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Abstract. In this paper, for a distributive lattice L, we study and compare
some lattice theoretic features of L and topological properties of the Stone
spaces Spec(L) and Max(L) with the corresponding graph theoretical aspects
of the zero-divisor graph Γ(L). Among other things, we show that the Goldie
dimension of L is equal to the cellularity of the topological space Spec(L)
which is also equal to the clique number of the zero-divisor graph Γ(L).
Moreover, the domination number of Γ(L) will be compared with the density
and the weight of the topological space Spec(L).

For a 0-distributive lattice L, we investigate the compressed subgraph
ΓE(L) of the zero-divisor graph Γ(L) and determine some properties of this
subgraph in terms of some lattice theoretic objects such as associated prime
ideals of L.
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1 Introduction

In 1988, Beck [6] introduced the zero-divisor graph Γ0(R) of a commuta-
tive ring R whose vertices are elements of R and two distinct vertices x
and y are adjacent if and only if xy = 0. A subgraph Γ(R) of Γ0(R) has
been considered and investigated by Anderson and Livingston [1] in which
they restricted the vertex set of Γ(R) to all nonzero zero-divisors of R (see
also [2]). In the recent decades, many authors have studied zero-divisor
graph and similar graphs associated to rings, semigroups or other algebraic
structures (see for example [1, 2, 4, 6, 7, 23]).

The study of equivalence classes in a zero-divisor graph of a commutative
ring was first appeared in [19, Sec. 3] and later, it has been investigated
and extended by S. Spiroff and C. Wickham in [24]. The main purpose of
this process was to obtain a subgraph of the zero-divisor graph of a ring
which preserves many properties of the original graph, but it is easier to
deal with because it has smaller vertex and edge sets. In [5], it has been
also generalized to the reduction graph of an arbitrary graph.

Azarpanah and Motamedi [3] studied and investigated the zero-divisor
graph of the ring C(X) containing all continuous real-valued functions on
a topological space X and compared some topological properties of X and
corresponding ring theoretic features of the ring C(X) with some graph
theoretical invariants of the assigned zero-divisor graph Γ(C(X)).

As a generalization, Samei [23] investigated the relation among the ring
theoretic properties of an arbitrary commutative ring R, the topological
fearturs of Spec(R) and the graph theoretic aspects of the zero-divisor graph
Γ(R).

There are many papers which interlink graph theory with poset and
lattice theory. For instance, Halaš and Jukl [14] introduced the zero-
divisor graph of posets. These investigations has been continued by Xue
and Liu [28] and Tamizh Chelvam and Nithya [25]. In [8, 10, 12, 15, 17, 25],
the authors discuss the properties of graphs derived from lattices. The an-
nihilator graph of a 0-distributive lattice has been investigated by authors
as an extension of the zero-divisor graph of L (see [4]). Reduced zero-divisor
graph of a poset has been studied and investigated in [20]. In [18], the graph
ΓE(L) of equivalance classes of zero divisors of a meet semilattice L with 0
has been introduced and some of its properties have been studied.

For a distributive lattice L, the Stone space Spec(L) and the subspace
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Max(L) are well known (for example see [13, Section II-5] and [21]). For
a pm-lattice L, Joshi and Khiste [16] investigated some properties of the
zero-divisor graph Γ(L) such as the diameter and the eccentricity. They
also studied some algebraic and topological conditions under which the zero-
divisor graph Γ(L) is triangulated or hypertriangulated.

In this article, at first for a distributive lattice L, we study and inves-
tigate some relations among lattice theoretic featurs of L such as Goldie
dimension and minimal prime ideals of L and some topological properties
of the Stone spaces Spec(L) and Max(L) like cellularity, density and weight
of them and compare them with some graph theoretic aspects of the zero-
divisor graph Γ(L) such as its clique number and domination number. After
that, for a 0-distributive lattice L, we investigate the compressed subgraph
ΓE(L) of the zero-divisor graph Γ(L) and determine some properties of this
subgraph in terms of the corresponding lattice theoretic properties such as
associated prime ideals of L.

In Section 2, we recall some preliminary concepts from graph theory,
lattice theory, and topology. Section 3 is devoted to an investigation of
the zero-divisor graph Γ(L) in comparison with some topological aspects of
Spec(L) and Max(L). In Theorem 3.1, we establish equalities among the
Goldie dimension of a distributive lattice L, the cellularity of its Stone space
Spec(L) and the clique number of the corresponding zero-divisor graph.
We will see that in case L is semiprimitive, they are also equal to the
cellularity of the subspace Max(L) (see Corollary 3.4). Among other things,
we show that if L is a semiprimitive pm-lattice with |Min(L)| ≥ 3, then the
domination number dt(Γ(L)) lies between the density dens(Spec(L)) and the
weight w(Spec(L)) (see Theorem 3.10). Moreover, under an additional mild
condition on Spec(L), we obtain the equality dens(Spec(L)) = dt(Γ(L)) (see
Theorem 3.11). Also, we give a necessary and sufficient condition under
which the set of isolated points of Spec(L) is a dense subset (see Theorem
3.19). In Section 4, we study the the compressed zero-divisor graph ΓE(L)
of a bounded 0-distributive lattice L. We show that for nontrivial cases,
this graph can not be a complete, complete bipartite graph or a cycle (see
Theorems 4.9, 4.10 and 4.11). Furthermore, we will see that this graph is
closely related to the associated prime ideals of L (see Corollaries 4.15 and
4.16 and Theorems 4.19 and 4.21).
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2 Preliminaries

In this section, for convenience, we recall some preliminary definitions and
notations. For more details about the standard notations and terminologies
in graph theory, lattice theory, and topology the reader is referred to [26, 27],
[13], and [9, 21], respectively.

2.1 Some notions from graph and lattice theory In a graph G,
the distance between two distinct vertices a and b, denoted by d(a, b), is
the length of the shortest path connecting a and b, if such a path exists;
otherwise, we set d(a, b) = ∞. The diameter of a graph G is defined as
diam(G) = sup{d(x, y) : x, y ∈ V (G)}. A graph G is said to be connected if
there exists a path between any two distinct vertices, and it is complete if it
is connected with diameter one. We use Kn to denote the complete graph
with n vertices. For a positive integer r, an r-partite graph is one whose
vertex set can be partitioned into r subsets so that no edge has both ends
in any one subset. A complete r-partite is one in which each vertex is joined
to every vertex that is not in the same subset. The complete bipartite graph
with parts of sizes m and n is denoted by Km,n. A nonempty subset S of
V (G) is called a dominating set if every vertex in V (G)\S is adjacent to at
least one vertex in S. The domination number dt(G) of G is the minimum
cardinality of the dominating sets in G. A clique of a graph G is a complete
subgraph of G and the maximum size of cliques in G is called the clique
number of G and is denoted by ω(G).

Let L be a modular lattice with 0 and 1. Following [11] a finite subset
{ai|i ∈ I} of L \ {0} is said to be join-independent if ai ∧ (

∨
j 6=i aj) = 0 for

every i ∈ I. An arbitrary subset of L \ {0} is said to be join-independent,
if all its finite subsets are join-independent. If a bounded modular lattice
L does not contain any infinite join-independent subset, then there exists
a smallest positive integer n such that any join-independent subset of L
has cardinality ≤ n. In this case n is said to be the Goldie dimension of
L. If L contains an infinite join-independent subset, then L is said to have
infinite Goldie dimension. A subset I of a lattice L is called an ideal if it is
a sublattice of L and for x ∈ I and a ∈ L imply that x ∧ a ∈ I. An ideal
I of L is proper if I 6= L. A proper ideal I of L is called a prime ideal if
a, b ∈ L and a ∧ b ∈ I imply that a ∈ I or b ∈ I. For every a ∈ L, we
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set (a] = {x ∈ L : x ≤ a}. In fact, (a] is an ideal of L which is called the
principal ideal generated by a. A bounded distributive lattice L is called a
pm-lattice if every prime ideal of L is contained in a unique maximal ideal
and a lattice L with 0 is said to be semiprimitive if the intersection of all
maximal ideals of L is 0. Also a lattice L with the bottom element 0 is said
to be 0-distributive if the equalities a∧b = 0 = a∧c imply that a∧(b∨c) = 0.

2.2 Some notions from Ston spaces Spec(L) and Max(L) Let X
be a topological space. The cellularity of X, denoted by c(X), is the smallest
cardinal number m such that every set of pairwise disjoint nonempty open
subsets of X has cardinality at most m. The weight of a topological space X,
denoted by w(X), is the smallest element in the set of all cardinal numbers
of the form |B|, where B is a base for the open subsets of X. The density
of a topological space X, denoted by dens(X), is defined as the smallest
cardinal number of the form |Y |, where Y is a dense subset of X. For a
distributive lattice L, we denote by Max(L), Spec(L), and Min(L) the set
of all maximal ideals, the set of all prime ideals and the set of all minimal
prime ideals of L respectively. Let I be an ideal of L and a ∈ L. We set

V (a) = {P ∈ Spec(L) : a ∈ P} , D(a) = Spec(L) \ V (a).

Then the sets V (I) =
⋂
a∈I V (a) = {P ∈ Spec(L) : I ⊆ P} satisfy the ax-

ioms for the closed sets of a topology on Spec(L), called the Stone topology.
Also the sets D(I) =

⋃
a∈I D(a) satisfy the axioms for the open sets of this

topology. We set

V
′
(a) = V (a) ∩Min(L) , D

′
(a) = D(a) ∩Min(L),

M(a) = V (a) ∩Max(L) , Dm(a) = Max(L) \M(a),

and for an ideal I of L, Dm(I) = Max(L)\{M ∈ Max(L) : I ⊆M}. Given a
subset µ of a topolgical space, the closure of µ is defined as the intersection
of all closed sets containing µ, and the interior of µ is defined as the union
of all open sets contained in µ.

2.3 The zero-divisor graph Γ(L) and the compressed zero–
divisor graph ΓE(L) of a lattice L For a lattice L with the bottom
element 0, the set

Z(L) = {x ∈ L : ∃a ∈ L \ {0};x ∧ a = 0}
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of zero-divisors is considered and the zero-divisor graph of L is defined as
the (undirected) graph with the vertex set Z(L)? = Z(L) \ {0} and two
distinct vertices x and y are assumed to be adjacent if and only if x∧y = 0.

An equivalence relation ∼ on a 0-distributive lattice L, is defined by
x ∼ y if and only if annL(x) = annL(y). The compressed zero-divisor graph
ΓE(L) is the graph whose vertices are the equivalence classes induced by ∼
other than [0] and [1], such that distinct vertices [x] and [y] are adjacent in
ΓE(L) if and only if x ∧ y = 0.

3 Some relations between the zero-divisor graph Γ(L) and
the topological space Spec(L)

It has been shown in [23] that for a commutative reduced ring R, the clique
number of the zero-divisor graph Γ(R) is the same as the cellularity of the
topological space rmSpec(R) and this is also equal to the Goldie dimension
of the ring R. For a distributive lattice L, the Goldie dimension of L has
been defined and investigated in the literature (see for example [11]). Also
the Stone spaces Spec(L) and Max(L) are well known (see for example [13,
Section II-5]). In [16] V. Joshi and A. Khiste stated some results about the
zero-divisor graph of a distributive lattice.

In this section, we state more results on the zero-divisor graph Γ(L) of a
distributive lattice L relating it with topological properties of Spec(L) and
Max(L) and some lattice theoretic aspects of L.

Theorem 3.1. For a distributive lattice L with 0, we have

ω(Γ(L)) = c(Spec(L)) = Gdim(L).

Proof. Let H be a clique in Γ(L). Then for all distinct vertices a and b
in H, a ∧ b = 0 implies that D(a) ∩ D(b) = ∅. In this way, we obtain a
family C = {D(a) : a ∈ H} of pairwise disjoint nonempty open subsets
of Spec(L). This yields that ω(Γ(L)) ≤ c(Spec(L)). Now consider the
collection B = {Aλ : λ ∈ Λ} of pairwise disjoint nonempty open subsets of
Spec(L). For every Aλ ∈ B there exists an element aλ ∈ L \ {0} such that
D(aλ) ⊆ Aλ. Clearly, for every two distinct indices λ and λ

′
in Λ, we have

aλ ∧ aλ′ = 0. Hence the set G = {aλ : λ ∈ Λ} forms a clique in Γ(L). This
means that ω(Γ(L)) ≥ c(Spec(L)) and therefore the first equality holds.
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In order to prove the second equality, let Gdim(L) = c and {aλ : λ ∈ Λ}
be a join-independent subset of L such that |Λ| ≤ c. Since for distinct
elements λ, λ

′ ∈ Λ, aλ ∧ aλ′ = 0, then D(aλ) ∩D(aλ′ ) = ∅ and this implies
that C = {D(aλ) : λ ∈ Λ} is a collection of mutually disjoint nonempty open
subsets in Spec(L). Therefore, c(Spec(L)) ≥ c. Conversely, let c(Spec(L)) =
|Λ| and {Gλ : λ ∈ Λ} be any collection of mutually disjoint nonempty open
subsets in Spec(L). By axiom of choice, for every λ ∈ Λ, we can select a
unique aλ such that D(aλ) ⊆ Gλ. We claim that the set {aλ : λ ∈ Λ} is a
join-independent subset of L. Let x = aλ∧(

∨
λ 6=λ′∈Λ′ aλ′ ), where Λ

′ ⊆ Λ and

|Λ′ | is finite. Now since x ≤ aλ and x ≤ ∨λ 6=λ′∈Λ′ aλ′ , then D(x) ⊆ D(aλ)
and

D(x) ⊆ D(
∨

λ 6=λ′∈Λ′
aλ′ ) =

⋃

λ 6=λ′∈Λ′
D(aλ′ ).

Hence

D(x) ⊆ D(aλ) ∩ (
⋃

λ6=λ′∈Λ′
D(aλ′ )) ⊆

⋃

λ6=λ′∈Λ′
(Gλ ∩Gλ′ ) = ∅.

Therefore, x = 0 and this means that c(Spec(L)) ≤ c = Gdim(L).

Corollary 3.2. Let L be a bounded distibutive lattice and every maximal
ideal of L is generated by a nonzero zero-divisor. Then Spec(L) = Max(L)
is a discrete space and

ω(Γ(L)) = c(Spec(L)) = Gdim(L) = |Spec(L)| = |Max(L)|.

Proof. Suppose that y ∈ Z(L)? and M = (y] is a maximal ideal. Then there
exists a nonzero element x ∈ L such that y∧x = 0 and {M} = D(x). Since
every prime ideal P is contained in a maximal ideal M which is generated
by a nonzero zero-divisor y, it can be concluded that Spec(L) = Max(L) is
a discrete space. Now the last statement is an immediate consequence of
Theorem 3.1.

Lemma 3.3. [16, Corollary 1.4] Let L be a semiprimitive distributive
lattice. Then Max(L) is a dense subspace of Spec(L).

Corollary 3.4. Let L be a semiprimitive distibutive lattice. Then

ω(Γ(L)) = c(Spec(L)) = Gdim(L) = c(Max(L)).
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Proof. Let Gdim(L) = c and {ai : i ∈ I} be a join-independent subset of
L with |I| = c. Now, ai ∧ aj = 0, for all distinct elements i, j ∈ I. Hence
Dm(ai) ∩ Dm(aj) = ∅ implies that F = {Dm(ai) : i ∈ I} is a collection
of pairwise disjoint nonempty open subsets in Max(L). This means that
c(Max(L)) ≥ Gdim(L). On the other hand, if {Gi 6= ∅ : i ∈ I} is a
collection of pairwise disjoint nonempty open subsets in Max(L), then it
is in correspondence with a collection of mutually disjoint nonempty open
subsets in Spec(L) by Lemma 3.3. Therefore, c(Max(L)) ≤ c(Spec(L)) and
the proof is complete by Theorem 3.1.

Lemma 3.5. [16, Lemma 1.9] For a distributive lattice L with 0, if a ∈ L,
then V (annL(a)) = D(a), where annL(a) = {x ∈ L : x ∧ a = 0} and D(a)
is the closure of D(a) in Spec(L).

Corollary 3.6. Let L be a distributive lattice with 0. For every element
a ∈ L, D(annL(a)) = int(V (a)).

Proof. By Lemma 3.5 and [9, Theorem 1.1.5], we have

V (annL(a)) = D(a) = Spec(L) \ int(V (a)).

Therefore, D(annL(a)) = int(V (a)).

Lemma 3.7. [16, Lemma 2.15] For a pm-lattice L let U be an open subset
in Spec(L) and P ∈ Spec(L) with V (P ) ⊆ U . Then there exists an element
a ∈ L such that P ∈ int(V (a)) ⊆ U.

Remark 3.8. Let L be a pm-lattice and Um be a nonempty open subset in
Max(L) such that M1 ∈ Um. Then there exists a nonempty open subset Us
in Spec(L) such that Um = Us∩Max(L) and M1 ∈ {M1} = V (M1) ⊆ Us. By
Lemma 3.7, there exists an element a ∈ L such that M1 ∈ int(V (a)) ⊆ Us.
By Corollary 3.6, M1 ∈ D(annL(a)) ∩ Max(L) ⊆ Us ∩ Max(L) = Um.
Therefore, M1 ∈ Dm(annL(a)) ⊆ Um. This means that {Dm(annL(a)) : a ∈
L} is a base for the open subsets in Max(L).

Theorem 3.9. [16, Theorem 2.18] Let L be a distributive lattice with the
bottom element 0 and there exists a vertex a in Γ(L) which is adjacent to
every other vertex in Γ(L). Then |Min(L)| = 2.
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Theorem 3.10. For a semiprimitive pm-lattice L if |Min(L)| ≥ 3, then

dens(Spec(L)) ≤ dt(Γ(L)) ≤ w(Spec(L)).

Proof. Suppose that D is a dominating set with minimum cardinality. By
Theorem 3.9, |D| ≥ 2. For every a ∈ D there exists an element b ∈ Z(L)?

such that a ∧ b = 0 and since
⋂
M∈Max(L)M = {0}, there is a maximal

ideal M ∈ Max(L) such that b /∈ M . Therefore, annL(a) 6⊆ M , i.e. M ∈
Dm(annL(a)). Also there exists a maximal ideal M

′ ∈ Dm(a). For every
a ∈ D, using axiom of choice, we can choose one Ma in Dm(annL(a)) and
one M

′
a in Dm(a). We show that the set

B = {Ma : a ∈ D} ∪ {M ′
a : a ∈ D}

is dense in Max(L) and thus in Spec(L), by Lemma 3.3.
By Remark 3.8, {Dm(annL(a)) : a ∈ Z(L)?} is a base for the nonempty

open subsets of Max(L). Therefore, it is sufficient to observe that for every
a ∈ Z(L)?, B ∩ Dm(annL(a)) 6= ∅. If a ∈ D, then Ma ∈ B∩Dm(annL(a)).
Otherwise, if a /∈ D, then there exists b ∈ D such that a ∧ b = 0. Thus
M
′
b ∈ B ∩Dm(annL(a)). According to the description given, B is dense in

Spec(L). This shows that

dens(Spec(L)) ≤ dens(Max(L)) ≤ |B|.

Now we claim that dens(Spec(L)) ≤ |D|. If D is an infinite set, then
dens(Spec(L)) ≤ |B| ≤ 2|D| = |D|. Therefore, we assume that D =
{a1, . . . , an}. We claim that, in this case we can construct B in such a
way that |B| ≤ |D|; by deleting the redundant maximal ideals in B. If
n = 2k, then we partition the set

D = {a1, a2, . . . , a2k−1, a2k}

into k disjoint two-element subsets

{a1, a2}, . . . , {a2k−1, a2k}.

As d(a1, a2) ≤ 3, we have three cases:

Case(I): If a1 ∧ a2 = 0, then we can take Ma1 = M
′
a2

and Ma2 = M
′
a1

.
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Case(II): If d(a1, a2) = 2, then a1 ∧ a2 6= 0 and there is a vertex x in Γ(L) such
that x∧a1 = 0 = x∧a2. Therefore, we can take M

′
a1∧a2

= M
′
a1

= M
′
a2

and M
′
x = Ma1 = Ma2 .

Case(III): In case d(a1, a2) = 3, there are distinct vertices x1 and x2 in Γ(L) such
that x1 ∧ a1 = 0, x1 ∧ a2 6= 0 and x2 ∧ a2 = 0, x2 ∧ a1 6= 0. Therefore,
we can take M

′
x1∧a2

= M
′
a2

= Ma1 and M
′
x2∧a1

= M
′
a1

= Ma2 .

Now if n = 2k+1, then we divide D into k−1 mutually disjoint two-element
subsets and one subset {an−2, an−1, an} with three elements. If there is at
least one edge in the subset with three elements, then considering all possible
cases, it is straightforward to see that

|{Man ,Man−1 ,Man−2 ,M
′
an ,M

′
an−1

,M
′
an−2
}| ≤ 3. Otherwise, if there is

no pair of adjacent vertices in {an−2, an−1, an}, we have two different cases:

Case(1): Let an ∧ an−1 ∧ an−2 6= 0. This case in turn can be divided into the
following subcases:

Subcase(1-1): If there exists a vertex x1 ∈ Z(L)? such that x1 ∧ an−1 = x1 ∧
an−2 = x1 ∧ an = 0, then we can take M

′
an∧an−1∧an−2

= M
′
an−1

=

M
′
an−2

= M
′
an and M

′
x1

= Man−1 = Man−2 = Man .

Subcase(1-2): If there exist distinct i, j ∈ {n−2, n−1, n} such that d(ai, aj) = 2,
then there is a vertex x ∈ Z(L)? such that x∧ai = x∧aj = 0 and
if x is not adjacent to the third vertex y ∈ {an−2, an−1, an}, then
we can take Mai = Maj = M

′
y = M

′
x∧y and M

′
ai = M

′
aj = M

′
ai∧aj .

Subcase(1-3): Let for every distinct i, j ∈ {n − 2, n − 1, n}, d(ai, aj) = 3 and
x1∧an−2 = 0, x1∧an−1 6= 0, x1∧an 6= 0, x3∧an−2 6= 0, x3∧an =
0. If x1∧an−1∧an 6= 0, then we can take M

′
x1∧an−1∧an = M

′
an−1

=

M
′
an = Man−2 and M

′
x3∧an−2

= M
′
an−2

= Man . Otherwise, if

x1 ∧ an−1 ∧ an = 0, we can take M
′
x1∧an−1

= M
′
an−1

= Man =

Man−2 and M
′
x1∧an = M

′
an = Man−1 .

Case(2): Now let an ∧ an−1 ∧ an−2 = 0, an−1 ∧ an−2 6= 0, an ∧ an−1 6= 0 and
an∧an−2 6= 0. Then we can take M

′
an = M

′
an−1

= Man−2 and M
′
an−2

=
Man .

Hence dens(Spec(L)) ≤ |B| ≤ |D| ≤ dt(Γ(L)).
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In order to show that dt(Γ(L)) ≤ w(Spec(L)), suppose that B = {Bλ :
λ ∈ Λ} is a base for the open subsets of Spec(L). Since {D(a) : a ∈ L}
is also a base for open subsets of Spec(L), then for every Bλ ∈ B there
exists an aλ such that D(aλ) ⊆ Bλ. We claims that D = {aλ : λ ∈ Λ} is a
dominating set. To see this, let b ∈ Γ(L)\D; then there exists Bλ ∈ B such
that Bλ ⊆ int(V (b)). Therefore, D(aλ) ⊆ int(V (b)), that is, aλ ∧ b = 0 and
consequently D is a dominating set. Now dt(Γ(L)) ≤ |D| ≤ |B| for every
base of open subsets of Spec(L) such as B. This means that dt(Γ(L)) ≤
w(Spec(L)).

A family B(x) of neighbourhoods of x is called a base for a topological
space X at the point x if for any neighbourhood V of x there exists an
element U ∈ B(x) such that x ∈ U ⊆ V . The character of a point x in a
topological space X is defined as the smallest cardinal number of the form
|B(x)|, where B(x) is a base for X at the point x; this cardinal number is
denoted by χ(x,X). The character of a topological space X is defined as
the supremum of all numbers χ(x,X), where x ∈ X. This cardinal number
is denoted by χ(X).

In the following theorem, we see that under a mild condition on the
space Spec(L), the first inequality in Theorem 3.10, can be replaced by an
equality.

Theorem 3.11. Let L be a semiprimitive pm-lattice with |Min(L)| ≥ 3 and
χ(Spec(L)) ≤ dens(Spec(L)). Then dt(Γ(L)) = dens(Spec(L)).

Proof. Theorem 3.10, shows that dens(Spec(L)) ≤ dt(Γ(L)). Now we must
prove the other inequality. Suppose that C = {Pλ : λ ∈ Λ} is a dense subset
of Spec(L). For every λ ∈ Λ, there exists a base Bλ of the topological space
Spec(L) at Pλ such that |Bλ| ≤ χ(Spec(L)) ≤ dens(Spec(L)). Considering
{Bλi ∈ Bλ : λi ∈ Iλ} there exists xλi ∈ L, such that Pλ ∈ D(xλi) ⊆ Bλi .
Now if χ(Spec(L)) is finite. We set

∧
λi∈Iλ xλi = aλ 6= 0 and show that

D = {aλ : λ ∈ Λ} is a dominating set. If b ∈ Γ(L) \D, then int(V (b)) 6= ∅
and since C is a dense subset, therefore, there exists λ0 ∈ Λ such that
Pλ0 ∈ int(V (b)) ∩ C and, according to the above descriptions, there exists
Bλ0i

∈ Bλ0 in which Pλ0 ∈ D(aλ0) ⊆ Bλ0i
⊆ int(V (b)); then aλ0 ∧ b =

0. Inasmuch as |D| ≤ |C|, we have dt(Γ(L)) ≤ dens(Spec(L)) and hence
dt(Γ(L)) = dens(Spec(L)). Otherwise, if χ(Spec(L)) is infinite, we set
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D1 = {xλi : λi ∈ Iλ, λ ∈ Λ}, and with a similar argument as above, we see
that D1 is a dominating set and also |D1| ≤

∑
Pλ∈C |Bλ| ≤ |C||C| = |C|.

Lemma 3.12. Suppose that L is a semiprimitive bounded distributive lat-
tice. Then for y ∈ Z(L)?, M = (y] is a maximal ideal in L if and only if
M is an isolated point in Max(L).

Proof. Let M = (y] be a maximal ideal, where y ∈ Z(L)? with x ∧ y =
0(x 6= 0). Then {M} = Dm(x). Conversely, suppose that M is an isolated
point in Max(L). Then there exists a nonzero element x ∈ L such that
{M} = Dm(x). For every m ∈ M , m ∧ x ∈ ⋂M ′∈Max(L)M

′
= {0} and

M ∨ (x] = L. Hence there is y ∈ M such that y ∨ x = 1. Now, we claim
that M = (y]. To see this, we note that an arbitrary element m ∈M can be
written as m = m∧ (y ∨ x) which implies that m = m∧ y ∈ (y]. Therefore,
M = (y].

Lemma 3.13. Let L be a semiprimitive bounded distributive lattice. Then
the set of isolated points in the space Spec(L) is the same as the set of
isolated points in the space Max(L).

Proof. Let P0(L) and M0(L) be the sets of isolated points of the spaces
Spec(L) and Max(L) respectively, suppose that M ∈ M0(L). By Lemma
3.12, there exist y, x ∈ Z(L)?, such that x ∧ y = 0 and M = (y]. Hence
for each P ∈ Spec(L) with P 6= M, P contains x. This means that⋂
P∈Spec(L)\{M} P 6⊆ M , that is, D(x) = {M}. Conversely, suppose that

P ∈ P0(L). Since L is a semiprimitive lattice, P is a maximal ideal.

We recall that the eccentricity e(a) of a vertex a of a graph G is defined
to be e(a) = max{d(a, b) : b ∈ G, b 6= a}. A centeral vertex in a graph G is
a vertex a0 in G with minimum eccentricity. The set of all central vertices
in a graph G is called the center of G.

Theorem 3.14. [16, Theorem 2.20] For a semiprimitive pm-lattice L, let
a be a vertex in Γ(L) with e(a) 6= 1. Then e(a) = 2 if and only if |D(a)| = 1.

Lemma 3.15. [16, Lemma 1.2] For a distributive lattice L and every subset
µ ⊆ Spec(L), the closure of µ is µ = {P ′ ∈ Spec(L) :

⋂
P∈µ P ⊆ P

′}.

With a similar argument as in [22, Proposition 4.1], it can be seen that:
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Theorem 3.16. Let L be a semiprimitive pm-lattice and P0(L), M0(L)
and I0(L) be the sets of isolated points of the spaces Spec(L), Max(L), and
Min(L), respectively. Then P0(L) = M0(L) = I0(L).

A point P of Spec(L) is said to be a quasi-isolated point if P is a minimal
prime ideal and P is not contained in the union of all minimal prime ideals
of L different from P . In this case, there exists an element x ∈ L such that
{P} = V

′
(x) = D

′
(annL(x)).

Remark 3.17. It is not hard to prove that for a semiprimitive pm-lattice
L a point in Min(L) is quasi-isolated if and only if it is isolated.

A graph G is called triangulated if each vertex of G is a vertex of a
triangle.

Theorem 3.18. [16, Theorem 3.6] Let L be a distributive lattice with 0.
Then Γ(L) is a triangulated graph if and only if Spec(L) has no quasi-
isolated points.

Theorem 3.19. Let L be a semiprimitive pm-lattice and |Min(L)| ≥ 3.
Then the following assertions are equivalent.

(1) Γ(L) is not triangulated and the center of Γ(L) is a dominating set.
(2) The set of all isolated points of Spec(L) is a dense subset of Spec(L).

Proof. (1) ⇒ (2) As Γ(L) is not a triangulated graph, by Theorem 3.18,
there exists at least one quasi-isolated point P0 in Spec(L). Now, by Re-
mark 3.17 and Theorem 3.16, D(a0) = {P0}, and by Lemma 3.15, we have
|D(a0)| = 1. Also, by Theorems 3.14 and 3.9, e(a0) = 2. Thus if we denote
the center of Γ(L) by Γ

′
(L), we have Γ

′
(L) = {a ∈ Γ(L) : |D(a)| = 1}.

We show that Y = {P ′a : a ∈ Γ
′
(L), D(a) = {P ′a}} is dense in Spec(L).

On contrary, suppose that U is a nonempty open subset of Spec(L) such
that U ∩ Y = ∅. By density of Max(L) in Spec(L), it can be shown that
U ∩ Max(L) 6= ∅ and |U ∩ Max(L)| ≥ 2. Thus there are distinct maxi-
mal ideals M,M

′ ∈ U and elements x, y, b and b
′

such that x ∈ P0 \M ,
y ∈M ′ \M ∪P0 , b = x∧ y ∈ P0 ∩M ′ \M and M ∈ D(b

′
) ⊆ U . Therefore,

M ∈ D(b) ∩ D(b
′
) = D(b ∧ b′) ⊆ U and P0,M

′
/∈ D(b ∧ b′), by Lemma

3.7, there exists c ∈ Γ(L) such that M ∈ int(V (c)) ⊆ D(b ∧ b′) ⊆ U .
Consequently, P0,M

′ ∈ D(c), that is, c /∈ Γ
′
(L). Since Γ

′
(L) is a dom-

inating set, there exists an element a ∈ Γ
′
(L) with a ∧ c = 0. Hence
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P
′
a ∈ D(a) ⊆ int(V (c)) ⊆ U , that is, U contains an isolated point of

Spec(L), which is a contradiction. Therefore, U ∩ Y 6= ∅, and then Y is
dense in Spec(L).

(2) ⇒ (1) If Y = {Pλ : λ ∈ Λ} is the set of isolated points of Spec(L),
then, by Theorem 3.18, Γ(L) is not triangulated. Consider D = {aλ ∈
Γ(L) : D(aλ) = {Pλ}}. By Theorem 3.9, e(a) ≥ 2, for every a ∈ Γ(L) and
since Pλ is an isolated point in Spec(L), then |D(aλ)| = 1, for every λ ∈ Λ.
By Theorem 3.14, D is the center of Γ(L). Now for every b ∈ Γ(L) \ D,
int(V (b)) 6= ∅ and by density of Y in Spec(L), we can take a prime ideal
Pλ ∈ int(V (b)) ∩ Y . Therefore, D(aλ) ⊆ int(V (b)), which implies that
aλ ∧ b = 0, that is, D is a dominating set.

4 Some properties of the compressed zero-divisor graph ΓE(L)

In this section we study and investigate some properties of the compressed
zero-divisor graph of a 0-distributive lattice.

Let L be a 0−distributive lattice. Then for every element x ∈ L,
annL(x) = {y ∈ L : x ∧ y = 0} is an ideal of L(see [4, Lemma 2.3]).

With a similar argument as in [14, Lemmas 2.2 and 2.4], it can be shown
that:

Lemma 4.1. Let L be a 0−distributive lattice and ω(Γ(L)) < ∞. Then
every nonempty subset of = = {annL(x) : x ∈ L, x 6= 0} has a maximal
element (with respect to inclusion). Moreover, every maximal element of =
is a prime ideal of L.

Definition 4.2. Let L be a 0-distributive lattice. A prime ideal P of L is
called an associated prime ideal of L if there exists an element x ∈ Z(L)?

such that P = annL(x).

The set of all associated prime ideals of L is denoted by Ass(L). As we
saw in Lemma 4.1, any maximal element of = = {annL(x) : 0 6= x ∈ L} is
an associated prime ideal.

For two elements x and y in a bounded 0-distributive lattice L, we
say that x ∼ y if and only if annL(x) = annL(y). In this way, ∼ defines
an equivalance relation on L. Furthermore, for elements x1, x2, y ∈ L, if
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x1 ∼ x2 and x1 ∧ y = 0, then x2 ∧ y = 0. If [x] denotes the equivalance
class of x, then the meet [x] u [y] = [x ∧ y] and the join [x] t [y] = [x ∨ y]
make sense. This means that the operations meet and join are well-defined
on the set LE = {[x] : x ∈ L} of all equivalence classes of ∼. Note that
[0] = {0} and [1] = L \ Z(L). If L is also a 0−distributive lattice, then the
equivalence relation ∼ is a congruence. Therefore, LE is a 0−distributive
lattice.

Definition 4.3. The compressed zero-divisor graph of a bounded 0-distributive
lattice L, denoted by ΓE(L) = Γ(LE), is a graph whose vertices are the el-
ements of Z(LE)? = LE \ {[0], [1]}, and each pair of distinct classes [x] and
[y] are joined by an edge if and only if [x] u [y] = [0].

There is a natural injective map from Ass(L) to the vertex set of ΓE(L)
given by P 7→ [y], where P = annL(y).

In order to proceed further, we need the following two lemmas, which
both of them are essentially similar to [24, Lemma 1.2].

Lemma 4.4. Let L be a 0−distributive lattice and x, y ∈ L. If annL(x) and
annL(y) are distinct prime ideals of L, then [x] u [y] = [0]. In particular,
any pair of distinct vertices in ΓE(L) which are corresponded to associated
prime ideals of L are adjacent.

The converse of Lemma 4.4 is not true. In fact, every pair of adjacent
vertices in ΓE(L) need not be corresponded to associated prime ideals (see
Example 4.17 and Remark 4.18). However, the following lemma shows that
every vertex in ΓE(L) is some how related to an associated prime ideal of
L. Namely, with a similar argument as in [18, Theorem 7] it can be shown
that:

Lemma 4.5. Let L be a 0-distributive lattice and ω(Γ(L)) < ∞. Then
for every vertex [v] of ΓE(L) either annL(v) is an associated prime ideal or
there exists a vertex [x] ∈ V (ΓE(L)) which is adjacent to [v] and annL(x) is
a maximal element in =.

Corollary 4.6. Let L be a 0−distributive lattice and ω(Γ(L)) < ∞. Then
the set {[y] : annL(y) ∈ Ass(L)} is a dominating set for ΓE(L) and |Ass(L)| ≤
ω(Γ(L)) <∞.
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Remark 4.7. Let L be a 0-distributive lattice and ω(Γ(L)) < ∞. Then
by Lemma 4.5, the set of vertices corresponded to maximal elements of =
is also a dominating set for ΓE(L).

In [24] for a commutative Noetherian ring with unit, it has been shown
that the compressed zero-divisor graph ΓE(R) is connected and its diameter
is at most 3. A similar result has been proven by Joshi, Waphare and
Pourali in [18] for a meet semilattice with 0. With a similar argument for a
0-distributive lattice L we have:

Theorem 4.8. Let L be a 0-distributive lattice and ω(Γ(L)) <∞. Then the
compressed zero-divisor graph ΓE(L) is connected and diam(ΓE(L)) ≤ 3.

Theorem 4.9. Let L be a 0-distributive lattice with ω(Γ(L)) < ∞. If
|V (ΓE(L))| ≥ 3, then ΓE(L) can not be a complete graph.

Proof. Using Lemma 4.1, = contains a maximal element, say annL(z). Now
let ΓE(L) be a complete graph, [x], [y], and [z] be 3 distinct vertices in
ΓE(L). By maximality, annL(z) is not a subset of annL(x) or annL(y).
Thus we can consider elements a ∈ annL(z) \ annL(x) and b ∈ annL(z) \
annL(y). Therefore, (a ∨ b) ∧ z = 0 and thus [a ∨ b] is a vertex of ΓE(L),
[a∨ b] /∈ {[x], [y]}, and [a∨ b]u [x] 6= [0] which contradicts the completeness
of ΓE(L).

For a vertex v of a simple graph G, the set of vertices which are adjacent
to v is called the neighborhood of v and is denoted by NG(v) or N(v).

Theorem 4.10. Let L be a 0-distributive lattice with ω(Γ(L)) < ∞ such
that ΓE(L) is a complete r-partite graph. Then r = 2 and ΓE(L) = K1,1.

Proof. Let ΓE(L) = Kn1,n2,...,nr . By Theorem 4.9, if |V (ΓE(L))| ≥ 3, then
r 6= 1 and ni ≥ 2; for some i ∈ {1, . . . , r}. Without loss of generality, we can
assume that n1 > 1 and there are two non-adjacent distinct vertices [a1] and
[a2]. Since a1 and a2 are not equivalent, there exists z ∈ annL(a1)\annL(a2).
Therefore [z] u [a1] = [0] and [z] u [a2] 6= [0], whereas [z] 6= [a2]. But
since ΓE(L) is a complete r-partite graph, [a1] and [a2] are located in the
same partition, [a1] and [a2] have the same set of neighbors and this is a
contradiction. Therefore, |V (ΓE(L))| = 2 and ΓE(L) = K1,1.
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Theorem 4.11. Let L be a 0-distributive lattice with ω(Γ(L)) <∞. Then
ΓE(L) is not a cycle.

Proof. By Theorems 4.10 and 4.9, ΓE(L) is not a cycle of length 3 or 4.
It suffices to show that cycles in ΓE(L) with a path of length five are not
possible. Suppose that [x]− [y]− [z]− [α]− [β] is a path in the graph with
distinct vertices of degree 2. Then y∧α 6= 0 and z ∈ annL(y∧α)\(annL(x)∪
annL(z)∪ annL(β)). Therefore, [y ∧α] is a vertex different from [x], [z] and
[β] and it is annihilated by [x], [z], [β] and thus deg[y ∧ α] ≥ 3 which is a
contradiction.

Lemma 4.12. [24, Lemma 1.9] Let G be a simple finite graph with the
property that two distinct vertices v and w of G are non-adjacent if and
only if NG(v) = NG(w). Then G is a complete r-partite graph for some
r ∈ N.

Theorem 4.13. Let L be a 0-distributive lattice with ω(Γ(L)) < ∞ and
ΓE(L) be a finite regular graph. Then |V (ΓE(L))| ≤ 2.

Proof. It is easy to see that regular graphs with 3 or 4 vertices are isomorphic
to K3, K4 or K2,2 respectively. Also a regular graph with 5 vertices is either
a cycle or isomorphic to K5. According to the above statements there is
no regular graph ΓE(L) with 3, 4 or 5 vertices. Therefore, suppose that
ΓE(L) is a regular graph of degree d ≥ 3 with at least 6 vertices. Since
ΓE(L) is not a complete graph, there are two non-adjacent distinct vertices
[y1] and [y2]. If N([y1]) 6= N([y2]), then without loss of generality, we may
assume that there is a vertex [u] ∈ N([y1]) \ N([y2]) whereas [u] 6= [y2].
Thus u ∧ y1 = 0, u ∧ y2 6= 0. This implies that [u] ∈ N([y1 ∧ y2]) and so
N([y2]) 6= N([y1 ∧ y2]). But N([y2]) ⊆ N([y1 ∧ y2]) and, since each set
has cardinality d, we must have equality, which leads to a contradiction.
Therefore, any two non-adjacent distinct vertices on the graph have the
same neighborhood and clearly, the converse is true. Thus by Lemma 4.12
and Theorem 4.10, ΓE(L) = K1,1, that leads to a contradiction.

Theorem 4.14. Let L be a 0-distributive lattice and {x, y} ⊆ Z(L)?. If
annL(x) ⊂ annL(y), then NΓE(L)([x]) ⊆ NΓE(L)([y]). In particular, when
ΓE(L) is finite, we have deg[x] < deg[y].
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Proof. If [u] ∈ N([x]), then u ∧ x = 0 and thus u ∧ y = 0. Now since
annL(x) ⊂ annL(y) and y 6= 0, we have x ∧ y 6= 0 and 0 6= x ∈ annL(u) \
annL(y). Therefore, [y] 6= [u] ∈ N([y]) and thus NΓE(L)([x]) ⊆ NΓE(L)([y]).
For the last part of statement, we note that there exists z ∈ annL(y) \
annL(x), such that [z] ∈ Z(LE)? and [z] ∈ N([y]) \N([x]).

Corollary 4.15. Let L be a 0-distributive lattice. If y is an element of
Z(L)∗ such that deg[y] > deg[x] for every [x] in ΓE(L), then annL(y) is
maximal in = and hence it is an associated prime ideal.

Proof. Assume to the contrary that annL(y) ⊂ annL(x) for some x ∈ Z(L)?.
Then by Theorem 4.14, deg[x] ≥ deg[y], which is a contradiction.

Corollary 4.16. Let L be a 0-distributive lattice with 2 < |V (ΓE(L))| <
∞. Then every vertex of maximum degree in ΓE(L) is corresponded to a
maximal element in =.

Proof. Let the maximum degree of ΓE(L) is ∆(ΓE(L)) = d. Then the
connectedness of ΓE(L) implies that d ≥ 2. Suppose that [y1] is a vertex of
degree d, hence annL(y1) 6= {0}. If annL(y1) is not maximal in =, then by
Lemma 4.1, there exists y2 ∈ Z(L)? such that {0} 6= annL(y1) ⊂ annL(y2)
and annL(y2) is maximal in =. By Theorem 4.14, we have d = deg[y1] <
deg[y2] ≤ d, which is a contradiction. Therefore, annL(y1) is maximal in =
and it is an associated prime ideal.

Example 4.17. The associated prime ideals of L = D(6) × D(16) are
annL(1, 2), annL(2, 1), and annL(3, 1).
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Remark 4.18. The vertices of a dominating set ΓE(L) are necessarily corre-
spoded to associated prime ideals. As we can see in Fig.1,
{[(6, 1)], [(3, 2)], [(2, 2)]} is a dominating set for ΓE(L) whereas none of the
ideals annL(6, 1), annL(3, 2), and annL(2, 2) are not associated prime ideals.

Theorem 4.19. Let L be a 0-distributive lattice with ω(Γ(L)) <∞. Then
vertex set of ΓE(L) is infinite if and only if there exists at least one maximal
element annL(x) in = with deg[x] =∞.
Proof. Clearly, if some vertex has infinite degree, then the vertex set of
ΓE(L) is infinite. Conversely, suppose that the vertex set of ΓE(L) is infinite.
If = has infinite number of maximal elements, then, by Lemmas 4.1 and 4.4
the assertion holds immediately. Otherwise, let {annL(x1), ..., annL(xr)} be
the set of all maximal elements in =. Thus the assertion holds, by Remark
4.7.

Definition 4.20. A leaf in a graph is a vertex of degree 1.

Theorem 4.21. If L is a 0-distributive lattice with ω(Γ(L)) <∞ such that
|V (ΓE(L))| > 3, then there are no leaf vertices in ΓE(L) corresponded to
the associated prime ideals of L.

Proof. Suppose that annL(y) is an associated prime ideal and deg([y]) = 1.
Then there is one and only one class [x] such that [x] 6= [y] and [x] u
[y] = [0]. By Corollary 4.16, {annL(y), annL(x)} ⊆ Ass(L). There are
at least two other vertices which are connected to [x]. If [z] is another
vertex and deg[z] ≥ 2, then for some [ω], z ∧ ω = 0 ∈ annL(y); hence
z ∈ annL(y) or ω ∈ annL(y). Since this is not possible, it must be that
deg[z] = deg[ω] = 1. Now, since annL(z) = annL(ω) = [x], and [z] = [ω]
yields a contradiction.

As we saw in Theorem 3.1, the clique number of the zero-divisor graph
Γ(L) is equal to the cellularity of the topological space Spec(L), which is
also equal to the Goldie dimension of L. Combining this with [5, Corollary
3.2], we obtain a similar result for the lattice LE of equivalance classes of
L:

Corollary 4.22. For a distributive lattice L with 0, we have

ω(Γ(L)) = ω(ΓE(L)) = c(Spec(LE)) = Gdim(LE).
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