Categories and
General Algebraic Structures +
win Applications

WWW.CGASA.ir

M) Volume 14, Number 1, January 2021, 119-165.
G https://doi.org/10.29252/cgasa.14.1.119

Schneider-Teitelbaum duality for locally
profinite groups

Tomoki Mihara

Abstract. We define monoidal structures on several categories of linear
topological modules over the valuation ring of a local field, and study module
theory with respect to the monoidal structures. We extend the notion of the
Iwasawa algebra to a locally profinite group as a monoid with respect to one
of the monoidal structure, which does not necessarily form a topological al-
gebra. This is one of the main reasons why we need monoidal structures. We
extend Schneider—Teitelbaum duality to duality applicable to a locally profi-
nite group through the module theory over the generalised Iwasawa algebra,
and give a criterion of the irreducibility of a unitary Banach representation.

1 Introduction

Let k denote a non-Archimedean local field, and O C k the valuation ring
of k. The paper is devoted to two topics. One topic is to give monoidal
structures on several categories of linear topological Og-modules. We are
interested mainly in the closed symmetric monoidal category 4,® of CG
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linear topological Op-modules. A CG linear topological Og-module is a
linear topological Og-module given as the colimit of totally bounded Op-
submodules. By the definition, it is a module theoretic analogue of a com-
pactly generated topological space. We show that every Banach k-vector
space and every compact linear topological Og-module are CG. Therefore
%”;g contains both of the categories of Banach k-vector spaces and compact
Hausdorff flat linear topological Og-modules, which play the roles of the
foundation in Schneider—Teitelbaum duality (cf. [13] Theorem 2.3).

The other topic is to define a generalised Iwasawa algebra O[[G]] asso-
ciated to a locally profinite group G, and to extend Schneider—Teitelbaum
duality, which is applicable to a profinite group, to duality applicable to G
by using module theory over Og[[G]]. We note that O[[G]] is defined as a
monoid in %”ecg , and does not necessarily form a topological Og-algebra. This
is one of the main reasons why we need monoidal structures. As the classical
Iwasawa algebra associated to a profinite group is naturally identified with
the Og-algebra of Oy-valued measures, Ox[[G]] is naturally identified with
the Og-algebra of Og-valued measures on G satisfying a certain property
called the normality. As the original Schneider—Teitelbaum duality is given
by a module theoretic interpretation of a Banach k-linear representations
through the integration of the action along measures (cf. [13] Corollary 2.2),
the generalised Schneider—Teitelbaum duality is give by a module theoretic
interpretation through the integration of the action of G by normal mea-
sures.

As applications, we establish a criterion of the irreducibility of a unitary
Banach k-linear representation of G, and give a description of the continuous
induction of a unitary Banach k-linear representation of a closed subgroup
P C @G such that the homogeneous space P\G is compact. In particular,
we give an explicit description of the continuous parabolic induction for the
case GG is an algebraic group over a local field so that the representation
space of the continuous parabolic induction is independent of the choice of
the action of P.

We explain the contents of this paper. In §2.1, we study several cate-
gories of linear topological Op-modules. In §2.2, we introduce a notion of
the normality of an Og-valued measure on a topological space. In §3.1, we
define monoidal structures on several categories of linear topological Oj-
modules. In §3.2, we define a notion of a CGLT Og-algebra as a monoid in
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%,®, which is a counterpart of a topological Og-algebra, and define Oy [[G]]
as a CGLT Og-algebra. In §3.3, we define a notion of a CGLT module over
a CGLT Og-algebra, which is a counterpart of a topological left module
over a topological Og-algebra. In §4.1, we recall a unitary Banach k-linear
representation of G and interpret it in terms of a CGLT Og[[G]]-module.
In §4.2, we interpret a continuous action of G on a compact Hausdorff flat
linear topological Og-module in terms of a CGLT O[[G]]-module. In §4.3,
we define a notion of the dual of a unitary Banach k-linear representation
of GG, and extend Schneider—Teitelbaum duality to duality applicable to G.
In §5.1, we study the dual of several operations on Banach k-linear repre-
sentations such as the continuous induction. In §5.2, we give an explicit
description of the continuous parabolic induction in the case where G is an
algebraic group.

2 Preliminaries

Let k denote a local field, that is, a complete discrete valuation field with
finite residue field, Oy C k the valuation ring of k, and G a locally profinite
group. We denote by w the set of natural numbers. For a set X, we denote
by P, (X) the set of finite subsets of X. Since we deal with many pairs,
we abbreviate (e;)!_, to (8;), >.;_o ®i to > e;, and [];_, & to []e;.

Let © be a category. We say that © is w-cocomplete (respectively, cocom-
plete, complete) if it admits all small filtered colimits (respectively, colimits,
limits), and is bicomplete if it is cocomplete and complete. Let F' be a
functor. We say that F' is w-cocontinuous (respectively, cocontinuous, con-
tinuous) if it commutes with all small filtered colimits (respectively, colimits,
limits), and is bicontinuous if it is cocontinuous and continuous. We denote
by Set the bicomplete category of sets and maps, and by Top the bicomplete
category of topological spaces and continuous maps. We abbreviate Homr,,

to C.

2.1 Linear topological modules Let M be a topological Ox-module,
and C' C M a subset. We say that C is pre-compact (respectively, complete)
if C is totally bounded (respectively, complete) with respect to the restric-
tion of the uniform structure on M associated to the structure as a topo-
logical Abelian group to C. By the definition of the uniformity on M, C' is
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totally bounded if and only if for any open neighbourhood U C M of 0 € M,
there exists a finite subset Cy C C such that C' C {mg + my | (mg,mq) €
U x Cp}. The following are well-known facts (cf. [3] 8.3.2 Theorem, [4],
and [3] 8.3.16 Theorem, respectively) on the pre-compactness:

Proposition 2.1. (i) A C C M is pre-compact if and only if every subset
of the closure of C in M is pre-compact.

(i) A C C M is compact, that is, every open covering admits a finite
subcovering, if and only if C' is pre-compact and every Cauchy net in C is
a convergent net in C.

(ili) A C C M is compact and Hausdorff if and only if C is pre-compact
and complete.

We denote by &(M) the set of open Og-submodules of M, and by .2 (M)
the set of pre-compact Op-submodules of M. We say that M is linear if
O (M) forms a fundamental system of neighbourhoods of 0 € M. We have
two examples of linear topological Og-modules.

Example 2.2. (i) We denote by M the underlying Ox-module of M equipped
with the topology generated by {m + L | (m,L) € M x O(M),#(M/L) <

oo}. Then M forms a pre-compact linear topological Ogx-module, and the

identity map 7$,;: M — M is continuous.

(ii) Let S be aset. Amap f: S — M is said to vanish at infinity if for any

L € O(M), there is an Sy € P~,(S) such that f(s) € L for any s € S\ Sp.

We denote by Co(S, M) the Og-module of maps f: S — M vanishing at

infinity equipped with the topology generated by {f + Co(S,L) | (f,L) €

Co(S,M) x O(M)}. Then Cy(S, M) forms a linear topological Og-module.

We denote by 67 the Og-linear category of linear topological Ox-modules
and continuous Op-linear homomorphisms. We abbreviate Homg, to .Z.
Since the pre-image of an open Og-submodule by a continuous Og-linear
homomorphism is an open Og-submodule, the correspondence M ~~ (M)
gives a functor 0': ‘@Op — Set. On the other hand, the correspondence
M ~ # (M) gives a functor J# : 6, — Set by the following:

Proposition 2.3. Let (M;) € ob(%¢}) and f € £((M;)). For any pre-
compact subset Coy C My, f(Cp) C My is pre-compact.

Proof. The assertion follows from [3] p. 445 by the uniform continuity of
I O
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We will use 0(M) and J# (M) as index sets of limits and colimits. They
are filtered and cofiltered with respect to inclusions by Proposition 2.1 (i)
and the following:

Proposition 2.4. The sets O(M) and & (M) are closed under finite sum.

Proof. The assertion for (M) immediately follows from [3] p. 433. The
assertion for . (M) immediately follows from Proposition 2.3 and [3] 8.3.3
Theorem, because ) | M; is the image of the addition [[ M; — M for any
(M;) € & (M)2. O

As a consequence, we obtain the following variant of [13] Lemma 1.5 i:

Corollary 2.5. For any pre-compact subset C C M, Y~ Opm is pre-
compact.

Proof. Let L € O(M). Take a Cy € P,(C) satisfying C' C U, ,c¢,(m+1L).
We have Opym € # (M) for any m € M by Proposition 2.3, and hence
> mec, Okm € (M) by Proposition 2.4. Take a Ko € P<u (3,0, Oxm)
satisfying >, cc, Okm C U, ek, (m + L). We obtain

Y ogmc |J Owm+L)= |J (Oem+L)c |J (m+1L).

meC meCp meCyp meKo
It implies » .~ Oxm € J (M). O

We denote by % the category of Op-modules and Og-linear homomor-
phisms. We denote by % : 6, — Top and .% : €; — € the forgetful functors.

Proposition 2.6. The category €y is bicomplete, and % (respectively, F )
is w-cocontinuous and continuous (respectively, bicontinuous).

Proof. The completeness of % and the continuity of % and .%# follow from
the definition of the limits in Top and %. The w-cocomleteness of %; and
the w-cocontinuity of % and .# follow from [6] Proposition 1.3. For any
small family (M;)ses in €7, @ycgF (Ms) forms a linear topological Oy-
module with respect to the topology generated by {m + @, g7 (Ls) |
(m, (Ls)ses) € (Byseg F (Ms))x[Iseg O(Ms)}, and satisfies the universality
of the direct sum of (M;)scs in . Thus %, is cocomplete, and .# is
cocontinuous. 0
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Since we will introduce several full subcategories of %y, we prepare a
convention for colimits (respectively, limits) in order to avoid the ambiguity
of categories in which we consider the universality. Let (Ms)ses be a small
diagram in a full subcategory © C %;. We always denote by liglse s My
(respectively, @se <M, s) the colimit (respectively, limit) of (My)ses in 6
but not in ©. As an immediate consequence of Proposition 2.6, we obtain
the following:

Corollary 2.7. Let (My)scs be a small diagram in ;. For any subset
U C hglses My (respectively, U C imses M;), U is open if and only if the
preimage of U in My is open for any s € S (respectively, if and only if for
any m € U, there is an (Lg)ses € [l,eq O(Ms) satisfying {s € S | Ly #
Mg} € P<,(S) and m + [[,cq-F(Ls) CU.

We denote by 4, C ¢, the full subcategory of pre-compact linear topo-
logical O-modules and by .#° the inclusion 6 < ¢;. We put %€ := % 0.7°¢
and F° =% o JC.

Proposition 2.8. (i) The correspondence M ~ M gives a functor (e): €, —
€y left adjoint to S° such that the counit is given as a natural equivalence.
(ii) The topological Og-module M is linear and pre-compact if and only
if ™5 is an open map.
(iii) The category €y is bicomplete, and the colimit of a small diagram
(Ms)ses in €5 is given by lim F(Ms).

Proof. The functoriality of (e) and the assertion (ii) immediately follow
from the definition. The assertion (iii) immediately follows from the as-
sertion (i) and Proposition 2.6. We show the assertion (i). We consider
two functors F,G: C@Op X €y — Set given as F' := Z(%p,1) and G =
Z (e, #¢(e1)). The correspondence M ~» 7§, gives a unit 7°: idg, =
¢ 0o (s). We have a counit (7%.)71: (8) 0 F¢ = idge, which is a nat-
ural equivalence by the assertion (ii). For a K € ob(%}), we consider
maps T i: F(M,K) — G(M,K), f— forf and Ty 2 G(M,K) —
F(M,K), f— (W}C(K))’lo?. The correspondences (M, K) ~ Tk, Ty i
give natural transformations T: F' = G and T": G = F satisfying To T’ =
idg and T" o T = idp by the bijectivity of of values of 7. We obtain ad-

junction data ((e), ¢, T, 7, (%) ") between ¢ and 4;. It implies that
(o) is left adjoint to #°. O




Schneider-Teitelbaum duality for locally profinite groups 125

Suppose that M is linear in the following in this subsection. Then J¢ (M)
forms a small filtered diagram in %; by Proposition 2.4. We put M, =
liﬂ Kex (M) K. By the universality of the colimit, the system of inclusions

induces a continuous injective Og-linear homomorphism L(]:\%: My — M.
By Corollary 2.5, .7 is bijective. We show that ¢} preserves the pre-
compactness of Og-submodules.

Proposition 2.9. Let K C M be an Og-submodule of M. Put K' =
(55) 1 (K).

(i) If K is pre-compact, then LR%|K/ 18 a homeomorphism onto K.

(ii) The pre-compactness of K is equivalent to that of K'.

Proof. The assertion (ii) follows from Proposition 2.3 and the assertion (i).
We show the assertion (i). By K € ¢ (M), we have 153(K') = K. Let
L /6 ﬁ(g\g[;g/). By S&(K') = chand the/ injectivity of .L}:\%, we have é?(L.ﬂ
K') =;;(L)N K, and hence ¢;(L N K') € O(K). It implies that ¢};|x is
an open map onto K. O

We say that M is CG if .55 is an isomorphism in 4;. We denote by
%,% C %, the full subcategory of CG linear topological Oy-modules and by
8 the inclusion €,® < €;. We put %8 := % o #°8 and F 8 = .F o I8,
We study properties of %ﬁcg analogous to those of the category of compactly
generated topological spaces.

Corollary 2.10. (i) The correspondence M ~» My gives a functor
(8).x: € — €,® right adjoint to F°¢ such that the counit is given as a
natural equivalence.

(ii) The category ‘@Cg is bicomplete, and the colimit of a small diagram

(Ms)ses in €,® is given by (ling, _ 7 8(M)).z -

Proof. To begin with, we show that %,* is closed under small colimits in €.
Let (Mj)ses be a small diagram in 6,®. Put M = lim o .78(M;). In order
to verify that M is pre-compactly generated, it suffices to show (3(L) €
O(M) for any L € O(My). Let s € S. We denote by L the preimage of
153 (L) in M. Let Ky € £ (Ms). We denote by K C M the image of K. By
Proposition 2.3 and Proposition 2.9 (ii), we have (¢57) "1 (K) € & (M ). It
ensures L N (155) 71 (K) € 0((.53) 71 (K)). By Proposition 2.9 (i), we obtain
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LG (L) N K € O(K) and hence Ly N Ky € O(Kj). It ensures Ly € O(M)
because M is CG. It implies 55 (L) € (M) by Corollary 2.7.

We show the assertion (i). Since €,® is closed under small colimits in €,
the correspondence M ~~ M 4 gives a functor (e) : €y — ‘@Cg by Proposi-
tion 2.3 and Proposition 2.9 (i). We consider two functors F, G: (€,®)°P x
%o — Set given as F 1= £ (7 %(e),e1) and G = Z(eg,(e1) ). The cor-
respondence M ~- Lf\% gives a unit (%: . o (8) » = idy,, and we also
have a counit (¢%.,)"': idges = (o) o £, which is a natural equiv-
alence by definition. For an (M;) € ob(%,* x €;), we consider maps
Tiagy: UML) — GIAL)), s S © (g and Ty, G((M) -
F((M;)), f v 133 o f. The correspondences (M;) ~» T(Mz‘)7T(,Mi) give nat-
ural transformations T: F = G and T': G = F satisfying T o T" = idg
and T" o T = idp by the bijectivity of values of ©. We obtain adjunction
data (78, (8) x, T, 18, (1LFes) ") between 4, and €,®. It implies that (e)
is right adjoint to .#°8.

We show the assertion (ii). By the assertion (i), () is continuous and
# 8 is cocontinuous. Since the counit (L‘(}gcg)*1 is a natural equivalence, ;*®
is complete by Proposition 2.6. Since we have already verified that €,* is
closed under small colimits in %7, it implies the assertion (ii) by Proposition
2.6 0

We have three criteria of CG linear topological Op-modules.

Proposition 2.11. (i) If M is CG, then so is every closed Oy-submodule
of M.

(ii) If M s locally compact, then M is CG.

(iii) If M is first countable, then M is CG.

Proof. The assertion (ii) follows from Proposition 2.1 (ii) and Proposition
2.9 (i), because M is locally compact if and only if M admits a compact
clopen Og-submodule. We verify the assertion (i). Let My C M be a closed
Oj-submodule. Since .55 is an isomorphism in 47, (137)" (M) is closed

in M. Therefore (5 induces a homeomorphism liglKe%,( M)(?/ “(K)nN
U (My)) — % (Mp) by [6] Lemma 2.23. By Corollary 2.7, we obtain an
isomorphism ligKe%,(M)(K N My) — Mp. By Proposition 2.1 (i), K N My
lies in # (My) for any K € ¢ (M). It implies that My is CG by Corollary
2.10 (i).
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We verify the assertion (iii). Let L € &(M ). We show 55(L) € O(M).
Assume (5(L) ¢ O(M). Take an decreasing sequence (L;)re, € O(M)¥
such that {L, | »r € w} forms a fundamental system of neighbourhoods
of 0 € M. By the assumption, we have L, \ :55(L) # 0 for any r € w.
Take an (mr)rew € [[en(Lr \ ¢35(L)). Put C == {m, | r € w}. We
have C' = |J,_o(mp + Ly) for any r € w, and hence C is pre-compact.
Put K =3 _~Owm C M. By Corollary 2.5, we have K € % (M). It
ensures (35(L) N K € O(K). By 0 € .53(L) N K, there is an 7 € w such
that L, N K C 55(L) N K. We obtain m, € L, N K C «{5(L) N K, which
contradicts m, ¢ ({5 (L). It implies ¢5(L) € O(M). Thus M is CG. O

We survey Schikhof duality (cf. [10] Theorem 4.6, [13] Theorem 1.2,
and [7] Theorem 2.2). We follow the convention of Banach k-vector space
in [7] §1.2. We denote by ‘gf%h C %y the full subcategory of compact
Hausdorff flat linear topological O-modules, by Ban(k) the k-linear cat-
egory of Banach k-vector spaces and bounded k-linear homomorphisms, by
Ban<(k) C Ban(k) the Og-linear subcategory of submetric k-linear homo-
morphisms, and by Ban¥ (k) C Ban< (k) the full subcategory of unramified
Banach k-vector spaces. By Proposition 2.1 (ii), Cff%h is a full subcategory
of ¢5. For a (V;) € ob(Ban¥(k))?, we denote by .#((V;)) the Op-module
Homp,pur (1) (Vi) equipped with the topology of pointwise convergence. For
aV € ob(Ban¥(k)), we put VP4 := . (V, k). For a K € ob(¢%"), we denote
by KP¢ the k-vector space .Z(K, k) equipped with the supremum norm. The
correspondence V ~» VP4 gives a functor Dg: Ban (k)°P — €5, and the
correspondence K ~ KPe gives a functor D.: €5" — Ban (k)°P.

Theorem 2.12 (Schikhof duality). The pair (Dg,D.) is an Oy-linear equiv-
alence between BanZ (k)P and ch.

2.2 Normal Measures We study a non-Archimedean analogue of the
normality of a measure. For this purpose, we introduce a convention of
infinite sums. Let S be a set. For an f € k%, we denote by > ¢ f(s)
the limit of the net (3 g, f(5))soez.(s5), Where P, (S) is directed by
inclusions. It is elementary to show the following:

Proposition 2.13. Let S be a set. For any f € k¥ (respectively, O;g),
Y scs f(s) converges in k (respectively, Oy) if and only if f € Co(S,k)
(respectively, Co(S, Oy)).
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Let X be a topological space. We denote by CO(X) the set of clopen
subsets of X, and by P(X) the set of subsets P C CO(X) satisfying X =
LyepU. An Op-valued measure on X is a map p: CO(X) — Oy, such that
w(Uo U UL) = w(U;) for any (U;) € CO(X)? satisfying Up N Uy = (. An
Oyp-valued measure p on X is said to be normal if 3 cp u(U’) converges
to p(U) for any U € CO(X) and P € P(U).

Let P € P(X). For a subset U C X, we put Ply :={U" € P | U’ C
U}. We define a partial order Py < P; on (P;) € P(X)? as (Py|lv)vep, €
HU€P1 P(U) Let (R) S P(X)Q. Then {UO N Uy ’ (UZ) S HB} S P(X)
forms the least upper bound of {Py, Pi} with respect to <. In particular,
P(X) is directed with respect to <. Suppose Py < P1. Let f € Co(Fy, Og)
and U € P1. By Ryly C Py and Proposition 2.13, f(U) = Y pep,,, f(U')
is a converging sum. For any € € (0,00), there is a P € P, (F) such that
|f(U")| < efor any U" € P\ Py, and hence P| = {U € P | Byn(Polv) # 0}
is a finite set satisfying |f ( )| < eforany U € P, \ P{. It implies that the
map f: P, — X, U — f(U) lies in Co(Py,0p). We obtain a continuous
Op-linear homomorphism Co(Py, Oy) — Co(P1,O%), f +— f for each (P,) €
P(X)? satisfying Py < P1, for which (Co(P,Ox)) pep(x) forms a cofiltered
diagram in %.

We put M(X) = hm X CO(P Oy) and O[[X]] == M(X). The
abuse of the notation with the classwal Iwasawa algebra is harmless, because
we will show in Proposition 2.21 that Og[[X]] is its generalisation. For
a (u,U) € M(X) x CO(X), we denote by p(U) the image of u by the
composite of the {U, X \ U }-th projection M(X) — Co({U, X \ U}, Ox) and
the evaluation Co({U, X \ U}, Ox) — Oy at U. For a (P,¢) € P(X) x (0, 1],
we set M(X; P,e) = {,u e M(X) | YU € P,|u(U)| < €}. By Corollary 2.7

and the continuity of LM( x)» We obtain the following:

Proposition 2.14. The linear topological Og-modules M(X) and Oy[[X]]
are Hausdorff, and the set {M(X; P,e) | (P,e) € P(X) x (0,1]} forms a
fundamental system of neighbourhoods of 0 € M(X).

The evaluation map M(X) — O,SO(X), p= (1(U))veco(x) is injective.
We identify .7 (M(X)) with the Og-module of normal O-valued measures on
X through the evaluation map. For a U € CO(X), we denote by 1;7: X — k
the characteristic function of U.
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Proposition 2.15. If X is compact, then M(X) is a compact Hausdorff
flat linear topological Or-module, and the map C(X, k)P4 — O,SO(X), =
(n(lv))veco(x) (cf- [7] Example 1.4) induces an isomorphism C(X, k)P4 —

M(X) in €5

Proof. By the compactness of X, every Op-valued measure on X is nor-
mal, and hence the map in the assertion gives an Og-linear homomorphism
C(X, k)P4 — M(X), which is continuous by the finiteness of pairwise dis-
joint clopen coverings of X. On the other hand, again by the compactness of
X, every continuous k-valued function is uniformly approximated by a finite
k-linear combination of characteristic functions of clopen subsets. There-
fore we obtain the inverse M(X) — C(X, k)P4, which is continuous because
C(X, k)P4 is compact and M(X) is Hausdorff. O

We denote by dx, € M(X) the normal Oj-valued measure which as-
signs 1 if x € U and 0 otherwise to each U € CO(X) for an z € X, by
dx: X — M(X) the map given by setting dx(x) := x4 for an z € X, and
by O,?‘SX : O,?X — M(X) the Og-linear extension of dyx.

Proposition 2.16. (i) The map dx is continuous.
(ii) If X is zero-dimensional, that is, CO(X) generates the topology of
X, and Hausdorff, then O?‘SX 18 injective.

(iii) The image of O,?éx is dense.

Proof. We show the assertion (i). Let Uy C M(X) be an open subset. For
any x € X satisfying dx, € U, there is a (P,e) € P(X) x (0,1] such
that dx, + M(X;P,e) C Uy, and hence for any Uy € P, z € Uy implies
Up C 05" (U1). Therefore dx is continuous. We show the assertion (ii).
Suppose that X is zero-dimensional and Hausdorff. Let m € O\ {0}. Let
Xy C X denote a unique non-empty finite subset for which m is presented
as Y ,ex, Cx for a (cz)zex, € (Ok \ {0})¥0. By the assumption, there is a
P € P(X) such that #(U N Xo) < 1 for any U € P. Then OF°X (m)(U) =
¢z # 0 for any (U, x) € P x X satisfying x € U. It implies ker(O?aX) = {0}.

We show the assertion (iii). Let U C M(X) be an open neighbourhood
of a 4 € U. By Corollary 2.7, there is a (P,e) € P(X) x (0, 1] such that
pw+M(X;Pe) CU. Put Py :=={U € P | |uU)| > e} € P,(P)\ {0}
For each U’ € Py, take an xy» € U'. Then p/ = O?éx (X vrep, WU )zyr)
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satisfies |p/(U") — p(U")| < € for any U’ € P. It ensures y/ € U. Therefore
the image of O,? X is dense. O

We put dx = (i35 x)) " 0 dx and O™ = (if ()7 0 OF*. We
consider dg and O?dc.

Proposition 2.17. (i) The map dg is a homeomorphism onto the image.
(ii) The map dg is a homeomorphism onto the image.
(iii) The image of O?da is dense.

In order to verify Proposition 2.17, we study pre-compact subsets of
M(G).

Lemma 2.18. Let C C M(G) be a pre-compact subset. For any € € (0,1],
there is a compact clopen subset Go C G such that |pw(U)| < € for any

(1, U) € C x CO(G \ Gy).

Proof. Take an open profinite subgroup K C G. Assume that there is an
e € (0,1] such that for any compact clopen subset Gy C G, some (u,U) €
C'x CO(G\Gy) satisfies |p(U)| > e. In particular, G is not compact, because
Gy = G satisfies CO(G \ Gp) = 1 and p(0) = 0 for any u € C. Therefore
G/K is an infinite set. We construct (u,,U,,C,) € C x CO(G) x G/K
inductively on r € w so that C, # K for any r € w, |u.(U,)| > € for any
r €w, U, C C, for any r € w, and C,, # C,, for any (r;) € w? satisfying
ro # 1.

By the assumption, there is a (uo,Up) € C' x CO(G \ K) such that
lo(Uo)| = €. By the normality of yu9, we have 110(Uo) = > ceqyi 1o(Uo N
(), and hence |uo(Ug N Cp)| > € for some Cy € G/K satisfying Cy # K.
Replacing Uy by UyNCp, we may assume Uy C Cy. Let r € w\ {0}. Suppose
that we have constructed (up, Up, Cp)}—y € (C x CO(G) x G/K)™ such that
Ch # K, |un(Up)| > €, and Uy, C Cy, for any h € w satisfying h < n, and
Cho # Cp, for any (h;) € w? satisfying hg # hy, hg < 7, and hy < r. By
the assumption, there is a (., U,) € C x CO(G \ (K U] [;—{ Cy) such that
|per(Uy)| > €. By the normality of p,, we may assume that U, is contained
in a C, € G/K satisfying C, # K. By induction on r € w, we obtain a
desired family (u,, Uy, Cr)rew-

Since (C)rey is a system of pairwise disjoint subsets of G, U, = G\
|l,c, Ur is a clopen subset of G. Put P = {U, | r € w U {w}} € P(Go).
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Since C' is pre-compact, so is its image Cp in Co(P, Oy) by Proposition 2.3.
Therefore there is a Cpy € P,(Cp) satistying Cp C {pu € Co(P,O) |
' € Cpp,VU € P, |u(U) — /' (U)| < €}. By Cpy € P<,(Cp), there is
a Py € P,(P) satistying u(U) < € for any (u,U) € Cpo x (P \ Pp). It
ensures pu(U) < € for any (u,U) € Cp x (P \ P) by the choice of Cpy.
It contradicts that the inequality |u,(U,)| > € holds for any r € w. This
completes the proof of the assertion. O

For an increasing sequence (X, ),c. of compact clopen subsets of X and
a decreasing sequence (&,)rc, € (0,1)¥, we put M(X; (X;)rew, (67)rew) =
{p e M(X) | Vr € w,VU € CO(X \ X;), [u(U)] < &}

Lemma 2.19. Lete € (0,1). A subset of M(G) is pre-compact if and only if
it is contained in M(G; (Gy)rew, (€")rew) for an increasing sequence (G )rew
of compact clopen subsets of G.

Proof. Let C C M(G) be a subset. Suppose that C' is pre-compact. For
each r € w, there is a compact clopen subset G, o C G such that C C {p €
M(G) | VU € CO(G\ Grp), |1(U)| < €} by Lemma 2.18. For an r € w, put
G, =U._yGspo € CO(G). Then (G,)re, forms an increasing sequence of
compact clopen subsets of G satisfying C' C M(G; (G, )rew, (€")rew)-

On the other hand, suppose that C'is contained in M(G; (G, )rew, (€")rew)
for an increasing sequence (G, )., of compact clopen subsets of G. Let
L € 0(M(G)). By Corollary 2.7, there is a (P,€') € P(X) x (0, 1] such that
M(G; P,e') C L. By € € (0,1), there is an r € w such that ¢ < ¢/. By
the compactness of G, there is a Py € &, (P) such that G, C |_|U€p0 U.
Since Oy, is compact, there is an S € FP,(Oy) such that O = (J,c{c €
O | |d —c| < €}. By #8% = (#5)710 < oo, there is a Cp € P, (C)
such that C' = U,cq, {1 € C | VU € P, |/ (U) — p(U)| < €"}. 1t implies

CC U#GCO @+ L. Thus C is pre-compact. O

Lemma 2.20. Let M € ob(%;). Then a map f: G — M is continuous if
and only if (155)" o f is continuous.

Proof. Take an open profinite subgroup K C G. The direct implication
follows from the continuity of ¢57. Suppose that f is continuous. Let U C
My be an open subset. Let g € G. Suppose (:57)7'(f(g9)) € U. Since
f(gK) C M is compact, (53 (U) N f(gK) is an open subset of f(gK) by
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Proposition 2.1 (ii) and Corollary 2.5. By the continuity of f, f~(:35(U)N
f(gK)) is an open subset of f~1(f(gK)). It ensures that f~1(:55(U)) NgK
is an open subset of gK. Since gK is an open subset of G, f~1(.53(U)) =
((t55)7 o f/)71(U) is an open neighbourhood of g in G. It implies that
(¢53)" o f is continuous. O

Proof of Proposition 2.17. Take an open profinite subgroup K C G. Then
G/K gives an element {gK | g € G} of P(G). For any g € G, dglgk is
a closed continuous map by Proposition 2.16 (i) because gK is compact
and M(G) is Hausdorff, and its image is contained in g, + M(G; G/ K, 1).
Therefore d¢ is an injective local homeomorphism onto the image by Propo-
sition 2.16 (ii), because {dg,y + M(G;G/K,1) | g € G} forms a covering of
the image of ¢ consisting of pairwise disjoint clopen subsets of M(G). It
implies that d¢ is a homeomorphism onto the image, and so is dg by Lemma,
2.20.

Let U C Og[[G]] be a non-empty open subset. Take a u € U. By
Lemma 2.19, the pre-compact subset {LM(G (1)} € M(G) is contained in
K =M(G; (Gr)rew, (€")rew) for an increasing sequence (Gr)re,, € CO(G)¥
and an € € (0,1), and K itself is a pre-compact Og-submodule of M(G). By
Corollary 2.7, there is a (P,¢) € P(G) x (0,1] such that {¢/ € K | VU’ €
P (U — Cg(g)(u)(U’)\ <€} C Lgfl%(G)(U>' By € € (0,1), there is an r € w
such that €" < €/. By the compactness of G, there is a Py € P, (P) \ {0}
such that G C | |yep U’ For each U’ € Py, take an xyr € U'. Then

6 T
W= O (S, 556, 10 ) satisies [ (U7) — 5y ()(U7)] < e
for any U’ € P. It ensures (LM(G)) L(u') € U. Therefore the image of OffdG
is dense. 0

We show the relation between Og[[G]] and the classical Iwasawa alge-
bra. We denote by &(G) the set of open normal subgroups of G, which is
filtered and cofiltered by inclusions. For a (p, K) € 0(0Oy) x O(G), we equip
(Or/p)[G/ K] with the discrete topology so that it forms a linear topological
Op-module.

Proposition 2.21. Suppose that G is a profinite group. Then the system
of the canonical projections Og|G] — (O/p)|G/K] indexed by (p,K) €
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O (0Oy) x O(G) induces a unique isomorphism

OxllG]] — lim (O/p)lG/K]
(9,K)€0(08) x0(G)

in 6;. In particular, Og[[G]] forms a compact Hausdor(f flat linear topolog-
ical Op-module.

Proof. The assertion follows from Proposition 2.1 (ii), Proposition 2.8 (ii),
Proposition 2.15, and the fact that the classical Iwasawa algebra over Oy, as-
sociated to G has an interpretation as an Oj-module of Op-valued measures
on G. ]

3 Monoidal structures

We define symmetric monoidal structures on the categories introduced in
§2.1, and an Oy-algebra structure on Og[[G]] in terms of a monoid in one
of them. We note that O[[G]] does not necessarily form a topological Oy-
algebra, that is, a monoid object in the Cartesian monoidal category of
topological Og-modules and continuous Og-linear homomorphisms. This is
one of the main reasons why we need monoidal structures.

3.1 Topological tensor products We define symmetric monoidal
structures on €, 6/, and %,°. First, we study €. Let (M;) € ob(%}). We
denote by (L;)(ar,) C F(Mo) ®o, F (My) the kernel of the natural projec-
tion .7 (My) ®o, F (M1) - F(My/Lo) ®o, F (Mi/L1) for Ox-submodules
Lo C Myand Ly C My, and by M0®ZM1 the Op-module y(Mg)@okﬂ\(Ml)
equipped with the topology generated by the set {m+(L;) s, | (m, (L;)) €
(F(Mo)®0,-F (My)) <] 0(M;)}. Then My®" M forms a linear topological
Oj-module. By the definition of the topology of My ®¢ My, the Oy-bilinear
homomorphism V() [[% (Mi) — % (Mo @' M), (mi) — mg @ my
is continuous. The correspondence (M;) ~» My ®° M; gives a functor
®@*: 62 — %y, and the correspondence (M;) ~ V(u,) gives a natural trans-
formation V: [[% (e;) = % (eg @° e1). Let (M;)ses be a small diagram
in €,. By the functoriality of ®‘ and the universality of the colimit, the



134 T. Mihara

system of canonical morphisms M,, — ligse s My indexed by sg € S in-
duces a morphism Sipzy ¢t ligses(]uS @' M) — (lg s M,) @' M for
an M € ob(%;). We note that ®* seems not to be cocontinuous.

Proposition 3.1. The triad (6;,®,0y) forms a symmetric monoidal cat-
egory.

Proof. We denote by (A,L, R, B) the data of the associator, the left unitor,
the right unitor, and the braiding of (¢, ®o,,Ox). We have

F (00 @' @) = F () @0, F (1)

by definition. Since .%: €, — € is faithful, it suffices to verify that every
value of ® o.Z lies in the image of .% for any ® € {A,L,R,B}. By Oy €
O (Oy), every value of L o . (respectively, R o .#) lies in the image of .7.
By the symmetry of the sub-base of the topology of every value of ®¢,
every value of B o.Z lies in the image of .Z. Let (M;)% € ob(¢}). We
show that the Op-linear homomorphism Az, ar i, 0 (Mo ®' M) @° My —
My ®@° (M @° M), m A 7 (M), 7 (M), 7 (M) (F (m)) is continuous. Let
(Lo, L12) € O(Mp) x O(My®" My). Take an (L;y1) € [[ €(M;41) satisfying
(Lit1)(ayyy) C L1,2. We have

((L) M;) L )M0®ZM1 Mo
= ( ( Z+1) 7,+1))M0,M1®[M2 C A_MO My, M2((L07L1 2)M0 M1®[M2)

by the right exactness of ®o,. Therefore Ans, ar, 0, is a continuous map
satisfying F (Ano,n Mz) = A7 (M), 7 (M), 7 (Ms)- O

Next, we study €. Let (K;) € ob((6F)?). Then Ko®°K; is pre-compact
by #((Ko ®" K1)/(Li)(k;)) = #(Ko/Lo ®" K1/Ly) <[] #(Ki/L;) < oo for
any (L;) € [[O(K. ) Therefore the correspondence (K;) ~ Ko ®° K; gives
a functor ®°: (¢5)? — €5, and the correspondence (K;) ~ V(g,) gives a
natural transformation V¢: [[%°(e;) = % °(eo ®° ®1). Since €} is a full
subcategory of 6y, we obtain the following by Proposition 3.1:

Proposition 3.2. The triad (¢;,®°, Oy) forms a symmetric monoidal cat-
egory.
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We put Z((Ko, M,),L) = {f € L (Ko, M) | f(Ko) C L} for an L €
O (M), and denote by s om®( Ky, M;) the Og-module £ (K, M7) equipped
with the topology generated by the set {f + Z((Ko,M1),L) | (f,L) €
Ko x O(Mj)}. Then s#om®(Ky, M;) forms a linear topological Og-module.
By Proposition 2.3 and Corollary 2.10 (i), the correspondence (Ko, M;) ~
Som®(Ko, My) gives a functor s€om®: (¢;)°°? x ¢, — ¢;. By Theorem
2.12, the transpose map *(e)(x,): S om"((K;)) — F((KP<,)) is bijective.
We have a comparison of the endomorphism algebras, which corresponds
to [13] Lemma 1.6 in the case ch(k) = 0.

Proposition 3.3. The map T(o)(KZ.) 18 an isomorphism in €.

Proof. Let (v,€) € K7° x (0,00). Put L = {f € L((KD,)) | |f(v)] <
€}. We show T(o)(_[%i)(L) € O0(Hom°((K;))). Put Ly = {m € K; |
lu(m)| < 27'e} € O(K1). Let f € L((K;),L1). We have ||Tfx,)(v)| =
SUP,ne i, [0(f(m))| < supynep, [v(m)] < 27% < e. Tt ensures " fix,) € L. Tt
implies .Z((K;), L1) C T(.)&i)(L). We obtainT(.)(;gi)(L) € O(AHom((K;))).
Therefore T(o)( K;) is continuous.

Let Ly € O(K1). We show (o) k) (L ((K;), L)) € O(F((K7<,))). By
Theorem 2.12, there is an (S, ¢) € P, (K<) x (0,00) such that {m € K |
Yo € S, lv(m)| < €} C Ly. Put L = {f € Z((K,)) | Yo € S,[|f(v)] <
e} € O(L((KD<))). Let f € L. We show T(e) 0 (f) € Z((Ki), ). Let
m € Ko. We have [o(™ (o), (f)(m))] = | f(v)(m)] < | f(v)[| < e for any v €
S, and hence T(o)(}i)(f)(m) € L;. It ensures T(o)(}i)(f) € Z((K;),L1). It
implies L C T(o)(Ki)(.,?((Ki), Ly)). Therefore T(o)(Ki) is an open map. [

We denote by Cf, Cg: ((€)°)% x 6, — Set the functors given as Cf, =
L (I (o9 ®° ®1),8) and Cf = Z(F(eg), #om°((e;11))). We construct

an adjunction T¢: Cf = Cg. Let f be an Op-linear homomorphism Ky ®°
Ky — Ms for a ((K;), M2) € ob((65)? x €;). We characterise the continuity

of f.

Proposition 3.4. The map f is continuous if and only if f o V((:Ki) 18
continuous.

Proof. The inverse implication follows from the continuity of V‘(:Ki). Sup-
pose that f o V() is continuous. Let Ly € O(Ms). We show f~1(Ly) €
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O (Ko ®° Ki). By the continuity of f o Vik,) there is an (L;) € []O(K;)
such that [[L; C (fo VfKi))_l(Lg). Put ig := 0 (respectively, ig = 1).
Take a K;0 € P, (K;,) satistying K;, C UmeKiO,o (m + L;,). For each
m € K, 0, there is an L;, om € O(K;,) such that L, o, x {m} (respec-
tively, {m} X Lj, 0.m) is contained in (f o V‘(:Ki))_l(Lg) by the continuity of
fo V((:KZ) Put Lio,O = Lio N ﬂmEKiO,O LiO,O,m € ﬁ(Kzo) By Lo + Ly = Lo,
we obtain (Lip)(k,) C f~*(L2). Therefore f is continuous. O

Suppose that f is continuous. Let mg € Ky. We denote by f(mo®°e) the
Op-linear homomorphism K; — Ma, my — f(mo ® my). Then f(mo Q° e)
is the composite of f, VEK-)’ and the map Z°(K;) — [[%°(K;), m1 —
(m;), and hence is continuous. We obtain an Op-linear homomorphism
TEKi)’MZ (f) Koy — %ﬂomC(Kl, Mz), mo —> f(mo ®° O).

Proposition 3.5. The Oy -linear homomorphism T%Ki) a, (f) 18 continuous.

Proof. Let Ly € 0(Ma). By the continuity of f, there is an (L;) € [[ O(K;)
such that (L;)(g,) C [ (L2). Take a K1y € P<,(K1) satisfying K1 C
Um1€K10(m1 + Ll) For each m; € K1,07 there is an L070’m1 S ﬁ(Ko)
such that f(mo ® my) € Ly for any mo € Logm, by the continuity of
I, V‘(:Ki), and the map Ky — [[K;, mo — (m;). By 0 € Kj, we have
Kl,O #* (. Put L070 = LgN ﬂmlEKl,o L070’m1 S ﬁ(Ko) By Lo + Lo = Lo,
we obtain f(mg ® my) € Lo for any (m;) € Loo x Kj. It ensures Lo C
TfKi)’MZ(f)_l(Z((Kl,Mg),Lg)). Thus Ty, p, (f) is continuous. O

By Proposition 3.5, the correspondence ((K;), M) ~ T?Ki),MQ gives a
natural transformation T¢: C{ = C§.

Proposition 3.6. The natural transformation TC is a natural equivalence.

Proof. We have .7¢(eg ®° 01) = F°(eg) ®p, F°(e1) and .Z° o T coin-
cides with the restriction of the adjunction between ®p, and the internal-
hom functor on . Since %€ is faithful, T((:Ki), A, 18 injective. Let f €
C% ((K;), My). We show that the Op-linear homomorphism f: Ko @° K, —
My, (m;) — f(mo)(mq) is continuous. Let Ly € O(Ms). By the continu-
ity of f, there is an Ly € O(Kj) such that Ly C f~1(ZL((Ky, Ms), Ls)).
It ensures (Lo, K1)(x,) C f~Y(Ly). Therefore f is continuous. We have
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TEKZ»), M ( f ) = f. It implies that T‘(ZKZ% M, 18 surjective. Thus T is a natural
equivalence. O

By Proposition 3.6, we obtain an adjoint property between ®° and
Fom€. It does not ensure that ®° is cocontinuous, because we used ¢
in the description of the adjoint property. On the other hand, we have
a commutativity between ®° and colimits in 4} in a special case. Let
(Ks)ses be a small diagram in €. We put M = hﬂses J(Ky). We re-
call that the colimit of (K)ses in €y is given as M by Proposition 2.8 (i).
Therefore if M is pre-compact, then S gec(k, )y, g, 7c(k) gives a morphism
SR Yees i I o I(Ks@°K) = (M ®°K) in €, for any K € ob(%y).

Proposition 3.7. If M is pre-compact, then Sk, _¢ K 1S an isomorphism
in €y for any K € ob(%y).

Proof. For any M’ € ob(6;), £ (Sk,),cq,k» M') is given as the composite
of Ty g ar» the natural map

CR (M, K, M) — lim C (K, K, M"), (T, j00)
seSs seS

and the natural map lim __ Cr¥(Ks, K, M') — f(lignses IU(KsQ°K),M"),
which are bijective by Proposition 3.6 and the universality of colimits.
Therefore Sk, ), s,k 1S an isomorphism in 6. O

e l

Finally, we study %4,°. We put My ®® M; = I%m K)e[L# (M )KO ®

K; and My x° M; = lg(Ki Ve TT (M) H@/ (K;). By Proposition 2.9 (i)

and Corollary 2.10, My ®°¢ M; forms a CG linear topological Og-module.

By Corollary 2.7 and the naturality of V¢, the system (VEIQ))( K e[ # (M)
induces a continuous Og-bilinear homomorphism

A

(M) My x® My — %Cg(MO Q8 M1>

Suppose (M;) € ob((4,%)?) in the following in this subsection. By
the universality of the colimit, the system of the inclusions [[ Z°(K;) —
[[Z°8(M;) indexed by (K;) € [[-#(M;) induces a bijective continuous
map Vfg s Mo x e My — [[%°8(M;). By Proposition 2.3, the correspon-
dences (M;) ~ My ® My, My x°® M give functors ®°: (¢,%)? — €,
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and eg xCey: (%;g)2 — Top, respectively, and the correspondences (M;) ~~
Vf%f_)), V?%;) give natural transformations V6% : e; xCe; = 7%/ ¢(eg 2 ;)
and VX : o) xCe; = [[ % “2(e;), respectively.

Theorem 3.8. The triad (¢,%,®%, Oy) forms a closed symmetric monoidal
category.

We construct an exponential functor on €,%. We put Z((M;), K, L) :=
{f € (M) | f(K) C L} for a (K,L) € #(My) x O(M;), and de-
note by .#om®((M;)) the Op-module Z((M;)) equipped with the topol-
ogy generated by the set {f + .Z((M;),K,L) | (f,K,L) € My x # (M) x
O(My)}. Then s#om((M;)) forms a linear topological Op-module. We
put MM = #om((M;))». By Proposition 2.3 and Corollary 2.10 (i),
the correspondence ((M;)) ~ MM gives a functor (e1)%: (€/8)°P x €% —
%,%. We denote by C[®, CE: ((¢,%)°?)? x ¢, — Set the functors given as
CP® == Z(eg @8 1, 09) and C := Z (e, e5'). We construct an adjunction
T: C® = Cg. Let mg € Mo.

Lemma 3.9. The map (mg,e): Z¢(My) — My x¢ Mi,my — (m;) is
continuous.

Proof. Let U C My x° M7 be an open subset. By Corollary 2.5, we
have Oymgy € # (Mp). For any K € J# (M), the map (mp,e)rx: K —
Ormo x K, my + (mg, My) is continuous, and hence (m,e) 1 (U) N K =
(m, ®) (U N (Orpmo x K)) is open in K. It implies (m, ¢)~*(U) is open in
M, by Corollary 2.7. Thus (my, e) is continuous. O

Let f be an Og-linear homomorphism My ® M; — M, for a My €
ob(%,®). By Corollary 2.7 and Proposition 3.4, we have the following char-
acterisation of the continuity of f:

Proposition 3.10. The map f is continuous if and only if f o Vﬁ% 18

continuous.

2R

Suppose that f is continuous. By Lemma 3.9, f o V((:Mi) o (mg,e) is

continuous. We obtain an Og-linear homomorphism

fr: Mo = Aom®((Mit1)), mo > fo Vi o (mo®e).

Lemma 3.11. The Og-linear homomorphism fr is continuous.
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Proof. Let (K1, Ls) € (M) x O(Ms). Put L = f3'(L((M;), K1, Ls)).
We show L € 0(Mp). Let Ko € # (Mp). We denote by f(g,): Ko ®° K1 —
My the composite of f and the canonical morphism Ky®° K — My® M.
By the continuity of f, f(k,) is continuous. By Proposition 3.5, we have
LN Ky € 0(Kp). By Corollary 2.7, we obtain L € €(My). Thus fr is
continuous. O

The Og-linear homomorphism T% /1. (f): Mo — M given as the

composite (1 ~1 o fg is continuous by Corollary 2.10 (i) and

%omcg((MH_l)))
Lemma 3.11. We obtain a map

T}:\%O,Ml,Mz: Cig(Mo,Ml,Mg) — CCRg<M0,M1,M2) f — TMo,Ml,MQ(f)

The correspondence (M;)%, ~ T?\%O’ M, .M, 8ives a natural transformation
C C

Te: C{® = CR.

Proof of Theorem 3.8. We denote by (A,L,R,B) the data of the associ-
ator, the left unitor, the right unitor, and the braiding of (%, ®%, Oy).
Let M € ob(i@cg). The system (L], K)o, K))(p’K)e}g(Ok)XJg(M) induces
a morphism Ly/: Op % M — M in €, % by the functoriality of L and
the universality of the colimit. We show that Lj; is an isomorphism in
%,%. Let L € O(Op ®% M). Since the preimage of L in O ®° K is
open and Lk is a homeomorphism, we have Ly(L) N K € O(K) for any
K € 2 (M). It ensures Ly (L) € O(M) by Corollary 2.7. Therefore Ly,
is an isomorphism in C@Cg. The correspondence M ~» Lj; gives a natu-
ral equivalence L: Op ®°¢ ¢ = idcg;g. Similarly, we also have a natural
equivalence R: o @20, = idges. Let (M;) € ob((€,®)%). The system
(B( ))(K VeIl # (M) induces a morphism B(M) My®® My, — M ®°® My in
%,% by the functoriality of B and the filtered colimit. The correspondence
(MZ) ~s B(M) gives a natural transformation B: ey @Ce; = e; ®°¢ ;. By
B2 = idg, x%,, we obtain B2 = ld‘ffgx‘f{'g' ]

Let (M;)?_, € ob((¢,%)). We define a morphism Ay s, s, 1 (Mo ®@°8
Ml) ®°€ My — My ®°8 (Ml ®°8 Mg) n %cg‘ Let (K071,0, KQ) S <%/(]\40 ®°8
M) x # (Ms). We denote by Ko 1 C Mo® M, the closure of Ky 10, which
is pre-compact by Proposition 2.1 (i). Let (K;) € [[#(M;). We denote by
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(Ki)Kko, C Ko ®° K the preimage of Ko 1, and by
AKo 0K K1,k (K)o 10 K2) Kowe iy K, — Mo @ (My @ Ma)

the composite of the inclusion ((K;)r,,, K2)koocr k. — (Ko ®° K1) ®°
K, Ak, K, Ky, and the natural morphism Ky ®° (K7 ®° K3) — My @
(M; ®°¢ Ms) in 6y. By Proposition 2.6 and [6] Lemma 2.23, the system
of inclusions (K;)x,, — Ko, indexed by (K;) € [[#(M;) induces an

isomorphism hﬂ(Ki)eH%(Mi)(Ki)KOvl — Ko,1 in 5. Therefore the sys-

tem (A, oK, K1 ,K2) (Ki)e[].# (M;) induces a morphism A, x,: Ko ®°
Ky — My @ (M; ®°¢ M) in %, by Proposition 3.7. We denote by
AKO,I,O,KQ t Ko1,0®° Ko — Mo®° (M; ®° M) the composite of the natural
morphism Ko 1,0®° Ko — Ko ®° K> in 6, and AK0,1,07K2' By the universal-

ity of the colimit, the system (Akq, o .Ks)(Ko1.0,K2)€ 8 (Mo@8M1)x A (My) 1=
duces a morphism AMO7M17M2 0 (Mo ®°8 M) @° My — My ®° (M @ Ma)
in €% Th(Na correspondence (M;)?_q ~> A Mo, My .M, induces a natural trans-
formation A: (eg @ e1) R ey = o7 R (8] ®°¢ e3). Similarly, we obtain a
natural formation of the opposite direction, which is the inverse of A.

By the construction, the data (A, L,R, B, T°) is sent to the data of the
associator, the left unitor, the right unitor, the braiding, and the Currying
of (¢,®0,,0k) through .# and (°®. Since .#¢ is faithful, it ensures the
coherence so that (A,I:,f{, B) forms data of an associator, a left unitor, a
right unitor, a braiding, and an injective Currying of (¢,*,®%,0y). We
have only to verify that T?\%o,Ml,MQ is surjective. Let f € Ci (Mo, My, My).
Put

F = Chomes(aa, ) © 1 Mo = A om®((Miga).

Let (K;) € [[#(M;). We show that the Og-linear homomorphism
f(’K_): Ky®°K1 — My, (m;) — f'(mo)(mq) is continuous. Let Ly € O(M,).
Put Lo = (f) YL ((K1, Ms), Ly) N Ky. By the continuity of f’, we have
Ly € O(Ko). 1t implies (f{x,))"'(L2) € O(Ko ®° K1) by (Lo, K1)(x;) C
( f(’ Ki))*l(Lg). Therefore f(’ K,) 18 continuous. By the universality of the col-
imit, the system (f(/Ki))(Ki)GHJK/(Mi) gives a morphism f1,: My®%“®M; — M>
in %,. By the construction, we have T?\%O, my ., (L) = f. Thus T?SO, My My
is surjective.

As a consequence of Theorem 3.8, we obtain the following;:
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Corollary 3.12. The functor @€ is cocontinuous.

3.2 CGLT algebras A CGLT Oy-algebrais amonoid in (6,%, @, Oy).
We will verify that Og[[G]] forms a CGLT Oy-algebra. Before that, we give
examples of CGLT Oj-algebras. For this purpose, we compare ®°, the ten-
sor product ®; of Banach k-vector spaces (cf. [1] p. 12), and the tensor
product of compact Hausdorff flat linear topological Og-modules given as
the inverse limit of the algebraic tensor product of finite quotients. For this
purpose, we recall an elementary property of &y.

Proposition 3.13. For any (X, V) € ob(Top x BanZ'(k)), the multiplica-
tion C(X, k)xV — C(X, V) extends to a unique isomorphism C(X, k)@, V —
C(X,V) in BanZ' (k).

Proof. The assertion immediately follows from the orthonormalisability of
an unramified Banach k-vector space (cf. [8] IV 3 Corollaire 1, [2] 2.5.2
Lemma 2, and the proof of [11] Proposition 10.1). O

The underlying linear topological Og-module of any Banach k-vector
space is CG by Proposition 2.11 (iii). We denote by .#;: Ban(k) — €,®
the forgetful functor. Let (V;) € ob(Ban(k)?). By the definition of ®°,
I(7,(Vo)) ®° F8(F(V1)) is first countable. The natural embedding
I I.(Vp)) @° £8(4. (V1)) — I8(F,(Vo@iV1)) is a homeomorphism
onto the dense image by the definition of ®’ and &}, and hence induces a
homeomorphism T(%f@%: I:(Vo) @8 (V1) — I (Vo@i V1) onto the dense

) i
image by Proposition 2.11 (iii). The correspondence (V;) ~ T(%I_“)’Qacg gives

a natural transformation T®k®° . I1.(90) @ S (e1) — S (egDpe1). As a

consequence, we obtain the following;:

Proposition 3.14. Ewvery Banach k-algebra, that is, monoid in
(Ban(k), ®, k), forms a CGLT Og-algebra through %, and T,

By [7] Corollary 2.8 (i), if G is a profinite group, then C(G, k) admits a
unique Hopf monoid structure in (Ban(Oy), @, k) extending the pointwise
k-algebra structure. Therefore by Proposition 3.14, we obtain the following:

Corollary 3.15. If G is a profinite group, then C(G,k) admits a unique
structure of a commutative CGLT Oy-algebra such that the multiplication
is a continuous Og-linear extension of the pointwise multiplication.
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Every compact topological Og-module is CG by Proposition 2.1 (ii) and
Proposition 2.11 (ii). We denote by %, : €5" < %, the inclusion. The
natural O-linear homomorphism ¥¢(Kp) ®° #¢(K1) — So, (Ko®o, K1)

is a homeomorphism onto the dense image by the definition of ®° and

®0,, and it induces a homeomorphism ngf’@C s S0, (Ko) @ S, (K1) <

Lo, (K0®ok K1) onto the dense image. The correspondence (K;) ~~ Tg(o,f o

gives a natural transformation
T9ow9: o, (e0) ©F S0, (91) = Fo, (000, 1).
As a consequence, we obtain the following:

Proposition 3.16. Every monoid in (‘ff‘éh,é@ok,Ok) forms a CGLT Oy-
algebra through Yo, and T@0RS%

By Proposition 2.21 and [7] Proposition 2.7, if G is a profinite group,
then Ok[[G]] admits a unique Hopf monoid structure in (6".®0,, Ok) ex-
tending the Hopf Og-algebra structure of Og[G]. Therefore by Proposition
3.16, we obtain the following:

Corollary 3.17. If G is a profinite group, then Oy[[G]] admits a unique
structure of a CGLT Og-algebra extending the Hopf Oy-algebra structure of
O|Gl.

We note that Corollary 3.17 will be extended to the case where G is
not necessarily a profinite group, as we mentioned in the beginning of this
subsection. Another simple example of a CGLT Oy-algebra is given by a
topological Oy-algebra.

Proposition 3.18. Let A be a topological Ok-algebra. If the underlying
topological Or-module M of A is linear and CG, then M admits a unique
structure of a CGLT Oy-algebra whose multiplication is an Oy-linear exten-
sion of the multiplication of A through Vﬁ%\/[ o (V}Z\%[j\/[)*l.

Proof. We denote by f(x,): Ko ®° K1 — M the Og-linear extension of the
multiplication of A restricted to [ % ¢(K;) C % ®(M)?, which is continuous
for any (K;) € ¢ (M)? by Proposition 3.4. The system (Ko k1) (Kol )en (M)?2
induces a continuous Og-linear homomorphism f: M ®° M — M by the
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universality of the colimit. We denote by e¢ the map Op — M, ¢ — cl.
Since the identity map A — (M, f,¢€) preserves the multiplication and the
unit, (M, f, €) satisfies the axiom of a monoid in %;g. O

The rest of this subsection is devoted to the following extension of Corol-
lary 3.17:

Theorem 3.19. The CG linear topological Og-module Ok[[G]] admits a
unique structure of a CGLT Og-algebra such that O,?dg 1s an Og-algebra
homomorphism.

In order to verify Theorem 3.19, we define a convolution product on
M(G). Let (u;) € M(G)?. We define elements [] p; € M(G?) and pg * i1 €
M(G). Let U" € CO(G?). To begin with, suppose that U’ is compact. Take
an S € Z_,(CO(G)?) satistying U’ = Lw,yes [TUi. We put ([T i) (U') =
> wyes [T 1i(Ui). By the finite additivity of po and pu, (] w;)(U") depends
only on U’. In particular, the equality ([]wi)(I1U:) = [] 1i(U;) holds for
any compact clopen subsets Uy and U; of G.

Next, we consider the case where U’ is not necessarily compact. Take
a compact clopen subgroup K C G. Then (G/K)? = {(¢:K) | (g:) €
G?} gives an element of P(G?) consisting of compact clopen subsets. Put
(ITe)(U") =3 e iz (T 1) (U NI Ci). By the normality of po and
{1, the infinite sum in the right hand side actually converges, and (] u;)(U")
is independent of the choice of K. We obtain a normal Og-valued measure
T on G2.

For a U € CO(G), we denote by U C G2 the preimage of U by the
multiplication G2 — G. Set (uo * p1)(U) == ([T ) (U). Since []ps is a
normal Op-valued measure on G2, so is pg * p1; on G. We have constructed
an element pg * 1 € M(G). By the construction, the convolution product
xg: F(M(G))? = F(M(G)): (i) = po * p1 is compatible with O,?(SG and
the multiplication Ox[G]?> — O[G]. We note that *¢ is not necessarily
continuous.

Lemma 3.20. For any (K;) € 2 (M(G))?, {uo*p1 | (wi) € T[] Ki} € M(G)
18 pre-compact.

Proof. Put K = {up * w1 | (i) € [[K;}. For each i € {0,1}, there
is an increasing sequence (Gj,)rew of compact clopen subsets such that
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K; C M(G, (Gir)rew: (277)rew) by Lemma 2.19. For an r € w, put G, =
Un—o{9091 | (9;) € Gr_pho % Gp1}. Then (G,)re, forms an increasing se-
quence of compact clopen subsets of G satisfying K € M(G, (G;)rew, (277 )rew)
by the definition of #g. Therefore K is pre-compact by Lemma 2.19. O

By the bijectivity of LK/%(G) and va%(xa) MGy *C induces an Og-bilinear

homomorphism +%: O4([G]] X8 O4[[G]] — ZE(Ok[GI)), (15) — po *
compatible with O,?dc and the multiplication Ox[G]?* — Ok[G].

Lemma 3.21. The convolution product *g‘; s continuous.

Proof. Let U C Og[[G]] be an open neighbourhood of g * p1 for a (u;) €
M(G)2. Tt suffices to show that for any (K;) € ¢ (M(G))? satisfying (u;) €
[T K;, the preimage of (+%)"'(U) in [[ K; is open. Put K = {u{ * p} |
(1) € TI K;}. By Lemma 3.20, K lies in # (M(G)). By Corollary 2.7,
LICV%(G)(U) N K is an open subset of K, and there is a (P,¢) € P(G) x (0, 1]
such that (uo * 1 + M(G; Pe)) N K C LR,%(G)(U) NK. Let i € {0,1}. By
Lemma 2.18, there is a compact clopen subset G; C G such that [u(U)| < e
for any (u,U) € K; x CO(G \ G;). We obtain pg * ) € LIC\,%(G)(U) N K for
any (u) € [1((pi + M(G;{Gi, G\ Gi},€)) N K;) by the definition of . It
implies that the preimage of (xg;) ™' (U) in [] K; is open. O

Proof of Theorem 8.19. The uniqueness follows from Proposition 2.14 and
Proposition 2.17 (iii). By Corollary 2.7 and the cocontinuity of the forgetful
functor Top — Set, *¢ induces an Op-linear homomorphism ®¢F : O[[G]]®8
Ox[[G)) = Ok[[G]]. The composite @ o ViE(, ;) coincides with +¢f by
the construction, and hence is continuous by Lemma 3.21. The embedding
O,?da sends the multiplication of Ox[G] to ® and the identity to dg1 by
the construction. Since Og[G] satisfies the axiom of a monoid in €, Ox[[G]]
forms a CGLT Og-algebra with respect to the convolution product ®§;g and
the unit Oy — O[[G]], ¢ — cdg,1 by Proposition 2.14, Proposition 2.17
(iii), and the continuity of ®. O

We have examples of the computation of the generalised Iwasawa algebra
Or[[G]]-

Example 3.22. (i) If G is discrete, then O[[G]] is identified with Co(G, Oy)
equipped with the unique continuous extension of the Og-algebra structure
of the group algebra O[G] through the correspondence in Proposition 3.14.
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(i) If G is a profinite group, then the algebra structure of O[[G]] coin-
cides with the one induced by the homeomorphic Og-linear isomorphism in
Proposition 2.21, and O [[G]] is identified with the classical Iwasawa algebra
associated to GG through the correspondence in Proposition 3.16.

(iii) If G admits a closed subgroup H C G and a compact subset C' C G
such that the multiplication H x C' — G is bijective, then the multiplication
is actually a homeomorphism by [6] Lemma 2.13, and hence O[[G]] admits
a natural homeomorphic Og-linear isomorphism to Ox[[H x C1].

(iv) For any open subgroup H C G and a discrete subset D C G such
that the multiplication H x D — G is bijective, the multiplication is a
homeomorphism by [3] p. 433, and hence Oy[[G]] admits a natural homeo-
morphic Og-linear isomorphism to Og[[H x D]]. In particular, .7 ¢(O[[G]])
admits a natural Og-linear isomorphism to the ideal-adic completion of
Fe(0x[[H]])®P by Lemma 2.19.

(v) If G admits an increasing sequence (G, )recw 0Of open subgroups sat-
isfying U, ¢, Gr = G, then .#(O[[G]]) admits a natural Og-algebra iso-
1211(1)£1;phism to the ideal-adic completion of lim _ .7 €(O[[Gy]]) by Lemma

As an application of Example 3.22 (ii) and (vi), we immediately obtain
the following:

Proposition 3.23. Let p denote the residual characteristic of k, and w €
Oy a uniformiser. Then F¢(Ox[[Qp]]) admits a natural O-algebra isomor-
phism to the w-adic completion of the filtered colimit of F<(Ok[[T]]) with re-
spect to the continuous Og-algebra homomorphism Og[[T]] — Ok[[T]], T —
(T+1)P—1.

3.3 CGLT modules Let A be a CGLT Og-algebra. A CGLT A-module
is a left A-module in (4% ®%,0y). We give three examples of CGLT
modules as immediate consequences of Proposition 3.14, Proposition 3.16,
and Proposition 3.18, respectively:

Proposition 3.24. Let &/ be a Banach k-algebra. Then every Banach
left o -module, that is, left sz—quule in (Ban(k), ®g, k), forms a CGLT
I (@ )-module through ., and TS,
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Proposition 3.25. Let & be a monoid in (‘Kf‘éh, ®0,,O0k). Then every left
o -module in (€5, @0, ,O0F) forms a CGLT Fo, (o )-module through o,

and T®0w O

Proposition 3.26. Let o7 be a topological Oy-algebra whose underlying
topological Ok-module is linear and CG. Then every topological left o -
module whose underlying topological Ok-module is linear and CG forms a
CGLT < -module through V&% o (V&*)~1,

A BT A-module is a CGLT A-module V whose underlying Op-module
structure extends to a k-vector space structure equipped with a complete
non-Archimedean norm on the underlying k-vector space of V giving its
original topology. Let V be a BT A-module. Then V forms a topological
k-vector space because it forms a Banach k-vector space. We say that
V' is bounded if there is an R € (0,00) such that ||fv]| < R|v|| for any
(f,v) € AxV,is submetric if ||fv| < ||Jv|| for any (f,v) € A x V, and
is unitary if it is submetric and the underlying Banach k-vector space V
is unramified. We denote by BT(A) the k-linear category of bounded BT
A-modules and bounded A-linear homomorphisms, by BT<(A) C BT(A)
the Op-linear subcategory of submetric BT A-modules and submetric A-
linear homomorphisms, and by BTZ(A) C BT<(A) the full subcategory of
unitary BT A-modules. -

Let M be a CGLT A-module. We say that M is a CHFLT A-module if
the underlying linear topological Op-module of M is a compact Hausdorff
flat linear topological Og-module. We give a characterisation of a CHFLT
A-module.

Proposition 3.27. Let K € ob(%)). For any a map p: Ax K - K, K
forms a CGLT A-module with respect to the Og-linear extension of p if and
only if F(K) forms a left F(A)-module and p is continuous.

Proof. We denote by p: A ®® K — K the Og-linear extension of p. The
direct implication follows from Proposition 3.10 and the continuity of fo?}.
Suppose that K forms a CGLT A-module with respect to p. By the nat-
urality of V* . Z%(K) forms a left .#°(A)-module with respect to p.
Let U C K be an open subset. Let (f,m) € A x K. We show that
if p(f,m) € U, then p~(U) is an open neighbourhood of (f,m). Put
L={feA|vVm' € K,p(f+ f',m') € U}. Let Ky € #(A). By Proposi-
tion 2.1 (ii) and the continuity of the p, there is an (L;) € O(Ky) x O(K)
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such that p(f',m’) € U for any (f',m’) € ((f + Lo) x K)U (Ko x (m+ Lq)).
In particular, we have Ly C L N Ky and hence LN Ky € O(Kp). It im-
plies L € 0(A) by Corollary 2.7. By L x K C p~Y(U), p~*(U) is an open
neighbourhood of (f,m). Thus p is continuous. O

A left A-submodule K C M is said to be a core of M if K is compact,
the inclusion K — M induces an isomorphism k ®o, F°(K) — (M)
in @, and every Oy-submodule L C M satisfying cL N K € ¢(K) for any
c € Ok \{0} is open. We say that M is a CGHLT A-module if M is Hausdorff
and admits a core. If M is a CGHLT A-module, then M forms a topological
k-vector space because &'(M) is stable under the action of £*. We denote by
Mod§'(A) the Op-linear category of CHFLT A-modules and continuous A-
linear homomorphisms, and by Modggh(A) the k-linear category of CGHLT
A-modules and continuous A-linear homomorphisms.

We give an example of a CGHLT A-module. Let K € ob(Mod§'(A)).
We denote by Kj, the left .7 (A)-module k ®o, #°(K) equipped with the
strongest topology for which K} forms a topological k-vector space and the
natural embedding (5. : K — K}, is continuous. We identify .#°(K) with
its image in k ®o, .#°(K). The following is an analogue of [13] Lemma 1.4:

Proposition 3.28. The linear topological Op-module Kj forms a CGHLT
A-module, and 5 is a homeomorphism onto a core.

In order to verify Proposition 3.28, we characterise the topology of K.

Lemma 3.29. A subset U C K}, is open if and only if (:5,)~1(cU) C K is
open for any c € Oy \ {0}.

Proof. We denote by € the set of subsets U C K}, such that (:5.) 71 (cU) C K
is open for any ¢ € O \ {0}. Then & satisfies the open set axiom of the
underlying set of K, for which 1% is continuous and K}, forms a topological
k-vector space because € is stable under the action of k*. Therefore by

the universality of the strongest topology, & coincides with the set of open
subsets of K. O

Proof of Proposition 3.28. Take a uniformiser w € Op. Put K, := K for an
r € w, and denote by K, the colimit in €, of (K,),c, with respect to the
transition maps K, — K,4+1, m — c¢m indexed by r € w. Then K, forms a
CG linear topological Og-module by Proposition 2.1 (ii), Proposition 2.9 (i),
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and Corollary 2.10. It is Hausdorff by the same computation as that in the
proof of [6] Proposition 1.27 using Corollary 2.7 and a well-known property
of Ty normal topological spaces. By Corollary 3.12 and the functoriality of
the colimit, the scalar multiplication A ®*¢ K — K induces a continuous
Op-linear homomorphism A ®° K, — K, for which K, forms a CGLT
A-module.

By the universality of the colimit and the flatness of K, 1% induces a
continuous bijective Op-linear homomorphism k% : K,, — Kj. By Corol-
lary 2.7, the map K, — K,, m — wm is an isomorphism in %, and hence
K, forms a topological k-vector space. We show that k% is an open map.
Let L € O(K,). For any ¢ € O \ {0}, (¢$) *(c(kt$)(L)) coincides with
the preimage of cL in Ky, and hence is open by the continuity of the canon-
ical embedding Ko — K. It ensures (k% )(L) € O(K}) by Lemma 3.29.
Therefore k.j- is an isomorphism in ¢, and K}, forms a Hausdorff CGLT A-
module. Since K is compact and K}, is Hausdorff, % is a homeomorphism
onto the image, which is a core of K. ]

We obtain a characterisation of a CGHLT A-module.

Proposition 3.30. If M is a CGHLT A-module with a core K C M, then
the bijective Oy-linear homomorphism K — M induced by the inclusion
K < M s an isomorphism in Modzgh(A).

Proof. We denote by ¢: Kj — M the map in the assertion, and by i: K —
K. the canonical embedding. By the universality of the strongest topology,
¢ is continuous. Let L € K. For any ¢ € Oy \ {0}, we have co(L) N K =
o(cL)N K =i"Y(cL) € O(K). Tt implies p(L) € O(M). Therefore ¢ is an
open map. ]

The correspondence K ~ K}, gives an O-linear functor ® 4: Mod§'(A) —
Modzgh(A) by Proposition 3.28. We denote by ® 4 1. : kMod§f'(A) — Mongh(A)
its k-linear extension.

Proposition 3.31. The k-linear functor ® 4 is fully faithful and essen-
tially surjective.

Proof. The faithfulness of ® 4, follows from the faithfulness of ® 4 and the
flatness of hom objects. The fullness follows from the same computation as
that in the proof of [13] Lemma 1.5 ii and iii using Baire category theorem.
The essential surjectivity follows from Proposition 3.30. 0
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By Proposition 2.1 (ii), Proposition 3.28, and Proposition 3.29, Oy, forms
a commutative CGLT Oj-algebra. By Proposition 3.27, .o, induces an
equivalence €' — Mod(Oy,) of categories. By Proposition 3.28 and
Proposition 3.29, we obtain an Oj-linear functor € — Mod{"(O},), which
extends to a fully faithful essentially surjective k-linear functor k‘éf‘zh —
ModS&" (Oy).

4 Modules over Iwasawa algebras

We study relation between module theory over O[[G]] and representation
theory of G. As a main result, we generalise Schneider—Teitelbaum duality
to duality applicable to G, and give a criterion of the irreducibility of unitary
Banach k-linear representations of G.

4.1 Unitary Banach representations A Banach k-linear represen-
tation of G is a pair (V,p) of a V € ob(Ban(k)) and a continuous map
p: G xV — V giving a k-linear action of G on V. Let (V,p) be a Banach
k-linear representation of G. We say that (V, p) is unitarisable if there is an
R € (0,00) such that ||p(g,v)| < R|v|| for any (g,v) € G x V, is isometric
if ||p(g,v)|| = ||v|| for any (g,v) € G x V, and is said to be unitary if V' is
unramified and (V, p) is isometric. A map between Banach k-linear repre-
sentations is said to be a k[G|-linear homomorphism if it is a G-equivariant
k-linear homomorphism. We denote by Rep,(Ban(k)) the k-linear category
of unitarisable Banach k-linear representations of G and bounded k[G]-
linear homomorphisms, by Repg(Ban<(k)) C Repg(Ban(k)) the Og-linear
subcategory of isometric Banach k-linear representations of G and submet-
ric k[G]-linear homomorphisms, and by Repgs(Ban¥ (k)) C Reps(Ban<(k))
the full subcategory of unitary Banach k-linear representations of G.

We compare the notion of a BT O[[G]]-module and the notion of a
Banach k-linear representation of GG. For this purpose, we consider a partial
generalisation of Banach—Steinhaus theorem (cf. [11] Corollary 6.16). Let
(Xo, (V;)) € ob(Top x Ban(k)?).

Proposition 4.1. A map ¢: Xo — . ((Vi)) is continuous if and only if the
map Xo X Vi = Va: (x,v) — () (v) is continuous.
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Proof. We denote by p: Xg x Vi — V5 the induced map. The direct impli-
cation follows from the continuity of the map Xy — Xy x Vi, x — (z,v) for
any v € V. Suppose that ¢ is continuous. Let Us C V5 be an open subset.
Let (z,v) € Xo x Vi. Suppose p(z,v) € Us. Take an € € (0,00) satisfying
{v' e Vo | ||[v/ = p(z,v)|| < €} CUs. Put Uy == {v/ € Vi | ||/ —v| < €}. By
the continuity of ¢, there is an open neighbourhood Uy C X of « such that
llp(z,v) — p(x,v)|| < € for any 2’ € Uy. We obtain ||p(a’,v") — p(z,v)| <
max{|[p(a,v' — )|l |p(a’,v) — p(a,v)||} < ¢ for any (/') € [[ U, and
hence [[U; C p~1(Us). It implies that p is continuous. O

Let (X, (V,p)) € ob(Top x Repg(Ban<(k))). By Proposition 4.1, the
monoid homomorphism ¢,: G — .#(V)* induced by p is continuous. In
order to obtain a submetric BT Og[[G]]-module structure on V' associated
to p, we prepare a partial generalisation of [13] Lemma 2.1 for the Banach
space side.

Proposition 4.2. The map Z(M(X),.7(V)) — Homro,(X, % (S (V))),
F— Fodx is bijective.

Proof. Denote by ¢% the map in the assertion. By Proposition 2.16 (iii),
&% is injective. Let ¢ € Homrp(X, % (#(V))). Denote by O ¢: OP% —
(V) the Og-linear extension of . Let (v,e) € V x (0,1]. Put L == {f €
(V) | |f(v)| < €}. By the continuity of ¢, the set of the preimages of open
balls in V' of radius € by the map X — V, z — ¢(x)(v) gives a P € P(X).
We have (OP%)~1(M(X; P,e)) € (OF?)"Y(L). Therefore O extends
to a unique continuous Op-linear homomorphism ¢: M(X) — (V) by
Proposition 2.16 (iii). We have 6% (@) = ¢. Thus 6% is surjective. O

As a consequence of Theorem 3.19 and Proposition 4.2, we obtain the
following:

Corollary 4.3. For any continuous monoid homomorphism ¢: G — ./ (V)*
there is a unique continuous Og-linear homomorphism F: M(G) — (V)
satisfying F o dg = @, and F o LK%I(G) preserves the multiplication and the
unit.

By Corollary 4.3, ¢, induces a continuous Oj-linear homomorphism
II,: M(G) — #(V)such that II o LK/%(G) preserves the multiplication and

the unit. We have a comparison between the closed unit balls of .7Z0om®
and 4.
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Proposition 4.4. The identity map
A om (I (V), Zx(V)) N Endpan_ 1) (V) = (V)
s an isomorphism in 6.

Proof. Denote by ¢ the map in the assertion. By Corollary 2.5, ¢ is continu-
ous. Let L € O(#om® (I (V), #(V)) NEndgan_ 1) (V)). Take a (K, ¢€) €
H(I(V)) x (0,00) satisfying {f € Endpan_ ) (V) | Vv € K, [f(v)| < €} C
L and a Ko € P,(K) satisfying K C Uyeg {v' €V | [/ —v| < €} We
have {f € S (V) | Vv € Ky, |f(v)| < ¢} Ci(L), and hence i(L) € 0(L(V)).

Therefore i is an isomorphism in %;. O

By Corollary 2.10 (i) and Proposition 4.4, pr induces a continuous Oy-
linear homomorphism II,: OL[[G]] — #(V)?*(V) preserving the multipli-
cation and the unit. By Theorem 3.8, II, gives a CGLT O[[G]]-module
structure on #(V'), for which .# (V') forms a submetric BT Oy[[G]]-module
Jo(V,p). By the construction, the correspondence (V,p) ~ [~(V,p) gives

Op-linear functors fg <: Repg(Ban<(k)) = BT<(Ok[[G]]) and

d
/G + Repg(Bant (k) — BT (04 [[G]).

Each step of the construction of [(V,p) is obviously invertible, and hence
we obtain a comparison between the notion of a submetric BT O[[G]]-
module and the notion of an isometric Banach k-linear representation of

G.

Theorem 4.5. The functors f§< and fg a are equivalences of Og-linear
categories. B

We also consider a similar comparison without the assumption of the
submetric condition. Let (V, p) € ob(Reps(Ban(k))). Take a ¢ € k* satis-
tying ||p(g,v)|| < |¢| ||v]| for any (g,v) € G x V. By Proposition 4.1, the map
G — (V) induced by the continuous map G xV — V, (g,v) — ¢ ‘p(g,v)
is continuous. By Proposition 4.2, it induces a continuous Opg-linear homo-
morphism M(G) — .(V), which does not necessarily preserve the multi-
plication. By Corollary 2.10 (i) and Proposition 4.4, it induces a contin-
uous Op-linear homomorphism O4[[G]] — #(V)?¢(V). Multiplying ¢, we
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obtain a continuous Oj-linear homomorphism TI,: OL[[G]] — #4(V)7+(V)
independent of the choice of ¢ preserving the multiplication and the unit.
By Theorem 3.8, II, gives a CGLT O[[G]]-module structure on .#,(V),
for which (V) forms a bounded BT O[[G]]-module [,(V,p). By the
construction, the correspondence (V,p) ~» [~(V,p) gives a k-linear func-

tor fg: Reps(Ban(k)) — BT(Og[[G]]). Each step of the construction of
Jo(V, p) is obviously invertible, and hence we obtain a comparison between
the notion of a bounded BT O[[G]]-module and the notion of a unitarisable
Banach k-linear representation of G.

Theorem 4.6. The functor fg 1 a k-linear equivalence of categories.

4.2 CHFLT modules A CGLT Oy-linear representation of G is a
pair (M, p) of an M € ob(%,®) and a continuous map p: G x M — M
giving an Og-linear action of G on M. A map between CGLT Op-linear
representations is said to be an O[G]-linear homomorphism if it is a G-
equivariant Og-linear homomorphism. Let (M, p) be a CGLT Og-linear
representation of G. We say that (M, p) is a CHFLT Oy-linear representa-
tion of G if M € ob(%j"). We denote by Repg(%,*) the Oy-linear category
of CGLT Op-linear representations of G and continuous Oy [G]-linear homo-
morphisms, and by Rep (%) C Rep(%,*) the full subcategory of CHFLT
Op-linear representations of G.

We compare the notion of a CHFLT O[[G]]-module and the notion of a
CHFLT Og-linear representation of G. For this purpose, we consider a com-
pact analogue of Banach—Steinhaus theorem (cf. [11] Corollary 6.16). We
denote by Unf the category of compact uniform spaces and uniformly contin-
uous maps. Let (X, (Cit1)) € ob(Top x Unf?). We equip Homyp((Ciy1))
the topology of uniform convergence.

Proposition 4.7. A map ¢: Xo — Homuynt((Cit1)) is continuous if and
only if the induced map Xo x C; — Ca: (z,m) — @(x)(m) is continuous.

Proof. If Cy = (), then the assertion is obvious. We assume C; # (. We
denote by p: Xgx C; — Cs the induced map. Suppose that ¢ is continuous.
Let Uy C C3 be an open neighbourhood of p(zq, mg) for a (zg, mg) € XoxCi.
Take entourages Eo, By C C3 satisfying {m1 € Ca | (p(xo,mp),m1) € Eg} C
Us and that for any (m;)?_, € Cs, ((m;), (mi+1)) € E? implies (mg;) € Ey.
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By the uniform continuity of ¢ (), there is an entourage Eo C C? such that
every (m;) € Es satisfies (p(xg)(m;)) € Eq. By the continuity of ¢, there
exists an open neighbourhood Uy C X of zg such that (¢(x1-;)(m1)) € Eq
for any (x1,mq) € Uy x Cy. Put Uy == {my € Cy | (m;) € E2}. Then for
any (z1,m1) € [[U;, we have ((p(zo,m;)), (p((x;,m1))) € E?, and hence
(p(xi,m;)) € Ep. Tt implies that [JU; C p~!(Us). Therefore p is continuous.

Suppose that p is continuous. Let U C Homypn¢((Cit1)) be an open
neighbourhood of o(zg) for a 9 € Xo. For an entourage £ C C3, set
Ug = {f € Homyn((Cit1)) | Ym € Ci, (¢(xo)(m), f(m)) € E}. Then
the collection of subsets of the form Ug forms a fundamental system of
neighbourhoods of ¢(z0). Take entourages Ey, E1 C C3 satisfying Ug, C U
and that for any (m;)2_, € C3, ((m;), (ma;)) € E? implies (m;+1) € Ey. For
each mg € C1, there are open neighbourhoods Uy C X and U; C Cy of zg
and my, respectively, such that (p(z;,m;)) € E; for any (z1,m1) € [[U; by
the continuity of p. We denote by S the set of such an (myg, (U;)) satisfying
mo € C1. Since C is compact and non-empty, there is an Sy € P,(S)\{0}
such that C; = U(mo,(Ui))ESo Up. Put V) = m(mo,(Ui))ESo Up. Let z1 € V.
We show ¢(z1) € Ug,. Let mg € Cy. Take an (my, (U;)) € Sy satisfying
mo € Up. We have ((p(zo,m;)), (p(z5,m;))) € E? by the choice of m; and
U;. Therefore we obtain (¢(x;)(m1)) = (p(zi,m1)) € Ey by the choice of
Ey. Tt ensures p(x1) € Ug,. It implies that Vo C ¢~ 1(Ug,). Thus ¢ is
continuous. O

Let (K,p) € ob(Repg(€5")). The monoid homomorphism ¢,: G —
Hom(K, K)* induced by p is continuous by Proposition 4.7. In order
to obtain a CHFLT Og[[G]]-module structure on K associated to p, we
prepare a partial generalisation of [13] Lemma 2.1 for the compact side. By
Proposition 3.3 and Proposition 4.2, we obtain the following:

Proposition 4.8. The map
ZM(X), #om(K,K)) — C(X,#om"(K,K)), Frs Fodx
1s bijective.

By Theorem 3.19 and Proposition 4.8, we obtain a locally profinite coun-
terpart of [13] Corollary 2.2 for the compact side.
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Corollary 4.9. For any continuous monoid homomorphism
p: G — Hom®(K,K)*,
there is a unique continuous Og-linear homomorphism
F:M(G) —» #om (K, K)

such that Fodg = ¢, and F o LR%(G) preserves the multiplication and the
unit.

By Corollary 2.10 (i) and Corollary 4.9, ¢, induces a continuous Oj-
linear homomorphism IT,: O[[G]] = o, (K)”0x5) preserving the multi-
plication and the unit. By Theorem 3.8, II, gives a CGLT Oy[[G]]-module
structure on o, (K), for which Jp, (K) forms a CHFLT O[[G]]-module
fG(K, p). By the construction, the correspondence (K, p) ~~ fG(K, p) gives
an Oj-linear functor [5,: Repg(65") — Mod§'(OL[[G]]). Each step of the
construction of | (K, p) is obviously invertible, and hence we obtain a com-
parison between the notion of a CHFLT Og[[G]]-module and the notion of
a CHFLT Og-linear representation of G.

Theorem 4.10. The functor fé 1s an Og-linear equivalence of categories.

Let (M,p) € ob(Repg(€,®)). A G-stable Og-submodule K C M is
said to be a core of (M, p) if K is compact, the inclusion K < M induces
an isomorphism k ®o, F°(K) — ZF°(M) in €, and every Oj-submodule
L C M satisfying cL N K € O(K) for any ¢ € Oy \ {0} is open. We say
that (M, p) is a CGHLT k-linear representation of G if M is Hausdorff
and (M, p) admits a core. If (M,p) is a CGHLT k-linear representation
of G, then M forms a topological k-vector space because &(M) is closed
under the action of k*. We denote by Repg(k€") C Repg(%,*) the full
subcategory of CGHLT k-linear representations of G. We give an example
of a CGHLT k-linear representation of G. We denote by (K, p)j the pair of
Ky € ob(Mongh(Ok)) and the k-linear extension of p.

Proposition 4.11. The pair (K, p)r forms a CGHLT k-linear represen-
tation of G, and 1§, is a homeomorphic Oy|G|-linear isomorphism onto a
core.
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Proof. By Proposition 3.28 applied to A = O, K}, is a CGHLT Og-module,
and 1% is a homeomorphism onto a core of Kj. By Corollary 2.7, the k-
linear extension of p gives a continuous map G X Ky — Kj. Therefore
(K, p) forms a CGLT Op-linear representation of G. Since § is Ok[G]-
linear, (5 (K) forms a core of (K, p)y. O

By Proposition 4.11, the correspondence (K, p) ~ (K, p)i gives an O-
linear functor ¥: Repg(€5) — Repg(k6S"). We denote by

Uy.: kRepg (") — Repg (k6)

its k-linear extension. By a similar argument to that in the proof of Propo-
sition 3.31, we obtain a characterisation of a CGHLT k-linear representation
of G.

Proposition 4.12. The k-linear functor Wy, is fully faithful and essentially
surjective.

We compare the notion of a CGHLT Og[[G]]-module and the notion
of a CGHLT k-linear representation of G. Let (M, p) € ob(Repg(kEh)).
Take a core K C (M, p). We abbreviate the pair of K and the restriction
Gx K — K of pto (K, p). The scalar multiplication O [[G]]® [ (K, p) —
Jo (K, p) induces a continuous Oy-linear homomorphism O[[G]] ®° K}, —
Ky by Corollary 3.12 and the functoriality of the colimit. Through the
isomorphism (K, p)r — (M, p) in Repg(k€3") induced by the inclusion
K < M, we obtain a continuous Oj-linear homomorphism O[[G]]®@¢ M —
M, for which M forms a CGHLT Oj-module [ (M, p) with a core K. By
the construction, the correspondence (M,p) ~ [~(M,p) gives a k-linear
functor fék Repg (k€) — Modzgh(Ok[[G]]). We obtain a comparison
between the notion of a CGHLT Og[[G]]-module and the notion of a CGHLT
k-linear representation of G.

Theorem 4.13. The functor fé i 18 a k-linear equivalence of categories.

Proof. We construct an inverse. Let M € ob(Modggh(Ok[[G]])). We de-
note by My the underlying CGHLT Og-module of M. We show that the
map py: G x My — My, (g,m) — dggm is continuous. Take a core
K1 C M. We consider the composite O [[G]] ®°® K1 — M of the Oy-linear
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homomorphism O[[G]] @8 K1 — O[[G]] ®8 M induced by the inclusion
K1 — M, which is continuous by the functoriality of ®°®, and the scalar
multiplication Ok[[G]] ®°8 M — M. Since K is a left Oy [[G]]-submodule, it
factors through K71 C M. We obtain a continuous Og-linear homomorphism
Ox[[G]] ®°¢ K1 — K1, for which K forms a CHFLT Og[[G]]-module.

Let U C My be an open subset. Take an open profinite subgroup
H C G. Forage G, put Uyy = gH and Ugo == {m € My | V¢’ €
Uy, pr(g',m) € Uz}, Then we have p,} (Uz) = Uyec [1Ug,i- Therefore
in order to show that pA_Jl(Ug) is open, it suffices to show U, 2 is open for
any g € G. Let g € G. We show that cU,2 N K; is open in K; for any
c € Op \ {0}. Let ¢ € Oy \ {0}. Let m € cUy 2N K. By Proposition 2.1 (ii),
Corollary 2.5, and Proposition 2.17 (ii), we have Ky := Zg,eH Ordggq €
A (Og[[G]]). By Proposition 2.1 (ii) and the continuity of the scalar mul-
tiplication Ok[[G]] ®¢ K; — K, there is an (L;) € [][ O(K;) such that
(da,g @m) + (Li)(x,) (cf. §3.1) is contained in the preimage of pai (cUz) in
Ky ®° Ki. In particular, we have m + L1 C cUy2 N Ki. It ensures that
cUg2 N K1 is open in K. By Lemma 3.29 and Proposition 3.30, Uy is
open. It implies that pjs is continuous. We obtain a CGHLT k-linear rep-
resentation (M, ppr) with a core Kj. The correspondence M ~ (Mo, par)
gives a functor Modzgh(Ok[[G]]) — Repg (k€S") which is a strict inverse of

ch:k O

4.3 Generalised Schneider-Teitelbaum duality

Imitating the method of [13] Theorem 2.3, we extend (Dg,D.) to an Oy-
linear equivalence (24, Z.) of Repg(Ban¥ (k)% and Mod$(Ox[[G]]). Let
(V,p) € ob(Repg(Ban¥(k))). For a (g,m) € G x VP4, we denote by
pP4(g,m) the submetric k-linear homomorphism V — k, v — m(p(g~",v)).
We obtain a map pPd: G x VP4 — VPa: (g m) = pPa(g,m).

Proposition 4.14. The map pP4 is continuous.

Proof. By Proposition 4.1, p induces a continuous monoid homomorphism
¢: G — Z(V)*. Themap G — Hom®(VPa VD)< gy T(o)‘;lljd VPa (o(g™h)
is a continuous by Proposition 3.3. Therefore pPd is continuous by Propo-
sition 4.7. O

By Proposition 4.14, the correspondence (V, p) ~» (VP4 pPd) gives an
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Oj-linear functor d%4: Repg(Ban¥ (k))°? — Repg(%5t). We denote by
94 Repg(BanZ (k))°P — Mod$ (O[[G]]) the composite of J& and d%,.
Let K € ob(Mod§(O.[[G]])). We denote by Ky € ob(%") the un-
derlying topological Op-module of K. For a (g,v) € G x Ky°, we de-
note by pg(g,v) the continuous Og-linear homomorphism Ky — k, m
v(dg 4-1m). We obtain a map px: G x Kye — K§<: (9,v) = px(g,v).

Proposition 4.15. The map px is continuous.

Proof. By Proposition 2.17 (ii) and Proposition 3.27, the map G x K —
K, (g,m) — dggm is continuous. By Proposition 4.7, it induces a con-
tinuous monoid homomorphism ¢: G — #om(Ky, K9)*. The map G —
A om®(KP, KQ9)*, g — To(97 ) Kok, is continuous by Proposition 3.3.
Therefore pg is continuous by Proposition 4.1. O

We put K7 = (Kéjc,pK). By Proposition 4.15, the correspondence
K ~ K7 gives an O-linear functor 7. : Mod$®(Ox[[G]]) — Repg (BanZ' (k))°P.
By Proposition 2.12, we obtain the following:

Theorem 4.16. The pair (%4, Z.) is an Oy-linear equivalence between
RepG(Ban%r(k))"p and Modf?(Ok[[G]]).

We obtain a generalised Schneider—Teitelbaum duality (cf. [13] Theorem
2.3).

Theorem 4.17. The composite kMod$ (O[[G]]) — Repg(Ban(k)) of k2.
and the k-linear extension kRepg(BanZ (k)) — Repg(Ban(k)) of the in-

clusion Repg(Ban¥ (k)) — Repg(Ban(k)) is fully faithful and essentially
surjective.

Proof. The assertion follows from Theorem 4.5, Theorem 4.6, and Theo-
rem 4.16 because the composite of the k-linear functor kRepg(BanZ'(k)) —

Repg(Ban(k)) and fg coincides with the composite of k [, and the k-
linear extension kBT (O[[G]]) — BT(Ok[[G]]) of the inclusion

BTZ (O[[G]]) = BT(O[[G]]).



158 T. Mihara

Let (V, p) € ob(Repg(Ban(k))) (respectively, M € ob(Mod;gh(Ok[[G]]))).
We say that (V, p) (respectively, M) is irreducible (respectively, simple) if it
admits exactly two closed G-stable k-vector subspaces (respectively, closed
left Og[[G]]-submodules which are k-vector spaces). As an analogue of [13]
Corollary 3.6, we obtain a criterion for the irreducibility.

Theorem 4.18. Suppose that (V,p) is unitary. Then (V,p) is irreducible
if and only if (V, p)74) is simple.

Proof. Suppose that ((V, p)74),, is simple. We show that (V, p) is irreducible.
We have (V,p)?7¢ # {0} by ((V,p)7%)r # {0}, and hence V # {0}. Let
Vo C V be a proper closed G-stable k-vector subspace. Then (Vj, p) forms a
unitary Banach k-linear representation of G. By Hahn—-Banach theorem (cf.
[5] Theorem 3 and [11] Proposition 9.2), the restriction map 7: (VPd); —
(VB@ 4) is surjective and ker 7 is a non-zero closed Oj[[G]]-submodule of
((V, p)74);, which is a k-vector space. Since ((V, p)74)}, is simple, we obtain
kerm = ((V, p)74);. It ensures VOQd = {0}, and hence Vy = {0} again by
Hahn-Banach theorem. It implies that (V, p) is irreducible.

Suppose that (V, p) is irreducible. We show that ((V,p)74); is sim-
ple. Let My C ((V,p)74)x be a proper closed O[[G]]-submodule which is
a k-vector space. The identity map .Z¢((V,p)74) — Homp,yur r) (V, k) in-
duces a bijective k-linear homomorphism Z((VP4);,) — Hompan) (V. k),
through which we regard .7 (Mp) as a k-vector subspace of Hompay ) (V; k).
We have ((V,p)74), # {0} by V # {0} and Hahn Banach theorem. Put
Vo = Nimen, ker(m) C V. We show Vy # {0}. Let M denote the quo-
tient (VPa), /My. Since My is a proper closed O[[G]]-submodule of (VP4),
which is a k-vector space, M is a non-zero Hausdorff linear topological Oj-
module which is a topological k-vector space. Therefore there is a non-zero
continuous O-linear homomorphism v: M — k by [6] Theorem 2.1. By the
compactness of VP4 and the continuity of L(‘:/D , and the canonical projec-
tion ((V, p)74), = M, we have sup,, ., 0(tyny (M) + M) < oo. Therefore
there is a v € V'\ {0} such that v(c{,n, (m) + Mo) = m(v) for any m € VD
by Theorem 2.12. It ensures m(v) = v(0) = 0 for any m € My. We obtain
v € Vy and hence V) # {0}. Since V} is a closed G-stable k-vector subspace
of (V,p) and (V, p) is irreducible, we obtain Vp = V. It ensures My = {0}.
It implies that ((V, p)74); is simple. O
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5 Applications

As applications of the module theory in the monoidal structure, we give an
explicit description of a continuous parabolic induction of unitary Banach
k-linear representations.

5.1 Duality of operations Let P C G be a closed subgroup. Suppose
that P\G is compact. We study relations between the dual functors in §4.3
and operations on representations. Let (V,p) € ob(Repg(Ban¥(k))). We
put Res$(V,p) = (V,p|lpxv). The correspondence (V,p) ~ Res3(V, p)
gives an Op-linear functor Res%: Repg(Ban¥ (k)) — Repp(Ban¥ (k)).

Let K € ob(Mod$(Ox[[G]])). We denote by ResnggH(K) the scalar

restriction of K by the natural embedding Og[[P]] < O[[G]]. The corre-
O [[G]]

Ok[[PH(K ) gives an Oy-linear functor

spondence K ~» Res

Oi[lG c [¢
Resg" (] - ModS} (O, [[G]]) — Modgf (Ox[[P])).
We have 74 o Res§ = Resg' |7l o Za: Repg(Ban (k) — Modgf (Ox[[P]])
by the construction.

Let (Vo, po) € ob(Repp(Ban¥(k))). We denote by p: G x Cpa(G, Vo) —
Cha(G, Vo) the map given by setting p(g, f)(¢') == f(¢'g) for an (f,g,9') €
Cha(G, Vo) x G?, which is not necessarily continuous. We set Ind%(Vp) ==
{f € Cba(G, o) | Y(h,v) € P x G, f(hg) = po(h, f(g))}. Then IndE(Vp) C
Cpa(G,Vp) is a closed G-equivariant k-vector subspace. We denote by
Ind%(po): G x Ind%(Vp) — Ind%(Vp) the restriction of p. It can be eas-
ily verified that Ind%(pg) is continuous by Banach-Steinhaus theorem (cf.
[11] Corollary 6.16), and Ind%(Vp, po) := (Ind%(Vp), Ind%(pg)) forms a uni-
tary Banach k-linear representation of G. The correspondence (Vp, pg) ~~
Indg(%, po) gives an Oy-linear functor

Ind$: Repp(BanZ (k) — Repg(BanZ (k)).

Let Ko € ob(Mod$ (Ok[[P]])). We describe Indg(ngc)@d explicitly by
G and Kj. Since the underlying topological space of G is a disjoint union
of compact clopen subspaces, a map ¢: G — ng ¢ is continuous if and
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only if the induced map G x Ky — k: (g,m) — ¢(g)(m) is continuous by
Proposition 4.7. Therefore we obtain an isometric k-linear homomorphism
Cpa(G, KO%) — Cpa(G x Ko, k) onto the closed image. We consider the map
p: G X Cpy(G x Koy, k) = Cpa(G x Ky, k) given by setting p(g, f)(g’,m) ==
f(g'g,m) for a (g,f,¢';m) € G x Cpa(G x Ko, k) x G x Ky, which is
not necessarily continuous. The inclusion Ind]Gg(KO%) — Cpa(G, K(“]@ ©) C
Cpa(G x Ky, k) is an isometric G-equivariant k-linear homomorphism, and
its image is the closed G-stable k-vector subspace consisting of functions
f: G x Ky — k satisfying the following:

(I) The equality f(g,cm) = cf(g, m) holds for any (g, c, m) € Gx O x Kj.

(IT) The equality f(g,>.mi) =Y. f(g,m;) holds for any (g, (m;)) € G X
KZ.

(ITI) The equality f(hg,m) = f(g, 55}hm) holds for any (h,g,m) € Px G x
Ky.

The inclusion Ind$(K7*) < Cha(G x Ko, k) induces a continuous surjec-
tive G-equivariant Og-linear homomorphism ¢ p: Cpa(G x Ko, k)Pd —
Ind%(K7¢)Pd by Hahn-Banach theorem (cf. [5] Theorem 3 and [11] Propo-
sition 9.2). Since the target and the source of ¢g p are compact and
Hausdorff, the target is homeomorphic to the coimage. We determine
ker(¢og,p) in order to describe the target. We denote by ey, the sub-
metric k-linear homomorphism Cpa(G x Ko, k) — k, f = f(g,m) for
a (g,m) € G x Ky. We put ,ulgﬂcjm = cegm — €gem for a (g,c,m) €
G x Oy x Ky, M;I,(mi) = g m — 2. €gm; for a (g,(m;)) € G X K2, and
,ug’lh’m = €hgm ~ €gdg ,_1m for a (g,h,m) € G x P x Ky. We denote by
pr 44 M € Cpa(G x Ko, k)P4 the closed Og-submodule generated by the
union of {u} .., | (g,¢,m) € G x O, x Ko}, {ug(mi) | (g, (mi)) € G x K¢},

and {M;Hhm | (g,h,m) € G x P x Koy}

Proposition 5.1. The equality ker(og p) = pb + plt + M holds.

Proof. We have p! + p!t + p™' C ker(¢g p) by the characterisation of the
image of Indg(KO%) in Cha(G x Ko, k). Let p € ker(pg,p). We show
pe pt+ pt 4 pM Let f € Cpa(G x Ko, k) and € € (0,00). We verify
that there is a ¢/ € p! + p! + p'™ such that |u(f) — ¢/(f)| < e. In the case
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f € md%(K7°), we have u(f) = wa.p()(f) = 0, and hence p/ := 0 satisfies
the desired inequality. Suppose f ¢ IndJGD(VO). Then f does not satisfy at
least one of the conditions (I)—(III) in the characterisation of of the image
of Indg(KO%) in Cpq(G x Ky, k). First, suppose that f does not satisfy (I).
Take a (g,c,m) € G x Oy x Ky satisfying f(g,em) — cf(g,m) # 0. Set
p = (f(g,em) — cf(g,m)) " u(f)prg,cm- Then we have p/(f) = u(f) by
the construction, and hence |u(f) — ¢/(f)] = 0 < e. Next, suppose that
f does not satisfy (II). Take a (g, (m;)) € G x K2 satisfying f(g,>.m;) —
> f(g,mi) # 0. Set p' = (f(g, 2" mi) = 3 f(g,mi)) " () p) s+ Then
we have p/(f) = wp(f) by the construction, and hence |u(f) — /(f)] =
0 < e. Finally, suppose that f does not satisfy (III). Take a (g,h,m) €
G x P x K satisfying f(hg,m) — f(g,&&}hm) # 0. Set p' = (f(hg,m) —
F(g,055m) T u(f)plt, .- Then we have /(f) = p(f), and hence |u(f) —
W(f)] =0 < e It ensures p € p! + pt + M. We obtain ker(¢g p) =
TN L =

We set Indg* (T (Ko) = Cpa(G x Ko, k)P¢/(ul + pl! + u11h). By Propo-
sition 5.1, we obtain the following:

Theorem 5.2. The continuous surjective Oy-linear homomorphism ¢g p
induces a homeomorphic O-linear isomorphism

O [[G]

Indg, (1P

(Ko) — IndB(K7e)74.

We equip IndnggH (Ko) with a CHFLT Og[[G]]-module structure by
pulling back that of Indg(K()@ )74 by the isomorphism in Theorem 5.2. The

correspondence Kg ~ Indg:HgH(Ko) gives an Op-linear functor

Imd SISl Modsf (Ox[[P]]) — Mods} (Ox[[G])).

By Theorem 4.16 and Theorem 5.2, we obtain the following:

Corollary 5.3. There is a natural equivalence Indg = 9, oIndg:EIGDH 0Y9q.

5.2 Continuous parabolic inductions As an application of Corol-
lary 5.3, we compute the continuous parabolic induction. For this purpose,
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Or[lG]
Ok[[P]]"
a compact complete representative C' C G of P\G. We denote by 3 the set

of open subsets U C P\G admitting a continuous section U < G of the
canonical projection G — P\G. Take an open profinite subgroup Gy C G.
Since G is a topological group, the canonical projection G — P\G is an
open map. Therefore the image Gog C P\G of Gpg is an open subset, and
the map Gy — G, h + hg induces a homeomorphism (P N Go)\Go — Gog
for any g € G. It implies that ¥ forms an open covering of P\G by [9]
Theorem 2. Take a ¥y € P, (%) satisfying P\G = | Ji;¢x, U. Gluing con-
tinuous sections on each U € ¥, we obtain a continuous section P\G — G,
whose image forms a compact subset C' C G such that the multiplication
P x C — G is a continuous bijective map. Conversely, let C' C G be an
arbitrary compact subset such that the multiplication P x C — G is a
continuous bijective map. As is mentioned in Example 3.22 (iii), the mul-
tiplication P x C' — G is a homeomorphism, and induces a homeomorphic
Oj-linear isomorphism Ok[[P x C]] — O[[G]]. We denote by mp: G — P
(respectively, m1: G — () the composite of the inverse G — P x C of
the multiplication and the canonical projection P x C' — P (respectively,
P x C — P). As a result, C is obtained as the image of the continuous
section P\ G — G induced by ;.

Let F be a local field, G an algebraic group over Spec(F'), and P C G a
parabolic subgroup. Then G(F') forms a locally profinite group with respect
to the topology induced by the valuation of F', and P(F') is naturally iden-
tified with a closed subgroup of G(F'). Since P\G forms a proper algebraic
variety over Spec(F'), P(F)\G(F') forms a totally disconnected compact
Hausdorff topological space. Henceforth, we consider the case G = G(F)
and P = P(F).

Let (Vo,p0) € ob(Repp(Ban¥(k))). We consider the composite
rov, : nd% (Vo) — C(C, Vo) of the inclusion Ind%(Vg) < Cpa(G, Vo) and
the restriction map Cpq(C, Vo) — C(C, Vp). Then rcy, is injective by the
conditions (IIT) in §5.1 and PC = G. The quotient norm on the source of
rc,v, coincides with the norm restricted to the image of r¢ y;, because P acts
isometrically on V. Therefore r¢ v, is isometric. For any f € C(C, V}), the
map f: G — Vo, g po(mo(9), (f omi(g))) lies in Ind%(Ky). We obtain an
isometric section C(C, Vo) — Ind%(Vp), f + f, and hence r¢,y, is an iso-
morphism in Ban¥ (k). Pulling back Ind%(po) by rc,1; and the isomorphism

we give a more practical description of Ind To begin with, we prepare
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C(C,k)®rVo — C(C,Vp) in Ban¥ (k) introduced in Proposition 3.13, we
equip C(C, k)& Vy with a continuous action C@ppg of G. By Theorem 5.2,
we obtain an isomorphism IndnggH ((Vo, po)?a) — (C(C, k)& Vo, Cppo) 7
in Mod$(O4[[G]]). By Proposition 2.15 and [7] Theorem 2.2, we have a nat-
ural isomorphism O[[C]]®0, Vy ¢ — (C(C, k)@ Vo)Pd in €51, Pulling back
the scalar multiplication of O[[G]] on (C(C, k)& Vo, C&rpo)?d, we regard
Ok[[CT)®0, Vy e as a CHFLT O[[G]]-module. By Theorem 4.16, we obtain
the following:

Theorem 5.4. The continuous parabolic induction IndIGD(VO,pO) admits a
natural isomorphism to (Ok[[C]]|®0, Vo) 7 in Repg (BanZ (k)).

The induced action of Ox[[G]] on (Ox[[C]]&0,Vy ¢)7 is a little com-
plicated, but this presentation enable us to describe the deformation of
Ind%(Vp, p) associated to a deformation of py as a deformation of actions of
G on a single Banach k-vector space (O[[C]]®0, Vg @)Pe.

Example 5.5. Let n € w. We denote by B/ (k) C GL, (k) the Borel sub-
group consisting of upper triangular invertible matrices, by C,, C GL, (k)
the compact subset consisting of lower triangular invertible matrix whose
entries are contained in Oy, and whose diagonals are 1, and by ., C GL, (k)
the finite subgroup consisting of permutations of the canonical basis. By
the LU P-decomposition, GL,, (k) is expressed as the product B; (k)C,, .7,
and the multiplication B (k) x C,,.%, — GLy(k) is bijective. Therefore
for a (Vo,p) € ob(Repg+ ) (BanZ (k))), we have a natural isomorphism

Indfég(k)(vo, p0) = (Ok[[Cyy Zul]®0, ViPe) % in Repay,, ) (Bant (k)) by the

argument above, and also a natural isomorphism (Ok[[C;, .7,]]®0, Vy )7 —
((Oc[[C7 @0, Ko))P<) 7™ in Ban¥ (k).
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