as in (5.3) are enriched to a comonad structure (L, ε, δ)
and a monad structure (R, η, µ), respectively.

Writing down the axioms of the comonad L and the monad R, we have

εLx · δx = idLx = Lεx · δx, µx · ηRx = idRx = µx ·Rηx, (5.5)

δLx · δx = Lδx · δx, µx ·µRx = µx ·Rµx. (5.6)

This notion was introduced in [14] as a ‘natural weak factorization sys-
tem’. We shall see in 5.3 that these data automatically have a distributive
law λ : LR→ RL, as considered in [4, 5, 10].

Theorem 5.4 (Algebraic factorizations as algebraic torsion operators). Let
(L,R) be a functorial factorization in C and (ε, η) the corresponding torsion
operator in E = C2.

(a) Enriching the first to an algebraic factorization (L,R, ε, δ, η, µ) in C, as
defined above, is the same as enriching the second to an algebraic torsion
operator (ε, δ, η, µ), as defined in 5.1(c).

(b) Then the four natural transformations ε, δ, η, µ have components as in
the diagram below

L2x Lx
δxoo εx // x

ηx // Rx R2x
µxoo (5.7)
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X ′

L2x
��

X ′

Lx
��

X ′ Lx //

x
��

Ex

Rx
��

ERx
µ′xoo

R2x
��

ELx Ex
δ′′x
oo

Rx
// X ′′ X ′′ X ′′

(5.8)

δx = (1, δ′′x) : Lx→ L2x, µx = (µ′x, 1) : R2x→ Rx.

(c) An algebraic factorization in C amounts to

- three functors L,R : C2 → C2 and E : C2 → C,

- two natural transformations δ′′ : E → EL and µ′ : ER→ E,

such that, for every morphism x : X ′ → X ′′ of C,

(i) Lx : X ′ → Ex, Rx : Ex→ X ′′,

(ii) x = Rx ·Lx, δ′′x ·Lx = L2x, Rx · µ′x = R2x,

(iii) RLx · δ′′x = idEx = E(1X′ , Rx) · δ′′x,
µ′x ·LRx = idEx = µ′x ·E(Lx, 1X′′),

(iv) δ′′Lx · δ′′x = E(1X′ , δ
′′x) · δ′′x, µ′x · µ′Rx = µ′x ·E(µ′x, 1X′′),

EL2x ELx
δ′′Lxoo RLx // Ex Ex

LRx //

Eηx

�� 1 $$

ERx

µ′x
��

ER2x
Eµxoo

R2x
��

ELx

Eδx

OO

Ex
δ′′x
oo

δ′′x
//

1

;;

δ′′x

OO

ELx

Eεx

OO

ERx
µ′x
// Ex ERx

µ′x
oo

Proof. Point (a) is obvious. As to (b), we already know from 5.2 that the
components of ε and δ are as shown in diagram (5.8). Since the first com-
ponent of ε is an identity, the counit axiom of L (see (5.5)) implies that the
same holds for δ, as in the diagram. Dually for µ.

For (c), conditions (i), (ii) allow us to reconstruct the natural transfor-
mations ε, δ, η, µ, as in diagram (5.8). The left part of condition (iii) is the
counit axiom of L on the non-trivial components ε′′ = R and δ′′, taking into
account that, by (5.3):

(L(εx))′′ = E(εx) = E(1X′ , Rx).

Dually, the right-hand part of condition (iii) is the unit axiom of R on the
non-trivial components η′ = L and µ′.
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Finally, condition (iv) is the (co)associativity axiom of L and R (see
(5.6)) on the non-trivial components δ′′ and µ′, after noting that

(L(δx))′′ = E(δx) = E(1X′ , δ
′′x), (R(µx))′ = E(µx) = E(µ′x, 1X′′).

5.3 The distributive law Continuing the analysis of the algebraic
case, these components δ′′x and µ′x give raise to a natural transformation
λ : LR→ RL : C2 → C2, with λ′x = δ′′x and λ′′x = µ′x

Ex
δ′′x //

LRx
��

1

&&

ELx

RLx
��

ERx
µ′x

// Ex

(5.9)

The latter is automatically a distributive law of the comonad L over the
monad R [1], that is, it makes the following diagrams commutative

L

Lη
��

L

ηL
��

LR2 λR //

Lµ
��

RLR
Rλ // R2L

µL
��

LR
λ //

εR
��

RL

Rε
��

LR
λ //

δR
��

RL

Rδ
��

R R L2R
Lλ
// LRL

λL
// RL2

(5.10)

In fact, the upper part of the first diagram comes out of:

(λx)′ · (Lηx)′ = δ′′x · (ηx)′ = δ′′x ·Lx = δ′′x ·E(1, x)

= EL(1, x) · δ′′(idX ′) = L2x = (ηLx)′,

(λx)′′ · (Lηx)′′ = µ′x ·E(Lx, 1X′′) = idEx = (ηLx)′′,

because of the naturality of δ′′ : E → EL over the map (1, x) : idX ′ → x,
and the unit axiom of µ, as expressed in 5.4(iii).

The lower part of the same diagram is dealt in a dual way. The commu-
tativity of the second diagram comes from the (co)associativity axioms of δ
and µ.
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Theorem 5.5 (Factorisations systems as torsion theories). A torsion op-
erator (ε, η) in the pre-pointed category E = C2 is a torsion theory if and
only if the associated functorial factorization (L,R) gives an (orthogonal)
factorization system (E ,M) in C, with

E = {f ∈ MorC |R(f) is an isomorphism},
M = {f ∈ MorC |L(f) is an isomorphism}.

(5.11)

Proof. This is essentially Theorem 3.2 of [14].
Let (ε, η) be a torsion operator in E, with ε : L → 1 and η : 1 → R. We

can assume that ε, η are as in diagram (5.3), determined by two functors
L,R : C2 → C2 which form a functorial factorization in C. If (L, ε) is an
idempotent comonad and (R, η) an idempotent monad, then, applying the
theorem mentioned above, L and R produce a factorization system as in
(5.11). The converse is obvious.
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