
Volume 14, Number 1, January 2021, 119-165.

https://doi.org/10.29252/cgasa.14.1.119

Schneider-Teitelbaum duality for locally
profinite groups

Tomoki Mihara

Abstract. We define monoidal structures on several categories of linear
topological modules over the valuation ring of a local field, and study module
theory with respect to the monoidal structures. We extend the notion of the
Iwasawa algebra to a locally profinite group as a monoid with respect to one
of the monoidal structure, which does not necessarily form a topological al-
gebra. This is one of the main reasons why we need monoidal structures. We
extend Schneider–Teitelbaum duality to duality applicable to a locally profi-
nite group through the module theory over the generalised Iwasawa algebra,
and give a criterion of the irreducibility of a unitary Banach representation.

1 Introduction

Let k denote a non-Archimedean local field, and Ok ⊂ k the valuation ring
of k. The paper is devoted to two topics. One topic is to give monoidal
structures on several categories of linear topological Ok-modules. We are
interested mainly in the closed symmetric monoidal category C cg

` of CG
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linear topological Ok-modules. A CG linear topological Ok-module is a
linear topological Ok-module given as the colimit of totally bounded Ok-
submodules. By the definition, it is a module theoretic analogue of a com-
pactly generated topological space. We show that every Banach k-vector
space and every compact linear topological Ok-module are CG. Therefore
C cg
` contains both of the categories of Banach k-vector spaces and compact

Hausdorff flat linear topological Ok-modules, which play the roles of the
foundation in Schneider–Teitelbaum duality (cf. [13] Theorem 2.3).

The other topic is to define a generalised Iwasawa algebra Ok[[G]] asso-
ciated to a locally profinite group G, and to extend Schneider–Teitelbaum
duality, which is applicable to a profinite group, to duality applicable to G
by using module theory over Ok[[G]]. We note that Ok[[G]] is defined as a
monoid in C cg

` , and does not necessarily form a topological Ok-algebra. This
is one of the main reasons why we need monoidal structures. As the classical
Iwasawa algebra associated to a profinite group is naturally identified with
the Ok-algebra of Ok-valued measures, Ok[[G]] is naturally identified with
the Ok-algebra of Ok-valued measures on G satisfying a certain property
called the normality. As the original Schneider–Teitelbaum duality is given
by a module theoretic interpretation of a Banach k-linear representations
through the integration of the action along measures (cf. [13] Corollary 2.2),
the generalised Schneider–Teitelbaum duality is give by a module theoretic
interpretation through the integration of the action of G by normal mea-
sures.

As applications, we establish a criterion of the irreducibility of a unitary
Banach k-linear representation of G, and give a description of the continuous
induction of a unitary Banach k-linear representation of a closed subgroup
P ⊂ G such that the homogeneous space P\G is compact. In particular,
we give an explicit description of the continuous parabolic induction for the
case G is an algebraic group over a local field so that the representation
space of the continuous parabolic induction is independent of the choice of
the action of P .

We explain the contents of this paper. In §2.1, we study several cate-
gories of linear topological Ok-modules. In §2.2, we introduce a notion of
the normality of an Ok-valued measure on a topological space. In §3.1, we
define monoidal structures on several categories of linear topological Ok-
modules. In §3.2, we define a notion of a CGLT Ok-algebra as a monoid in
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C cg
` , which is a counterpart of a topological Ok-algebra, and define Ok[[G]]

as a CGLT Ok-algebra. In §3.3, we define a notion of a CGLT module over
a CGLT Ok-algebra, which is a counterpart of a topological left module
over a topological Ok-algebra. In §4.1, we recall a unitary Banach k-linear
representation of G and interpret it in terms of a CGLT Ok[[G]]-module.
In §4.2, we interpret a continuous action of G on a compact Hausdorff flat
linear topological Ok-module in terms of a CGLT Ok[[G]]-module. In §4.3,
we define a notion of the dual of a unitary Banach k-linear representation
of G, and extend Schneider–Teitelbaum duality to duality applicable to G.
In §5.1, we study the dual of several operations on Banach k-linear repre-
sentations such as the continuous induction. In §5.2, we give an explicit
description of the continuous parabolic induction in the case where G is an
algebraic group.

2 Preliminaries

Let k denote a local field, that is, a complete discrete valuation field with
finite residue field, Ok ⊂ k the valuation ring of k, and G a locally profinite
group. We denote by ω the set of natural numbers. For a set X, we denote
by P<ω(X) the set of finite subsets of X. Since we deal with many pairs,
we abbreviate (•i)1

i=0 to (•i),
∑1

i=0 •i to
∑ •i, and

∏1
i=0 •i to

∏ •i.
Let Θ be a category. We say that Θ is ω-cocomplete (respectively, cocom-

plete, complete) if it admits all small filtered colimits (respectively, colimits,
limits), and is bicomplete if it is cocomplete and complete. Let F be a
functor. We say that F is ω-cocontinuous (respectively, cocontinuous, con-
tinuous) if it commutes with all small filtered colimits (respectively, colimits,
limits), and is bicontinuous if it is cocontinuous and continuous. We denote
by Set the bicomplete category of sets and maps, and by Top the bicomplete
category of topological spaces and continuous maps. We abbreviate HomTop

to C.

2.1 Linear topological modules LetM be a topological Ok-module,
and C ⊂M a subset. We say that C is pre-compact (respectively, complete)
if C is totally bounded (respectively, complete) with respect to the restric-
tion of the uniform structure on M associated to the structure as a topo-
logical Abelian group to C. By the definition of the uniformity on M , C is
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totally bounded if and only if for any open neighbourhood U ⊂M of 0 ∈M ,
there exists a finite subset C0 ⊂ C such that C ⊂ {m0 + m1 | (m0,m1) ∈
U × C0}. The following are well-known facts (cf. [3] 8.3.2 Theorem, [4],
and [3] 8.3.16 Theorem, respectively) on the pre-compactness:

Proposition 2.1. (i) A C ⊂ M is pre-compact if and only if every subset
of the closure of C in M is pre-compact.

(ii) A C ⊂ M is compact, that is, every open covering admits a finite
subcovering, if and only if C is pre-compact and every Cauchy net in C is
a convergent net in C.

(iii) A C ⊂M is compact and Hausdorff if and only if C is pre-compact
and complete.

We denote by O(M) the set of open Ok-submodules of M , and by K (M)
the set of pre-compact Ok-submodules of M . We say that M is linear if
O(M) forms a fundamental system of neighbourhoods of 0 ∈ M . We have
two examples of linear topological Ok-modules.

Example 2.2. (i) We denote byM the underlyingOk-module ofM equipped
with the topology generated by {m + L | (m,L) ∈ M × O(M),#(M/L) <
∞}. Then M forms a pre-compact linear topological Ok-module, and the
identity map πc

M : M →M is continuous.
(ii) Let S be a set. A map f : S →M is said to vanish at infinity if for any

L ∈ O(M), there is an S0 ∈P<ω(S) such that f(s) ∈ L for any s ∈ S \ S0.
We denote by C0(S,M) the Ok-module of maps f : S → M vanishing at
infinity equipped with the topology generated by {f + C0(S,L) | (f, L) ∈
C0(S,M)× O(M)}. Then C0(S,M) forms a linear topological Ok-module.

We denote by C` the Ok-linear category of linear topological Ok-modules
and continuous Ok-linear homomorphisms. We abbreviate HomC` to L .
Since the pre-image of an open Ok-submodule by a continuous Ok-linear
homomorphism is an open Ok-submodule, the correspondence M  O(M)
gives a functor O : C op

` → Set. On the other hand, the correspondence
M  K (M) gives a functor K : C` → Set by the following:

Proposition 2.3. Let (Mi) ∈ ob(C 2
` ) and f ∈ L ((Mi)). For any pre-

compact subset C0 ⊂M0, f(C0) ⊂M1 is pre-compact.

Proof. The assertion follows from [3] p. 445 by the uniform continuity of
f .
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We will use O(M) and K (M) as index sets of limits and colimits. They
are filtered and cofiltered with respect to inclusions by Proposition 2.1 (i)
and the following:

Proposition 2.4. The sets O(M) and K (M) are closed under finite sum.

Proof. The assertion for O(M) immediately follows from [3] p. 433. The
assertion for K (M) immediately follows from Proposition 2.3 and [3] 8.3.3
Theorem, because

∑
Mj is the image of the addition

∏
Mi → M for any

(Mi) ∈ K (M)2.

As a consequence, we obtain the following variant of [13] Lemma 1.5 i:

Corollary 2.5. For any pre-compact subset C ⊂ M ,
∑

m∈C Okm is pre-
compact.

Proof. Let L ∈ O(M). Take a C0 ∈P<ω(C) satisfying C ⊂ ⋃m∈C0
(m+L).

We have Okm ∈ K (M) for any m ∈ M by Proposition 2.3, and hence∑
m∈C0

Okm ∈ K (M) by Proposition 2.4. Take a K0 ∈P<ω(
∑

m∈C0
Okm)

satisfying
∑

m∈C0
Okm ⊂

⋃
m∈K0

(m+ L). We obtain

∑

m∈C
Okm ⊂

⋃

m∈C0

Ok(m+ L) =
⋃

m∈C0

(Okm+ L) ⊂
⋃

m∈K0

(m+ L).

It implies
∑

m∈C Okm ∈ K (M).

We denote by C the category of Ok-modules and Ok-linear homomor-
phisms. We denote by U : C` → Top and F : C` → C the forgetful functors.

Proposition 2.6. The category C` is bicomplete, and U (respectively, F )
is ω-cocontinuous and continuous (respectively, bicontinuous).

Proof. The completeness of C` and the continuity of U and F follow from
the definition of the limits in Top and C . The ω-cocomleteness of C` and
the ω-cocontinuity of U and F follow from [6] Proposition 1.3. For any
small family (Ms)s∈S in C`,

⊕
s∈S F (Ms) forms a linear topological Ok-

module with respect to the topology generated by {m +
⊕

s∈S F (Ls) |
(m, (Ls)s∈S) ∈ (

⊕
s∈S F (Ms))×

∏
s∈S O(Ms)}, and satisfies the universality

of the direct sum of (Ms)s∈S in C`. Thus C` is cocomplete, and F is
cocontinuous.
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Since we will introduce several full subcategories of C`, we prepare a
convention for colimits (respectively, limits) in order to avoid the ambiguity
of categories in which we consider the universality. Let (Ms)s∈S be a small
diagram in a full subcategory Θ ⊂ C`. We always denote by lim−→s∈SMs

(respectively, lim←−s∈SMs) the colimit (respectively, limit) of (Ms)s∈S in C`
but not in Θ. As an immediate consequence of Proposition 2.6, we obtain
the following:

Corollary 2.7. Let (Ms)s∈S be a small diagram in C`. For any subset
U ⊂ lim−→s∈SMs (respectively, U ⊂ lim←−s∈SMi), U is open if and only if the

preimage of U in Ms is open for any s ∈ S (respectively, if and only if for
any m ∈ U , there is an (Ls)s∈S ∈

∏
s∈S O(Ms) satisfying {s ∈ S | Ls 6=

Ms} ∈P<ω(S) and m+
∏
s∈S F (Ls) ⊂ U .

We denote by C c
` ⊂ C` the full subcategory of pre-compact linear topo-

logicalOk-modules and by I c the inclusion C c
` ↪→ C`. We put U c := U ◦I c

and F c := F ◦I c.

Proposition 2.8. (i) The correspondence M  M gives a functor (•) : C` →
C c
` left adjoint to I c such that the counit is given as a natural equivalence.

(ii) The topological Ok-module M is linear and pre-compact if and only
if πc

M is an open map.
(iii) The category C c

` is bicomplete, and the colimit of a small diagram

(Ms)s∈S in C c
` is given by lim−→s∈S I c(Ms).

Proof. The functoriality of (•) and the assertion (ii) immediately follow
from the definition. The assertion (iii) immediately follows from the as-
sertion (i) and Proposition 2.6. We show the assertion (i). We consider
two functors F,G : C op

` × C c
` → Set given as F := L (•0, •1) and G :=

L (•0,I c(•1)). The correspondence M  πc
M gives a unit πc : idC` ⇒

I c ◦ (•). We have a counit (πc
I c)−1 : (•) ◦ I c ⇒ idC c

`
, which is a nat-

ural equivalence by the assertion (ii). For a K ∈ ob(C c
` ), we consider

maps TM,K : F (M,K) → G(M,K), f 7→ f ◦ πc
M and T ′M,K : G(M,K) →

F (M,K), f 7→ (πc
I c(K))

−1◦f . The correspondences (M,K) TM,K , T
′
M,K

give natural transformations T : F ⇒ G and T ′ : G⇒ F satisfying T ◦ T ′ =
idG and T ′ ◦ T = idF by the bijectivity of of values of πc. We obtain ad-
junction data ((•),I c, T, πc, (πc

I c)−1) between C c
` and C`. It implies that

(•) is left adjoint to I c.
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Suppose thatM is linear in the following in this subsection. Then K (M)
forms a small filtered diagram in C` by Proposition 2.4. We put MK :=
lim−→K∈K (M)

K. By the universality of the colimit, the system of inclusions

induces a continuous injective Ok-linear homomorphism ιcg
M : MK → M .

By Corollary 2.5, ιcg
M is bijective. We show that ιcg

M preserves the pre-
compactness of Ok-submodules.

Proposition 2.9. Let K ⊂ M be an Ok-submodule of M . Put K ′ :=
(ιcg
M )−1(K).

(i) If K is pre-compact, then ιcg
M |K′ is a homeomorphism onto K.

(ii) The pre-compactness of K is equivalent to that of K ′.

Proof. The assertion (ii) follows from Proposition 2.3 and the assertion (i).
We show the assertion (i). By K ∈ K (M), we have ιcg

M (K ′) = K. Let
L ∈ O(MK ). By ιcg

M (K ′) = K and the injectivity of ιcg
M , we have ιcg

M (L ∩
K ′) = ιcg

M (L) ∩K, and hence ιcg
M (L ∩K ′) ∈ O(K). It implies that ιcg

M |K′ is
an open map onto K.

We say that M is CG if ιcg
M is an isomorphism in C`. We denote by

C cg
` ⊂ C` the full subcategory of CG linear topological Ok-modules and by

I cg the inclusion C cg
` ↪→ C`. We put U cg := U ◦I cg and F cg := F ◦I cg.

We study properties of C cg
` analogous to those of the category of compactly

generated topological spaces.

Corollary 2.10. (i) The correspondence M  MK gives a functor
(•)K : C` → C cg

` right adjoint to I cg such that the counit is given as a
natural equivalence.

(ii) The category C cg
` is bicomplete, and the colimit of a small diagram

(Ms)s∈S in C cg
` is given by (lim−→s∈S I cg(Ms))K .

Proof. To begin with, we show that C cg
` is closed under small colimits in C`.

Let (Ms)s∈S be a small diagram in C cg
` . Put M := lim−→s∈S I cg(Ms). In order

to verify that M is pre-compactly generated, it suffices to show ιcg
M (L) ∈

O(M) for any L ∈ O(MK ). Let s ∈ S. We denote by Ls the preimage of
ιcg
M (L) in Ms. Let K0 ∈ K (Ms). We denote by K ⊂M the image of K0. By

Proposition 2.3 and Proposition 2.9 (ii), we have (ιcg
M )−1(K) ∈ K (MK ). It

ensures L ∩ (ιcg
M )−1(K) ∈ O((ιcg

M )−1(K)). By Proposition 2.9 (i), we obtain



126 T. Mihara

ιcg
M (L) ∩ K ∈ O(K) and hence Ls ∩ K0 ∈ O(K0). It ensures Ls ∈ O(Ms)

because Ms is CG. It implies ιcg
M (L) ∈ O(M) by Corollary 2.7.

We show the assertion (i). Since C cg
` is closed under small colimits in C`,

the correspondence M  MK gives a functor (•)K : C` → C cg
` by Proposi-

tion 2.3 and Proposition 2.9 (i). We consider two functors F,G : (C cg
` )op ×

C` → Set given as F := L (I cg(•0), •1) and G := L (•0, (•1)K ). The cor-
respondence M  ιcg

M gives a unit ιcg : I cg ◦ (•)K ⇒ idC` , and we also
have a counit (ιcg

I cg)−1 : idC cg
`
⇒ (•)K ◦ I cg, which is a natural equiv-

alence by definition. For an (Mi) ∈ ob(C cg
` × C`), we consider maps

T(Mi) : F ((Mi))→ G((Mi)), f 7→ fK ◦ (ιcg
I cg(M0))

−1 and T ′(Mi)
: G((Mi))→

F ((Mi)), f 7→ ιcg
M1
◦ f . The correspondences (Mi) T(Mi), T

′
(Mi)

give nat-

ural transformations T : F ⇒ G and T ′ : G ⇒ F satisfying T ◦ T ′ = idG
and T ′ ◦ T = idF by the bijectivity of values of ι. We obtain adjunction
data (I cg, (•)K , T, ιcg, (ιcg

I cg)−1) between C` and C cg
` . It implies that (•)K

is right adjoint to I cg.
We show the assertion (ii). By the assertion (i), (•)K is continuous and

I cg is cocontinuous. Since the counit (ιcg
I cg)−1 is a natural equivalence, C cg

`

is complete by Proposition 2.6. Since we have already verified that C cg
` is

closed under small colimits in C`, it implies the assertion (ii) by Proposition
2.6

We have three criteria of CG linear topological Ok-modules.

Proposition 2.11. (i) If M is CG, then so is every closed Ok-submodule
of M .

(ii) If M is locally compact, then M is CG.
(iii) If M is first countable, then M is CG.

Proof. The assertion (ii) follows from Proposition 2.1 (ii) and Proposition
2.9 (i), because M is locally compact if and only if M admits a compact
clopen Ok-submodule. We verify the assertion (i). Let M0 ⊂M be a closed
Ok-submodule. Since ιcg

M is an isomorphism in C`, (ιcg
M )−1(M0) is closed

in MK . Therefore ιcg
M induces a homeomorphism lim−→K∈K (M)

(U c(K) ∩
U (M0)) → U (M0) by [6] Lemma 2.23. By Corollary 2.7, we obtain an
isomorphism lim−→K∈K (M)

(K ∩M0) → M0. By Proposition 2.1 (i), K ∩M0

lies in K (M0) for any K ∈ K (M). It implies that M0 is CG by Corollary
2.10 (i).
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We verify the assertion (iii). Let L ∈ O(MK ). We show ιcg
M (L) ∈ O(M).

Assume ιcg
M (L) /∈ O(M). Take an decreasing sequence (Lr)r∈ω ∈ O(M)ω

such that {Lr | r ∈ ω} forms a fundamental system of neighbourhoods
of 0 ∈ M . By the assumption, we have Lr \ ιcg

M (L) 6= ∅ for any r ∈ ω.
Take an (mr)r∈ω ∈

∏
r∈ω(Lr \ ιcg

M (L)). Put C := {mr | r ∈ ω}. We
have C =

⋃r
h=0(mh + Lr) for any r ∈ ω, and hence C is pre-compact.

Put K :=
∑

m∈C Okm ⊂ M . By Corollary 2.5, we have K ∈ K (M). It
ensures ιcg

M (L) ∩ K ∈ O(K). By 0 ∈ ιcg
M (L) ∩ K, there is an r ∈ ω such

that Lr ∩K ⊂ ιcg
M (L) ∩K. We obtain mr ∈ Lr ∩K ⊂ ιcg

M (L) ∩K, which
contradicts mr /∈ ιcg

M (L). It implies ιcg
M (L) ∈ O(M). Thus M is CG.

We survey Schikhof duality (cf. [10] Theorem 4.6, [13] Theorem 1.2,
and [7] Theorem 2.2). We follow the convention of Banach k-vector space
in [7] §1.2. We denote by C ch

f` ⊂ C` the full subcategory of compact
Hausdorff flat linear topological Ok-modules, by Ban(k) the k-linear cat-
egory of Banach k-vector spaces and bounded k-linear homomorphisms, by
Ban≤(k) ⊂ Ban(k) the Ok-linear subcategory of submetric k-linear homo-
morphisms, and by Banur

≤ (k) ⊂ Ban≤(k) the full subcategory of unramified

Banach k-vector spaces. By Proposition 2.1 (ii), C ch
f` is a full subcategory

of C c
` . For a (Vi) ∈ ob(Banur

≤ (k))2, we denote by S ((Vi)) the Ok-module
HomBanur

≤ (k)((Vi)) equipped with the topology of pointwise convergence. For

a V ∈ ob(Banur
≤ (k)), we put V Dd := S (V, k). For a K ∈ ob(C ch

f` ), we denote
byKDc the k-vector space L (K, k) equipped with the supremum norm. The
correspondence V  V Dd gives a functor Dd : Banur

≤ (k)op → C ch
f` , and the

correspondence K  KDc gives a functor Dc : C ch
f` → Banur

≤ (k)op.

Theorem 2.12 (Schikhof duality). The pair (Dd,Dc) is an Ok-linear equiv-
alence between Banur

≤ (k)op and C ch
f` .

2.2 Normal Measures We study a non-Archimedean analogue of the
normality of a measure. For this purpose, we introduce a convention of
infinite sums. Let S be a set. For an f ∈ kS , we denote by

∑
s∈S f(s)

the limit of the net (
∑

s∈S0
f(s))S0∈P<ω(S), where P<ω(S) is directed by

inclusions. It is elementary to show the following:

Proposition 2.13. Let S be a set. For any f ∈ kS (respectively, OSk ),∑
s∈S f(s) converges in k (respectively, Ok) if and only if f ∈ C0(S, k)

(respectively, C0(S,Ok)).
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Let X be a topological space. We denote by CO(X) the set of clopen
subsets of X, and by P(X) the set of subsets P ⊂ CO(X) satisfying X =⊔
U∈P U . An Ok-valued measure on X is a map µ : CO(X)→ Ok such that

µ(U0 ∪ U1) =
∑
µ(Ui) for any (Ui) ∈ CO(X)2 satisfying U0 ∩ U1 = ∅. An

Ok-valued measure µ on X is said to be normal if
∑

U ′∈P µ(U ′) converges
to µ(U) for any U ∈ CO(X) and P ∈ P(U).

Let P ∈ P(X). For a subset U ⊂ X, we put P |U := {U ′ ∈ P | U ′ ⊂
U}. We define a partial order P0 ≤ P1 on (Pi) ∈ P(X)2 as (P0|U )U∈P1 ∈∏
U∈P1

P(U). Let (Pi) ∈ P(X)2. Then {U0 ∩ U1 | (Ui) ∈
∏
Pi} ∈ P(X)

forms the least upper bound of {P0, P1} with respect to ≤. In particular,
P(X) is directed with respect to ≤. Suppose P0 ≤ P1. Let f ∈ C0(P0, Ok)
and U ∈ P1. By P0|U ⊂ P0 and Proposition 2.13, f̃(U) :=

∑
U ′∈P0|U f(U ′)

is a converging sum. For any ε ∈ (0,∞), there is a P ′0 ∈P<ω(P0) such that
|f(U ′)| < ε for any U ′ ∈ P0 \P ′0, and hence P ′1 := {U ∈ P1 | P ′0∩(P0|U ) 6= ∅}
is a finite set satisfying |f̃(U)| < ε for any U ∈ P1 \ P ′1. It implies that the

map f̃ : P1 → X, U 7→ f̃(U) lies in C0(P1, Ok). We obtain a continuous
Ok-linear homomorphism C0(P0, Ok)→ C0(P1, Ok), f 7→ f̃ for each (Pi) ∈
P(X)2 satisfying P0 ≤ P1, for which (C0(P,Ok))P∈P(X) forms a cofiltered
diagram in C`.

We put M(X) := lim←−P∈P(X)
C0(P,Ok) and Ok[[X]] := M(X)K . The

abuse of the notation with the classical Iwasawa algebra is harmless, because
we will show in Proposition 2.21 that Ok[[X]] is its generalisation. For
a (µ,U) ∈ M(X) × CO(X), we denote by µ(U) the image of µ by the
composite of the {U,X \U}-th projection M(X)� C0({U,X \U}, Ok) and
the evaluation C0({U,X \ U}, Ok)� Ok at U . For a (P, ε) ∈ P(X)× (0, 1],
we set M(X;P, ε) := {µ ∈ M(X) | ∀U ∈ P, |µ(U)| < ε}. By Corollary 2.7
and the continuity of ιcg

M(X), we obtain the following:

Proposition 2.14. The linear topological Ok-modules M(X) and Ok[[X]]
are Hausdorff, and the set {M(X;P, ε) | (P, ε) ∈ P(X) × (0, 1]} forms a
fundamental system of neighbourhoods of 0 ∈M(X).

The evaluation map M(X)→ O
CO(X)
k , µ 7→ (µ(U))U∈CO(X) is injective.

We identify F (M(X)) with theOk-module of normalOk-valued measures on
X through the evaluation map. For a U ∈ CO(X), we denote by 1U : X → k
the characteristic function of U .
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Proposition 2.15. If X is compact, then M(X) is a compact Hausdorff

flat linear topological Ok-module, and the map C(X, k)Dd → O
CO(X)
k , µ 7→

(µ(1U ))U∈CO(X) (cf. [7] Example 1.4) induces an isomorphism C(X, k)Dd →
M(X) in C ch

f` .

Proof. By the compactness of X, every Ok-valued measure on X is nor-
mal, and hence the map in the assertion gives an Ok-linear homomorphism
C(X, k)Dd → M(X), which is continuous by the finiteness of pairwise dis-
joint clopen coverings of X. On the other hand, again by the compactness of
X, every continuous k-valued function is uniformly approximated by a finite
k-linear combination of characteristic functions of clopen subsets. There-
fore we obtain the inverse M(X)→ C(X, k)Dd , which is continuous because
C(X, k)Dd is compact and M(X) is Hausdorff.

We denote by δX,x ∈ M(X) the normal Ok-valued measure which as-
signs 1 if x ∈ U and 0 otherwise to each U ∈ CO(X) for an x ∈ X, by
δX : X → M(X) the map given by setting δX(x) := δX,x for an x ∈ X, and

by O⊕δXk : O⊕Xk →M(X) the Ok-linear extension of δX .

Proposition 2.16. (i) The map δX is continuous.

(ii) If X is zero-dimensional, that is, CO(X) generates the topology of
X, and Hausdorff, then O⊕δXk is injective.

(iii) The image of O⊕δXk is dense.

Proof. We show the assertion (i). Let U1 ⊂ M(X) be an open subset. For
any x ∈ X satisfying δX,x ∈ U1, there is a (P, ε) ∈ P(X) × (0, 1] such
that δX,x + M(X;P, ε) ⊂ U1, and hence for any U0 ∈ P , x ∈ U0 implies
U0 ⊂ δ−1

X (U1). Therefore δX is continuous. We show the assertion (ii).
Suppose that X is zero-dimensional and Hausdorff. Let m ∈ O⊕Xk \{0}. Let
X0 ⊂ X denote a unique non-empty finite subset for which m is presented
as
∑

x∈X0
cxx for a (cx)x∈X0 ∈ (Ok \ {0})X0 . By the assumption, there is a

P ∈ P(X) such that #(U ∩X0) ≤ 1 for any U ∈ P . Then O⊕δXk (m)(U) =

cx 6= 0 for any (U, x) ∈ P ×X satisfying x ∈ U . It implies ker(O⊕δXk ) = {0}.
We show the assertion (iii). Let U ⊂ M(X) be an open neighbourhood

of a µ ∈ U . By Corollary 2.7, there is a (P, ε) ∈ P(X) × (0, 1] such that
µ +M(X;P, ε) ⊂ U . Put P0 := {U ′ ∈ P | |µ(U ′)| ≥ ε} ∈ P<ω(P ) \ {∅}.
For each U ′ ∈ P0, take an xU ′ ∈ U ′. Then µ′ := O⊕δXk (

∑
U ′∈P0

µ(U ′)xU ′)
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satisfies |µ′(U ′) − µ(U ′)| < ε for any U ′ ∈ P . It ensures µ′ ∈ U . Therefore
the image of O⊕δXk is dense.

We put dX := (ιcg
M(X))

−1 ◦ δX and O⊕dXk := (ιcg
M(X))

−1 ◦ O⊕δXk . We

consider dG and O⊕dGk .

Proposition 2.17. (i) The map δG is a homeomorphism onto the image.
(ii) The map dG is a homeomorphism onto the image.
(iii) The image of O⊕dGk is dense.

In order to verify Proposition 2.17, we study pre-compact subsets of
M(G).

Lemma 2.18. Let C ⊂ M(G) be a pre-compact subset. For any ε ∈ (0, 1],
there is a compact clopen subset G0 ⊂ G such that |µ(U)| < ε for any
(µ,U) ∈ C × CO(G \G0).

Proof. Take an open profinite subgroup K ⊂ G. Assume that there is an
ε ∈ (0, 1] such that for any compact clopen subset G0 ⊂ G, some (µ,U) ∈
C×CO(G\G0) satisfies |µ(U)| ≥ ε. In particular, G is not compact, because
G0 = G satisfies CO(G \ G0) = 1 and µ(∅) = 0 for any µ ∈ C. Therefore
G/K is an infinite set. We construct (µr, Ur, Cr) ∈ C × CO(G) × G/K
inductively on r ∈ ω so that Cr 6= K for any r ∈ ω, |µr(Ur)| ≥ ε for any
r ∈ ω, Ur ⊂ Cr for any r ∈ ω, and Cr0 6= Cr1 for any (ri) ∈ ω2 satisfying
r0 6= r1.

By the assumption, there is a (µ0, U0) ∈ C × CO(G \ K) such that
|µ0(U0)| ≥ ε. By the normality of µ0, we have µ0(U0) =

∑
C∈G/K µ0(U0 ∩

C), and hence |µ0(U0 ∩ C0)| ≥ ε for some C0 ∈ G/K satisfying C0 6= K.
Replacing U0 by U0∩C0, we may assume U0 ⊂ C0. Let r ∈ ω\{0}. Suppose
that we have constructed (µh, Uh, Ch)n−1

h=0 ∈ (C×CO(G)×G/K)n such that
Ch 6= K, |µh(Uh)| ≥ ε, and Uh ⊂ Ch for any h ∈ ω satisfying h < n, and
Ch0 6= Ch1 for any (hi) ∈ ω2 satisfying h0 6= h1, h0 < r, and h1 < r. By
the assumption, there is a (µr, Ur) ∈ C ×CO(G \ (K t⊔r−1

h=0Ch) such that
|µr(Ur)| ≥ ε. By the normality of µr, we may assume that Ur is contained
in a Cr ∈ G/K satisfying Cr 6= K. By induction on r ∈ ω, we obtain a
desired family (µr, Ur, Cr)r∈ω.

Since (Cr)r∈ω is a system of pairwise disjoint subsets of G, Uω := G \⊔
r∈ω Ur is a clopen subset of G. Put P := {Ur | r ∈ ω t {ω}} ∈ P(G0).
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Since C is pre-compact, so is its image CP in C0(P,Ok) by Proposition 2.3.
Therefore there is a CP,0 ∈ P<ω(CP ) satisfying CP ⊂ {µ ∈ C0(P,Ok) |
∃µ′ ∈ CP,0, ∀U ∈ P, |µ(U) − µ′(U)| < ε}. By CP,0 ∈ P<ω(CP ), there is
a P0 ∈ P<ω(P ) satisfying µ(U) < ε for any (µ,U) ∈ CP,0 × (P \ P0). It
ensures µ(U) < ε for any (µ,U) ∈ CP × (P \ P0) by the choice of CP,0.
It contradicts that the inequality |µr(Ur)| ≥ ε holds for any r ∈ ω. This
completes the proof of the assertion.

For an increasing sequence (Xr)r∈ω of compact clopen subsets of X and
a decreasing sequence (εr)r∈ω ∈ (0, 1)ω, we put M(X; (Xr)r∈ω, (εr)r∈ω) :=
{µ ∈M(X) | ∀r ∈ ω,∀U ∈ CO(X \Xr), |µ(U)| < εr}.

Lemma 2.19. Let ε ∈ (0, 1). A subset of M(G) is pre-compact if and only if
it is contained in M(G; (Gr)r∈ω, (εr)r∈ω) for an increasing sequence (Gr)r∈ω
of compact clopen subsets of G.

Proof. Let C ⊂ M(G) be a subset. Suppose that C is pre-compact. For
each r ∈ ω, there is a compact clopen subset Gr,0 ⊂ G such that C ⊂ {µ ∈
M(G) | ∀U ∈ CO(G \Gr,0), |µ(U)| < εr} by Lemma 2.18. For an r ∈ ω, put
Gr :=

⋃r
s=0Gs,0 ∈ CO(G). Then (Gr)r∈ω forms an increasing sequence of

compact clopen subsets of G satisfying C ⊂M(G; (Gr)r∈ω, (εr)r∈ω).

On the other hand, suppose that C is contained inM(G; (Gr)r∈ω, (εr)r∈ω)
for an increasing sequence (Gr)r∈ω of compact clopen subsets of G. Let
L ∈ O(M(G)). By Corollary 2.7, there is a (P, ε′) ∈ P(X)× (0, 1] such that
M(G;P, ε′) ⊂ L. By ε ∈ (0, 1), there is an r ∈ ω such that εr ≤ ε′. By
the compactness of Gr, there is a P0 ∈ P<ω(P ) such that Gr ⊂

⊔
U∈P0

U .
Since Ok is compact, there is an S ∈ P<ω(Ok) such that Ok =

⋃
c∈S{c′ ∈

Ok | |c′ − c| < εr}. By #SP0 = (#S)#P0 < ∞, there is a C0 ∈ P<ω(C)
such that C =

⋃
µ∈C0
{µ ∈ C | ∀U ∈ P0, |µ′(U) − µ(U)| < εr}. It implies

C ⊂ ⋃µ∈C0
µ+ L. Thus C is pre-compact.

Lemma 2.20. Let M ∈ ob(C`). Then a map f : G → M is continuous if
and only if (ιcg

M )−1 ◦ f is continuous.

Proof. Take an open profinite subgroup K ⊂ G. The direct implication
follows from the continuity of ιcg

M . Suppose that f is continuous. Let U ⊂
MK be an open subset. Let g ∈ G. Suppose (ιcg

M )−1(f(g)) ∈ U . Since
f(gK) ⊂ M is compact, ιcg

M (U) ∩ f(gK) is an open subset of f(gK) by
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Proposition 2.1 (ii) and Corollary 2.5. By the continuity of f , f−1(ιcg
M (U)∩

f(gK)) is an open subset of f−1(f(gK)). It ensures that f−1(ιcg
M (U))∩ gK

is an open subset of gK. Since gK is an open subset of G, f−1(ιcg
M (U)) =

((ιcg
M )−1 ◦ f)−1(U) is an open neighbourhood of g in G. It implies that

(ιcg
M )−1 ◦ f is continuous.

Proof of Proposition 2.17. Take an open profinite subgroup K ⊂ G. Then
G/K gives an element {gK | g ∈ G} of P(G). For any g ∈ G, δG|gK is
a closed continuous map by Proposition 2.16 (i) because gK is compact
and M(G) is Hausdorff, and its image is contained in δG,g +M(G;G/K, 1).
Therefore δG is an injective local homeomorphism onto the image by Propo-
sition 2.16 (ii), because {δG,g +M(G;G/K, 1) | g ∈ G} forms a covering of
the image of δG consisting of pairwise disjoint clopen subsets of M(G). It
implies that δG is a homeomorphism onto the image, and so is dG by Lemma
2.20.

Let U ⊂ Ok[[G]] be a non-empty open subset. Take a µ ∈ U . By
Lemma 2.19, the pre-compact subset {ιcg

M(G)(µ)} ⊂ M(G) is contained in

K := M(G; (Gr)r∈ω, (εr)r∈ω) for an increasing sequence (Gr)r∈ω ∈ CO(G)ω

and an ε ∈ (0, 1), and K itself is a pre-compact Ok-submodule of M(G). By
Corollary 2.7, there is a (P, ε′) ∈ P(G) × (0, 1] such that {µ′ ∈ K | ∀U ′ ∈
P, |µ′(U ′)− ιcg

M(G)(µ)(U ′)| < ε′} ⊂ ιcg
M(G)(U). By ε ∈ (0, 1), there is an r ∈ ω

such that εr ≤ ε′. By the compactness of Gr, there is a P0 ∈P<ω(P ) \ {∅}
such that Gr ⊂

⊔
U ′∈P0

U ′. For each U ′ ∈ P0, take an xU ′ ∈ U ′. Then

µ′ := O⊕δGk (
∑

U ′∈P0
ιcg
M(G)(µ)(U ′)xU ′) satisfies |µ′(U ′) − ιcg

M(G)(µ)(U ′)| < εr

for any U ′ ∈ P . It ensures (ιcg
M(G))

−1(µ′) ∈ U . Therefore the image of O⊕dGk

is dense.

We show the relation between Ok[[G]] and the classical Iwasawa alge-
bra. We denote by O(G) the set of open normal subgroups of G, which is
filtered and cofiltered by inclusions. For a (℘,K) ∈ O(Ok)×O(G), we equip
(Ok/℘)[G/K] with the discrete topology so that it forms a linear topological
Ok-module.

Proposition 2.21. Suppose that G is a profinite group. Then the system
of the canonical projections Ok[G] � (Ok/℘)[G/K] indexed by (℘,K) ∈
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O(Ok)× O(G) induces a unique isomorphism

Ok[[G]]→ lim←−
(℘,K)∈O(Ok)×O(G)

(O/℘)[G/K]

in C`. In particular, Ok[[G]] forms a compact Hausdorff flat linear topolog-
ical Ok-module.

Proof. The assertion follows from Proposition 2.1 (ii), Proposition 2.8 (ii),
Proposition 2.15, and the fact that the classical Iwasawa algebra over Ok as-
sociated to G has an interpretation as an Ok-module of Ok-valued measures
on G.

3 Monoidal structures

We define symmetric monoidal structures on the categories introduced in
§2.1, and an Ok-algebra structure on Ok[[G]] in terms of a monoid in one
of them. We note that Ok[[G]] does not necessarily form a topological Ok-
algebra, that is, a monoid object in the Cartesian monoidal category of
topological Ok-modules and continuous Ok-linear homomorphisms. This is
one of the main reasons why we need monoidal structures.

3.1 Topological tensor products We define symmetric monoidal
structures on C`, C c

` , and C cg
` . First, we study C`. Let (Mi) ∈ ob(C 2

` ). We
denote by (Li)(Mi) ⊂ F (M0) ⊗Ok F (M1) the kernel of the natural projec-
tion F (M0)⊗Ok F (M1)� F (M0/L0)⊗Ok F (M1/L1) for Ok-submodules
L0 ⊂M0 and L1 ⊂M1, and by M0⊗`M1 the Ok-module F (M0)⊗OkF (M1)
equipped with the topology generated by the set {m+(Li)(Mi) | (m, (Li)) ∈
(F (M0)⊗OkF (M1))×∏O(Mi)}. Then M0⊗`M1 forms a linear topological
Ok-module. By the definition of the topology of M0 ⊗`M1, the Ok-bilinear
homomorphism ∇(Mi) :

∏
U (Mi) → U (M0 ⊗` M1), (mi) 7→ m0 ⊗ m1

is continuous. The correspondence (Mi)  M0 ⊗` M1 gives a functor
⊗` : C 2

` → C`, and the correspondence (Mi) ∇(Mi) gives a natural trans-

formation ∇ :
∏

U (•i) ⇒ U (•0 ⊗` •1). Let (Ms)s∈S be a small diagram
in C`. By the functoriality of ⊗` and the universality of the colimit, the
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system of canonical morphisms Ms0 → lim−→s∈SMs indexed by s0 ∈ S in-

duces a morphism S(Ms)s∈S ,M : lim−→s∈S(Ms ⊗` M) → (lim−→s∈SMs) ⊗` M for

an M ∈ ob(C`). We note that ⊗` seems not to be cocontinuous.

Proposition 3.1. The triad (C`,⊗, Ok) forms a symmetric monoidal cat-
egory.

Proof. We denote by (A,L,R,B) the data of the associator, the left unitor,
the right unitor, and the braiding of (C ,⊗Ok , Ok). We have

F (•0 ⊗` •1) = F (•0)⊗OK F (•1)

by definition. Since F : C` → C is faithful, it suffices to verify that every
value of Φ ◦F lies in the image of F for any Φ ∈ {A,L,R,B}. By Ok ∈
O(Ok), every value of L ◦F (respectively, R ◦F ) lies in the image of F .
By the symmetry of the sub-base of the topology of every value of ⊗`,
every value of B ◦F lies in the image of F . Let (Mi)

2
i=0 ∈ ob(C 3

` ). We
show that the Ok-linear homomorphism AM0,M1,M2 : (M0 ⊗`M1) ⊗`M2 →
M0 ⊗` (M1 ⊗` M2), m 7→ AF (M0),F (M1),F (M2)(F (m)) is continuous. Let

(L0, L1,2) ∈ O(M0)×O(M1⊗`M2). Take an (Li+1) ∈∏O(Mi+1) satisfying
(Li+1)(Mi+1) ⊂ L1,2. We have

((Li)(Mi), L2)M0⊗`M1,M2

= (L0, (Li+1)(Mi+1))M0,M1⊗`M2
⊂ A−1

M0,M1,M2
((L0, L1,2)M0,M1⊗`M2

)

by the right exactness of ⊗Ok . Therefore AM0,M1,M2 is a continuous map
satisfying F (AM0,M1,M2) = AF (M0),F (M1),F (M2).

Next, we study C c
` . Let (Ki) ∈ ob((C c

` )2). Then K0⊗`K1 is pre-compact
by #((K0 ⊗` K1)/(Li)(Ki)) = #(K0/L0 ⊗` K1/L1) ≤ ∏#(Ki/Li) <∞ for

any (Li) ∈
∏

O(Ki). Therefore the correspondence (Ki) K0 ⊗` K1 gives
a functor ⊗c : (C c

` )2 → C c
` , and the correspondence (Ki)  ∇(Ki) gives a

natural transformation ∇c :
∏

U c(•i) ⇒ U c(•0 ⊗c •1). Since C c
` is a full

subcategory of C`, we obtain the following by Proposition 3.1:

Proposition 3.2. The triad (C c
` ,⊗c, Ok) forms a symmetric monoidal cat-

egory.
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We put L ((K0,M1), L) := {f ∈ L (K0,M1) | f(K0) ⊂ L} for an L ∈
O(M1), and denote by H omc(K0,M1) the Ok-module L (K0,M1) equipped
with the topology generated by the set {f + L ((K0,M1), L) | (f, L) ∈
K0×O(M1)}. Then H omc(K0,M1) forms a linear topological Ok-module.
By Proposition 2.3 and Corollary 2.10 (i), the correspondence (K0,M1) 
H omc(K0,M1) gives a functor H omc : (C c

` )op × C` → C`. By Theorem
2.12, the transpose map T(•)(Ki) : H omc((Ki)) → S ((KDc

1−i)) is bijective.
We have a comparison of the endomorphism algebras, which corresponds
to [13] Lemma 1.6 in the case ch(k) = 0.

Proposition 3.3. The map T(•)(Ki) is an isomorphism in C`.

Proof. Let (v, ε) ∈ KDc
1 × (0,∞). Put L := {f ∈ S ((KDc

1−i)) | |f(v)| <
ε}. We show T(•)−1

(Ki)
(L) ∈ O(H omc((Ki))). Put L1 := {m ∈ K1 |

|v(m)| < 2−1ε} ∈ O(K1). Let f ∈ L ((Ki), L1). We have ‖Tf(Ki)(v)‖ =

supm∈K1
|v(f(m))| ≤ supm∈L1

|v(m)| ≤ 2−1ε < ε. It ensures Tf(Ki) ∈ L. It

implies L ((Ki), L1) ⊂ T(•)−1
(Ki)

(L). We obtain T(•)−1
(Ki)

(L) ∈ O(H omc((Ki))).

Therefore T(•)(Ki) is continuous.

Let L1 ∈ O(K1). We show T(•)(Ki)(L ((Ki), L1)) ∈ O(S ((KDc
1−i))). By

Theorem 2.12, there is an (S, ε) ∈P<ω(KDc
0 )× (0,∞) such that {m ∈ K1 |

∀v ∈ S, |v(m)| < ε} ⊂ L1. Put L := {f ∈ S ((KDc
1−i)) | ∀v ∈ S, ‖f(v)‖ <

ε} ∈ O(S ((KDc
1−i))). Let f ∈ L. We show T(•)−1

(Ki)
(f) ∈ L ((Ki), L1). Let

m ∈ K0. We have |v(T(•)−1
(Ki)

(f)(m))| = |f(v)(m)| ≤ ‖f(v)‖ < ε for any v ∈
S, and hence T(•)−1

(Ki)
(f)(m) ∈ L1. It ensures T(•)−1

(Ki)
(f) ∈ L ((Ki), L1). It

implies L ⊂ T(•)(Ki)(L ((Ki), L1)). Therefore T(•)(Ki) is an open map.

We denote by Cc
L,C

c
R : ((C c

` )op)2×C` → Set the functors given as Cc
L :=

L (I c(•0 ⊗c •1), •2) and Cc
R := L (I c(•0),H omc((•i+1))). We construct

an adjunction Tc : Cc
L ⇒ Cc

R. Let f be an Ok-linear homomorphism K0 ⊗c

K1 →M2 for a ((Ki),M2) ∈ ob((C c
` )2×C`). We characterise the continuity

of f .

Proposition 3.4. The map f is continuous if and only if f ◦ ∇c
(Ki)

is
continuous.

Proof. The inverse implication follows from the continuity of ∇c
(Ki)

. Sup-

pose that f ◦ ∇c
(Ki)

is continuous. Let L2 ∈ O(M2). We show f−1(L2) ∈
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O(K0 ⊗c K1). By the continuity of f ◦ ∇c
(Ki)

, there is an (Li) ∈
∏

O(Ki)

such that
∏
Li ⊂ (f ◦ ∇c

(Ki)
)−1(L2). Put i0 := 0 (respectively, i0 := 1).

Take a Ki0,0 ∈ P<ω(Ki0) satisfying Ki0 ⊂
⋃
m∈Ki0,0

(m + Li0). For each

m ∈ Ki0,0, there is an Li0,0,m ∈ O(Ki0) such that Li0,0,m × {m} (respec-
tively, {m} ×Li0,0,m) is contained in (f ◦∇c

(Ki)
)−1(L2) by the continuity of

f ◦ ∇c
(Ki)

. Put Li0,0 := Li0 ∩
⋂
m∈Ki0,0

Li0,0,m ∈ O(Ki0). By L2 + L2 = L2,

we obtain (Li,0)(Ki) ⊂ f−1(L2). Therefore f is continuous.

Suppose that f is continuous. Letm0 ∈ K0. We denote by f(m0⊗c•) the
Ok-linear homomorphism K1 →M2, m1 7→ f(m0 ⊗m1). Then f(m0 ⊗c •)
is the composite of f , ∇c

(Ki)
, and the map U c(K1) ↪→ ∏

U c(Ki), m1 7→
(mi), and hence is continuous. We obtain an Ok-linear homomorphism
Tc

(Ki),M2
(f) : K0 →H omc(K1,M2), m0 7→ f(m0 ⊗c •).

Proposition 3.5. The Ok-linear homomorphism Tc
(Ki),M2

(f) is continuous.

Proof. Let L2 ∈ O(M2). By the continuity of f , there is an (Li) ∈
∏

O(Ki)
such that (Li)(Ki) ⊂ f−1(L2). Take a K1,0 ∈ P<ω(K1) satisfying K1 ⊂⋃
m1∈K1,0

(m1 + L1). For each m1 ∈ K1,0, there is an L0,0,m1 ∈ O(K0)

such that f(m0 ⊗ m1) ∈ L2 for any m0 ∈ L0,0,m1 by the continuity of
f , ∇c

(Ki)
, and the map K0 ↪→ ∏

Ki, m0 7→ (mi). By 0 ∈ K1, we have

K1,0 6= ∅. Put L0,0 := L0 ∩
⋂
m1∈K1,0

L0,0,m1 ∈ O(K0). By L2 + L2 = L2,

we obtain f(m0 ⊗ m1) ∈ L2 for any (mi) ∈ L0,0 × K1. It ensures L0,0 ⊂
Tc

(Ki),M2
(f)−1(L ((K1,M2), L2)). Thus Tc

(Ki),M2
(f) is continuous.

By Proposition 3.5, the correspondence ((Ki),M2)  Tc
(Ki),M2

gives a
natural transformation Tc : Cc

L ⇒ Cc
R.

Proposition 3.6. The natural transformation Tc is a natural equivalence.

Proof. We have F c(•0 ⊗c •1) = F c(•0) ⊗Ok F c(•1) and F c ◦ Tc coin-
cides with the restriction of the adjunction between ⊗Ok and the internal-
hom functor on C . Since F c is faithful, Tc

(Ki),M2
is injective. Let f ∈

Cc
R((Ki),M2). We show that the Ok-linear homomorphism f̃ : K0 ⊗c K1 →

M2, (mi) 7→ f(m0)(m1) is continuous. Let L2 ∈ O(M2). By the continu-
ity of f , there is an L0 ∈ O(K0) such that L0 ⊂ f−1(L ((K1,M2), L2)).
It ensures (L0,K1)(Ki) ⊂ f̃−1(L2). Therefore f̃ is continuous. We have
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Tc
(Ki),M2

(f̃) = f . It implies that Tc
(Ki),M2

is surjective. Thus Tc is a natural
equivalence.

By Proposition 3.6, we obtain an adjoint property between ⊗c and
H omc. It does not ensure that ⊗c is cocontinuous, because we used I c

in the description of the adjoint property. On the other hand, we have
a commutativity between ⊗c and colimits in C c

` in a special case. Let
(Ks)s∈S be a small diagram in C c

` . We put M := lim−→s∈S I c(Ks). We re-

call that the colimit of (Ks)s∈S in C c
` is given as M by Proposition 2.8 (i).

Therefore if M is pre-compact, then S(I c(Ks))s∈S ,I c(K) gives a morphism
Sc

(Ks)s∈S ,K
: lim−→s∈S I c(Ks⊗cK)→ I c(M ⊗cK) in C` for any K ∈ ob(C c

` ).

Proposition 3.7. If M is pre-compact, then S(Ks)s∈S ,K is an isomorphism
in C` for any K ∈ ob(C c

` ).

Proof. For any M ′ ∈ ob(C`), L (S(Ks)s∈S ,K ,M
′) is given as the composite

of Tc
M,K,M ′ , the natural map

Ccg
R (M,K,M ′)→ lim←−

s∈S
Ccg

R (Ks,K,M
′), lim←−

s∈S
(Tc

Ks,K,M ′)
−1,

and the natural map lim←−s∈S Ccg
L (Ks,K,M

′)→ L (lim−→s∈S I c(Ks⊗cK),M ′),
which are bijective by Proposition 3.6 and the universality of colimits.
Therefore S(Ks)s∈S ,K is an isomorphism in C`.

Finally, we study C cg
` . We put M0 ⊗cg M1 := lim−→(Ki)∈

∏
K (Mi)

K0 ⊗`
K1 and M0 ×cg M1 := lim−→(Ki)∈

∏
K (Mi)

∏
U c(Ki). By Proposition 2.9 (i)

and Corollary 2.10, M0 ⊗cg M1 forms a CG linear topological Ok-module.
By Corollary 2.7 and the naturality of ∇c, the system (∇c

(Ki)
)(Ki)∈

∏
K (Mi)

induces a continuous Ok-bilinear homomorphism

∇cg⊗
(Mi)

: M0 ×cg M1 → U cg(M0 ⊗cg M1).

Suppose (Mi) ∈ ob((C cg
` )2) in the following in this subsection. By

the universality of the colimit, the system of the inclusions
∏

U c(Ki) ↪→∏
U cg(Mi) indexed by (Ki) ∈

∏
K (Mi) induces a bijective continuous

map ∇cg×
(Mi)

: M0 ×cg M1 →
∏

U cg(Mi). By Proposition 2.3, the correspon-

dences (Mi)  M0 ⊗cg M1,M0 ×cg M1 give functors ⊗cg : (C cg
` )2 → C cg

`



138 T. Mihara

and •0×cg •1 : (C cg
` )2 → Top, respectively, and the correspondences (Mi) 

∇cg⊗
(Mi)

,∇cg×
(Mi)

give natural transformations ∇cg⊗ : •0×cg•1 ⇒ U cg(•0⊗cg •1)

and ∇cg× : •0 ×cg•1 ⇒
∏

U cg(•i), respectively.

Theorem 3.8. The triad (C cg
` ,⊗cg, Ok) forms a closed symmetric monoidal

category.

We construct an exponential functor on C cg
` . We put L ((Mi),K, L) :=

{f ∈ L ((Mi)) | f(K) ⊂ L} for a (K,L) ∈ K (M0) × O(M1), and de-
note by H omcg((Mi)) the Ok-module L ((Mi)) equipped with the topol-
ogy generated by the set {f + L ((Mi),K, L) | (f,K,L) ∈ M0 ×K (M0)×
O(M1)}. Then H omcg((Mi)) forms a linear topological Ok-module. We
put MM0

1 := H omcg((Mi))K . By Proposition 2.3 and Corollary 2.10 (i),
the correspondence ((Mi)) MM0

1 gives a functor (•1)•0 : (C cg
` )op×C cg

` →
C cg
` . We denote by Ccg

L ,C
cg
R : ((C cg

` )op)2 × C cg
` → Set the functors given as

Ccg
L := L (•0 ⊗cg •1, •2) and Ccg

R := L (•0, ••12 ). We construct an adjunction
Tcg : Ccg

L ⇒ Ccg
R . Let m0 ∈M0.

Lemma 3.9. The map (m0, •) : U cg(M1) ↪→ M0 ×cg M1,m1 7→ (mi) is
continuous.

Proof. Let U ⊂ M0 ×cg M1 be an open subset. By Corollary 2.5, we
have Okm0 ∈ K (M0). For any K ∈ K (M1), the map (m0, •)K : K ↪→
Okm0 × K, m1 7→ (m0,M1) is continuous, and hence (m, •)−1(U) ∩ K =
(m, •)−1

K (U ∩ (Okm0 ×K)) is open in K. It implies (m, •)−1(U) is open in
M1 by Corollary 2.7. Thus (m0, •) is continuous.

Let f be an Ok-linear homomorphism M0 ⊗cg M1 → M2 for a M2 ∈
ob(C cg

` ). By Corollary 2.7 and Proposition 3.4, we have the following char-
acterisation of the continuity of f :

Proposition 3.10. The map f is continuous if and only if f ◦ ∇cg⊗
(Mi)

is
continuous.

Suppose that f is continuous. By Lemma 3.9, f ◦ ∇cg⊗
(Mi)
◦ (m0, •) is

continuous. We obtain an Ok-linear homomorphism

fR : M0 →H omcg((Mi+1)), m0 7→ f ◦ ∇cg⊗
(Mi)
◦ (m0 ⊗ •).

Lemma 3.11. The Ok-linear homomorphism fR is continuous.
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Proof. Let (K1, L2) ∈ K (M1) × O(M2). Put L := f−1
R (L ((Mi),K1, L2)).

We show L ∈ O(M0). Let K0 ∈ K (M0). We denote by f(Ki) : K0 ⊗c K1 →
M2 the composite of f and the canonical morphism K0⊗cK1 →M0⊗cgM1.
By the continuity of f , f(Ki) is continuous. By Proposition 3.5, we have
L ∩ K0 ∈ O(K0). By Corollary 2.7, we obtain L ∈ O(M0). Thus fR is
continuous.

The Ok-linear homomorphism Tcg
M0,M1,M2

(f) : M0 → MM1
2 given as the

composite (ιcg
H omcg((Mi+1)))

−1 ◦ fR is continuous by Corollary 2.10 (i) and

Lemma 3.11. We obtain a map

Tcg
M0,M1,M2

: Ccg
L (M0,M1,M2)→ Ccg

R (M0,M1,M2), f 7→ Tcg
M0,M1,M2

(f).

The correspondence (Mi)
2
i=0  Tcg

M0,M1,M2
gives a natural transformation

Tcg : Ccg
L ⇒ Ccg

R .

Proof of Theorem 3.8. We denote by (A,L,R,B) the data of the associ-
ator, the left unitor, the right unitor, and the braiding of (C`,⊗`, Ok).
Let M ∈ ob(C cg

` ). The system (LK |(℘,K)(Ok,K)
)(℘,K)∈K (Ok)×K (M) induces

a morphism L̃M : Ok ⊗cg M → M in C cg
` by the functoriality of L and

the universality of the colimit. We show that L̃M is an isomorphism in
C cg
` . Let L ∈ O(Ok ⊗cg M). Since the preimage of L in Ok ⊗c K is

open and LK is a homeomorphism, we have L̃M (L) ∩ K ∈ O(K) for any
K ∈ K (M). It ensures L̃M (L) ∈ O(M) by Corollary 2.7. Therefore L̃M
is an isomorphism in C cg

` . The correspondence M  L̃M gives a natu-

ral equivalence L̃ : Ok ⊗cg • ⇒ idC cg
`

. Similarly, we also have a natural

equivalence R̃ : • ⊗cgOk ⇒ idC cg
`

. Let (Mi) ∈ ob((C cg
` )2). The system

(B(Ki))(Ki)∈
∏

K (Mi) induces a morphism B̃(Mi) : M0⊗cgM1 →M1⊗cgM0 in
C cg
` by the functoriality of B and the filtered colimit. The correspondence

(Mi) B̃(Mi) gives a natural transformation B̃ : •0 ⊗cg•1 ⇒ •1 ⊗cg •0. By

B2 = idC`×C` , we obtain B̃2 = idC cg
` ×C cg

`
.

Let (Mi)
2
i=0 ∈ ob((C cg

` )3). We define a morphism ÃM0,M1,M2 : (M0 ⊗cg

M1) ⊗cg M2 → M0 ⊗cg (M1 ⊗cg M2) in C cg
` . Let (K0,1,0,K2) ∈ K (M0 ⊗cg

M1)×K (M2). We denote by K0,1 ⊂M0⊗cgM1 the closure of K0,1,0, which
is pre-compact by Proposition 2.1 (i). Let (Ki) ∈

∏
K (Mi). We denote by
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(Ki)K0,1 ⊂ K0 ⊗c K1 the preimage of K0,1, and by

AK0,1,0,K0,K1,K2 : ((Ki)K0,1 ,K2)K0⊗cK1,K2 →M0 ⊗cg (M1 ⊗cg M2)

the composite of the inclusion ((Ki)K0,1 ,K2)K0⊗cK1,K2 ↪→ (K0 ⊗c K1) ⊗c

K2, AK0,K1,K2 , and the natural morphism K0 ⊗c (K1 ⊗c K2) → M0 ⊗cg

(M1 ⊗cg M2) in C`. By Proposition 2.6 and [6] Lemma 2.23, the system
of inclusions (Ki)K0,1 ↪→ K0,1 indexed by (Ki) ∈

∏
K (Mi) induces an

isomorphism lim−→(Ki)∈
∏

K (Mi)
(Ki)K0,1 → K0,1 in C c

` . Therefore the sys-

tem (AK0,1,0,K0,K1,K2)(Ki)∈
∏

K (Mi) induces a morphism AK0,1,0,K2 : K0,1 ⊗c

K2 → M0 ⊗cg (M1 ⊗cg M2) in C` by Proposition 3.7. We denote by
ÃK0,1,0,K2 : K0,1,0⊗cK2 →M0⊗cg (M1⊗cgM2) the composite of the natural
morphism K0,1,0⊗cK2 → K0,1⊗cK2 in C` and AK0,1,0,K2 . By the universal-

ity of the colimit, the system (ÃK0,1,0,K2)(K0,1,0,K2)∈K (M0⊗cgM1)×K (M2) in-

duces a morphism ÃM0,M1,M2 : (M0⊗cg M1)⊗cg M2 →M0⊗cg (M1⊗cg M2)
in C cg

` . The correspondence (Mi)
2
i=0  ÃM0,M1,M2 induces a natural trans-

formation Ã : (•0 ⊗cg •1)⊗cg •2 ⇒ •0 ⊗cg (•1 ⊗cg •2). Similarly, we obtain a
natural formation of the opposite direction, which is the inverse of Ã.

By the construction, the data (Ã, L̃, R̃, B̃,Tcg) is sent to the data of the
associator, the left unitor, the right unitor, the braiding, and the Currying
of (C ,⊗Ok , Ok) through F cg and ιcg. Since F cg is faithful, it ensures the
coherence so that (Ã, L̃, R̃, B̃) forms data of an associator, a left unitor, a
right unitor, a braiding, and an injective Currying of (C cg

` ,⊗cg, Ok). We
have only to verify that Tcg

M0,M1,M2
is surjective. Let f ∈ Ccg

R (M0,M1,M2).
Put

f ′ := ιcg
H omcg((Mi+1)) ◦ f : M0 →H omcg((Mi+1)).

Let (Ki) ∈
∏

K (Mi). We show that the Ok-linear homomorphism
f ′(Ki) : K0⊗cK1 →M2, (mi) 7→ f ′(m0)(m1) is continuous. Let L2 ∈ O(M2).

Put L0 := (f ′)−1(L ((K1,M2), L2) ∩K0. By the continuity of f ′, we have
L0 ∈ O(K0). It implies (f ′(Ki))

−1(L2) ∈ O(K0 ⊗c K1) by (L0,K1)(Ki) ⊂
(f ′(Ki))

−1(L2). Therefore f ′(Ki) is continuous. By the universality of the col-

imit, the system (f ′(Ki))(Ki)∈
∏

K (Mi) gives a morphism fL : M0⊗cgM1 →M2

in C`. By the construction, we have Tcg
M0,M1,M2

(fL) = f . Thus Tcg
M0,M1,M2

is surjective.

As a consequence of Theorem 3.8, we obtain the following:
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Corollary 3.12. The functor ⊗cg is cocontinuous.

3.2 CGLT algebras A CGLT Ok-algebra is a monoid in (C cg
` ,⊗cg, Ok).

We will verify that Ok[[G]] forms a CGLT Ok-algebra. Before that, we give
examples of CGLT Ok-algebras. For this purpose, we compare ⊗`, the ten-
sor product ⊗̂k of Banach k-vector spaces (cf. [1] p. 12), and the tensor
product of compact Hausdorff flat linear topological Ok-modules given as
the inverse limit of the algebraic tensor product of finite quotients. For this
purpose, we recall an elementary property of ⊗̂k.
Proposition 3.13. For any (X,V ) ∈ ob(Top × Banur

≤ (k)), the multiplica-
tion C(X, k)×V → C(X,V ) extends to a unique isomorphism C(X, k)⊗̂kV →
C(X,V ) in Banur

≤ (k).

Proof. The assertion immediately follows from the orthonormalisability of
an unramified Banach k-vector space (cf. [8] IV 3 Corollaire 1, [2] 2.5.2
Lemma 2, and the proof of [11] Proposition 10.1).

The underlying linear topological Ok-module of any Banach k-vector
space is CG by Proposition 2.11 (iii). We denote by Ik : Ban(k) → C cg

`

the forgetful functor. Let (Vi) ∈ ob(Ban(k)2). By the definition of ⊗`,
I cg(Ik(V0)) ⊗` I cg(Ik(V1)) is first countable. The natural embedding
I cg(Ik(V0)) ⊗` I cg(Ik(V1)) ↪→ I cg(Ik(V0⊗̂kV1)) is a homeomorphism
onto the dense image by the definition of ⊗` and ⊗̂k, and hence induces a

homeomorphism T ⊗̂k,⊗
cg

(Vi)
: Ik(V0)⊗cgIk(V1) ↪→ Ik(V0⊗̂kV1) onto the dense

image by Proposition 2.11 (iii). The correspondence (Vi)  T ⊗̂k,⊗
cg

(Vi)
gives

a natural transformation T ⊗̂k,⊗
cg

: Ik(•0)⊗cg Ik(•1) → Ik(•0⊗̂k•1). As a
consequence, we obtain the following:

Proposition 3.14. Every Banach k-algebra, that is, monoid in
(Ban(k), ⊗̂k, k), forms a CGLT Ok-algebra through Ik and T ⊗̂k,⊗

cg
.

By [7] Corollary 2.8 (i), if G is a profinite group, then C(G, k) admits a
unique Hopf monoid structure in (Ban(Ok), ⊗̂k, k) extending the pointwise
k-algebra structure. Therefore by Proposition 3.14, we obtain the following:

Corollary 3.15. If G is a profinite group, then C(G, k) admits a unique
structure of a commutative CGLT Ok-algebra such that the multiplication
is a continuous Ok-linear extension of the pointwise multiplication.
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Every compact topological Ok-module is CG by Proposition 2.1 (ii) and
Proposition 2.11 (ii). We denote by IOk : C ch

f` ↪→ C cg
` the inclusion. The

natural Ok-linear homomorphism I c(K0) ⊗c I c(K1) → IOk(K0⊗̂OkK1)
is a homeomorphism onto the dense image by the definition of ⊗c and

⊗̂Ok , and it induces a homeomorphism T
⊗̂Ok ,⊗

c

(Ki)
: IOk(K0)⊗cg IOk(K1) ↪→

IOk(K0⊗̂OkK1) onto the dense image. The correspondence (Ki) T
⊗̂Ok ,⊗

cg

(Ki)
gives a natural transformation

T ⊗̂Ok ,⊗
cg

: IOk(•0)⊗cg IOk(•1)→ IOk(•0⊗̂Ok•1).

As a consequence, we obtain the following:

Proposition 3.16. Every monoid in (C ch
f` , ⊗̂Ok , Ok) forms a CGLT Ok-

algebra through IOk and T ⊗̂Ok ,⊗
cg

.

By Proposition 2.21 and [7] Proposition 2.7, if G is a profinite group,
then Ok[[G]] admits a unique Hopf monoid structure in (C ch

f` .⊗̂Ok , Ok) ex-
tending the Hopf Ok-algebra structure of Ok[G]. Therefore by Proposition
3.16, we obtain the following:

Corollary 3.17. If G is a profinite group, then Ok[[G]] admits a unique
structure of a CGLT Ok-algebra extending the Hopf Ok-algebra structure of
Ok[G].

We note that Corollary 3.17 will be extended to the case where G is
not necessarily a profinite group, as we mentioned in the beginning of this
subsection. Another simple example of a CGLT Ok-algebra is given by a
topological Ok-algebra.

Proposition 3.18. Let A be a topological Ok-algebra. If the underlying
topological Ok-module M of A is linear and CG, then M admits a unique
structure of a CGLT Ok-algebra whose multiplication is an Ok-linear exten-
sion of the multiplication of A through ∇cg⊗

M,M ◦ (∇cg×
M,M )−1.

Proof. We denote by f(Ki) : K0 ⊗c K1 → M the Ok-linear extension of the
multiplication of A restricted to

∏
U c(Ki) ⊂ U cg(M)2, which is continuous

for any (Ki) ∈ K (M)2 by Proposition 3.4. The system (fK0,k1)(K0,k1)∈K (M)2

induces a continuous Ok-linear homomorphism f : M ⊗cg M → M by the
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universality of the colimit. We denote by ε the map Ok → M, c 7→ c1.
Since the identity map A → (M,f, ε) preserves the multiplication and the
unit, (M,f, ε) satisfies the axiom of a monoid in C cg

` .

The rest of this subsection is devoted to the following extension of Corol-
lary 3.17:

Theorem 3.19. The CG linear topological Ok-module Ok[[G]] admits a
unique structure of a CGLT Ok-algebra such that O⊕dGk is an Ok-algebra
homomorphism.

In order to verify Theorem 3.19, we define a convolution product on
M(G). Let (µi) ∈M(G)2. We define elements

∏
µi ∈M(G2) and µ0 ∗ µ1 ∈

M(G). Let U ′ ∈ CO(G2). To begin with, suppose that U ′ is compact. Take
an S ∈P<ω(CO(G)2) satisfying U ′ =

⊔
(Ui)∈S

∏
Ui. We put (

∏
µi)(U

′) :=∑
(Ui)∈S

∏
µi(Ui). By the finite additivity of µ0 and µ1, (

∏
µi)(U

′) depends

only on U ′. In particular, the equality (
∏
µi)(

∏
Ui) =

∏
µi(Ui) holds for

any compact clopen subsets U0 and U1 of G.

Next, we consider the case where U ′ is not necessarily compact. Take
a compact clopen subgroup K ⊂ G. Then (G/K)2 = {(giK) | (gi) ∈
G2} gives an element of P(G2) consisting of compact clopen subsets. Put
(
∏
µi)(U

′) :=
∑

(Ci)∈(G/K)2(
∏
µi)(U

′ ∩∏Ci). By the normality of µ0 and

µ1, the infinite sum in the right hand side actually converges, and (
∏
µi)(U

′)
is independent of the choice of K. We obtain a normal Ok-valued measure∏
µi on G2.

For a U ∈ CO(G), we denote by Ũ ⊂ G2 the preimage of U by the
multiplication G2 → G. Set (µ0 ∗ µ1)(U) := (

∏
µi)(Ũ). Since

∏
µi is a

normal Ok-valued measure on G2, so is µ0 ∗ µ1 on G. We have constructed
an element µ0 ∗ µ1 ∈ M(G). By the construction, the convolution product
∗G : F (M(G))2 → F (M(G)) : (µi) 7→ µ0 ∗ µ1 is compatible with O⊕δGk and
the multiplication Ok[G]2 → Ok[G]. We note that ∗G is not necessarily
continuous.

Lemma 3.20. For any (Ki) ∈ K (M(G))2, {µ0∗µ1 | (µi) ∈
∏
Ki} ⊂M(G)

is pre-compact.

Proof. Put K := {µ0 ∗ µ1 | (µi) ∈
∏
Ki}. For each i ∈ {0, 1}, there

is an increasing sequence (Gi,r)r∈ω of compact clopen subsets such that
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Ki ⊂ M(G, (Gi,r)r∈ω, (2−r)r∈ω) by Lemma 2.19. For an r ∈ ω, put Gr :=⋃r
h=0{g0g1 | (gi) ∈ Gr−h,0 × Gh,1}. Then (Gr)r∈ω forms an increasing se-

quence of compact clopen subsets ofG satisfying K ⊂M(G, (Gr)r∈ω, (2−r)r∈ω)

by the definition of ∗G. Therefore K is pre-compact by Lemma 2.19.

By the bijectivity of ιcg
M(G) and ∇cg×

M(G),M(G), ∗G induces an Ok-bilinear

homomorphism ∗cg
G : Ok[[G]] ×cg Ok[[G]] → U cg(Ok[[G]]), (µi) 7→ µ0 ∗ µ1

compatible with O⊕dGk and the multiplication Ok[G]2 → Ok[G].

Lemma 3.21. The convolution product ∗cg
G is continuous.

Proof. Let U ⊂ Ok[[G]] be an open neighbourhood of µ0 ∗ µ1 for a (µi) ∈
M(G)2. It suffices to show that for any (Ki) ∈ K (M(G))2 satisfying (µi) ∈∏
Ki, the preimage of (∗cg

G )−1(U) in
∏
Ki is open. Put K := {µ′0 ∗ µ′1 |

(µ′i) ∈
∏
Ki}. By Lemma 3.20, K lies in K (M(G)). By Corollary 2.7,

ιcg
M(G)(U) ∩K is an open subset of K, and there is a (P, ε) ∈ P(G) × (0, 1]

such that (µ0 ∗ µ1 +M(G;P, ε)) ∩ K ⊂ ιcg
M(G)(U) ∩ K. Let i ∈ {0, 1}. By

Lemma 2.18, there is a compact clopen subset Gi ⊂ G such that |µ(U)| < ε
for any (µ,U) ∈ Ki × CO(G \ Gi). We obtain µ′0 ∗ µ′1 ∈ ιcg

M(G)(U) ∩K for

any (µ′i) ∈
∏

((µi +M(G; {Gi, G \Gi}, ε)) ∩Ki) by the definition of ∗G. It
implies that the preimage of (∗cg

G )−1(U) in
∏
Ki is open.

Proof of Theorem 3.19. The uniqueness follows from Proposition 2.14 and
Proposition 2.17 (iii). By Corollary 2.7 and the cocontinuity of the forgetful
functor Top→ Set, ∗G induces anOk-linear homomorphism⊗cg

G : Ok[[G]]⊗cg

Ok[[G]] → Ok[[G]]. The composite ⊗cg ◦ ∇cg⊗
M(G),M(G) coincides with ∗cg

G by
the construction, and hence is continuous by Lemma 3.21. The embedding
O⊕dGk sends the multiplication of Ok[G] to ⊗cg

G and the identity to dG,1 by
the construction. Since Ok[G] satisfies the axiom of a monoid in C , Ok[[G]]
forms a CGLT Ok-algebra with respect to the convolution product ⊗cg

G and
the unit Ok → Ok[[G]], c 7→ cdG,1 by Proposition 2.14, Proposition 2.17
(iii), and the continuity of ⊗cg

G .

We have examples of the computation of the generalised Iwasawa algebra
Ok[[G]].

Example 3.22. (i) If G is discrete, then Ok[[G]] is identified with C0(G,Ok)
equipped with the unique continuous extension of the Ok-algebra structure
of the group algebra Ok[G] through the correspondence in Proposition 3.14.
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(ii) If G is a profinite group, then the algebra structure of Ok[[G]] coin-
cides with the one induced by the homeomorphic Ok-linear isomorphism in
Proposition 2.21, and Ok[[G]] is identified with the classical Iwasawa algebra
associated to G through the correspondence in Proposition 3.16.

(iii) If G admits a closed subgroup H ⊂ G and a compact subset C ⊂ G
such that the multiplication H×C → G is bijective, then the multiplication
is actually a homeomorphism by [6] Lemma 2.13, and hence Ok[[G]] admits
a natural homeomorphic Ok-linear isomorphism to Ok[[H × C]].

(iv) For any open subgroup H ⊂ G and a discrete subset D ⊂ G such
that the multiplication H × D → G is bijective, the multiplication is a
homeomorphism by [3] p. 433, and hence Ok[[G]] admits a natural homeo-
morphic Ok-linear isomorphism to Ok[[H×D]]. In particular, F cg(Ok[[G]])
admits a natural Ok-linear isomorphism to the ideal-adic completion of
F cg(Ok[[H]])⊕D by Lemma 2.19.

(v) If G admits an increasing sequence (Gr)r∈ω of open subgroups sat-
isfying

⋃
r∈ω Gr = G, then F cg(Ok[[G]]) admits a natural Ok-algebra iso-

morphism to the ideal-adic completion of lim−→r∈ω F cg(Ok[[Gr]]) by Lemma
2.19.

As an application of Example 3.22 (ii) and (vi), we immediately obtain
the following:

Proposition 3.23. Let p denote the residual characteristic of k, and $ ∈
Ok a uniformiser. Then F cg(Ok[[Qp]]) admits a natural Ok-algebra isomor-
phism to the $-adic completion of the filtered colimit of F c(Ok[[T ]]) with re-
spect to the continuous Ok-algebra homomorphism Ok[[T ]]→ Ok[[T ]], T 7→
(T + 1)p − 1.

3.3 CGLT modules Let A be a CGLTOk-algebra. A CGLT A-module
is a left A-module in (C cg

` ,⊗cg, Ok). We give three examples of CGLT
modules as immediate consequences of Proposition 3.14, Proposition 3.16,
and Proposition 3.18, respectively:

Proposition 3.24. Let A be a Banach k-algebra. Then every Banach
left A -module, that is, left A -module in (Ban(k), ⊗̂k, k), forms a CGLT

Ik(A )-module through Ik and T ⊗̂k,⊗
cg

.
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Proposition 3.25. Let A be a monoid in (C ch
f` , ⊗̂Ok , Ok). Then every left

A -module in (C ch
f` , ⊗̂Ok , Ok) forms a CGLT IOk(A )-module through IOk

and T ⊗̂Ok ,⊗
cg

.

Proposition 3.26. Let A be a topological Ok-algebra whose underlying
topological Ok-module is linear and CG. Then every topological left A -
module whose underlying topological Ok-module is linear and CG forms a
CGLT A -module through ∇cg⊗ ◦ (∇cg×)−1.

A BT A-module is a CGLT A-module V whose underlying Ok-module
structure extends to a k-vector space structure equipped with a complete
non-Archimedean norm on the underlying k-vector space of V giving its
original topology. Let V be a BT A-module. Then V forms a topological
k-vector space because it forms a Banach k-vector space. We say that
V is bounded if there is an R ∈ (0,∞) such that ‖fv‖ ≤ R‖v‖ for any
(f, v) ∈ A × V , is submetric if ‖fv‖ ≤ ‖v‖ for any (f, v) ∈ A × V , and
is unitary if it is submetric and the underlying Banach k-vector space V
is unramified. We denote by BT(A) the k-linear category of bounded BT
A-modules and bounded A-linear homomorphisms, by BT≤(A) ⊂ BT(A)
the Ok-linear subcategory of submetric BT A-modules and submetric A-
linear homomorphisms, and by BTur

≤ (A) ⊂ BT≤(A) the full subcategory of
unitary BT A-modules.

Let M be a CGLT A-module. We say that M is a CHFLT A-module if
the underlying linear topological Ok-module of M is a compact Hausdorff
flat linear topological Ok-module. We give a characterisation of a CHFLT
A-module.

Proposition 3.27. Let K ∈ ob(C c
` ). For any a map ρ : A × K → K, K

forms a CGLT A-module with respect to the Ok-linear extension of ρ if and
only if F cg(K) forms a left F cg(A)-module and ρ is continuous.

Proof. We denote by ρ̃ : A ⊗cg K → K the Ok-linear extension of ρ. The
direct implication follows from Proposition 3.10 and the continuity of ∇cg⊗

A,K .
Suppose that K forms a CGLT A-module with respect to ρ̃. By the nat-
urality of ∇cg×, F cg(K) forms a left F cg(A)-module with respect to ρ.
Let U ⊂ K be an open subset. Let (f,m) ∈ A × K. We show that
if ρ(f,m) ∈ U , then ρ−1(U) is an open neighbourhood of (f,m). Put
L := {f ′ ∈ A | ∀m′ ∈ K, ρ(f + f ′,m′) ∈ U}. Let K0 ∈ K (A). By Proposi-
tion 2.1 (ii) and the continuity of the ρ̃, there is an (Li) ∈ O(K0) × O(K)
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such that ρ(f ′,m′) ∈ U for any (f ′,m′) ∈ ((f +L0)×K)∪ (K0× (m+L1)).
In particular, we have L0 ⊂ L ∩ K0 and hence L ∩ K0 ∈ O(K0). It im-
plies L ∈ O(A) by Corollary 2.7. By L ×K ⊂ ρ−1(U), ρ−1(U) is an open
neighbourhood of (f,m). Thus ρ is continuous.

A left A-submodule K ⊂ M is said to be a core of M if K is compact,
the inclusion K ↪→ M induces an isomorphism k ⊗Ok F c(K) → F cg(M)
in C , and every Ok-submodule L ⊂ M satisfying cL ∩K ∈ O(K) for any
c ∈ Ok\{0} is open. We say that M is a CGHLT A-module if M is Hausdorff
and admits a core. If M is a CGHLT A-module, then M forms a topological
k-vector space because O(M) is stable under the action of k×. We denote by
Modch

f` (A) the Ok-linear category of CHFLT A-modules and continuous A-

linear homomorphisms, and by Modcgh
` (A) the k-linear category of CGHLT

A-modules and continuous A-linear homomorphisms.
We give an example of a CGHLT A-module. Let K ∈ ob(Modch

f` (A)).
We denote by Kk the left F cg(A)-module k⊗Ok F c(K) equipped with the
strongest topology for which Kk forms a topological k-vector space and the
natural embedding ιcK : K ↪→ Kk is continuous. We identify F c(K) with
its image in k⊗Ok F c(K). The following is an analogue of [13] Lemma 1.4:

Proposition 3.28. The linear topological Ok-module Kk forms a CGHLT
A-module, and ιcK is a homeomorphism onto a core.

In order to verify Proposition 3.28, we characterise the topology of Kk.

Lemma 3.29. A subset U ⊂ Kk is open if and only if (ιcK)−1(cU) ⊂ K is
open for any c ∈ Ok \ {0}.

Proof. We denote by O the set of subsets U ⊂ Kk such that (ιcK)−1(cU) ⊂ K
is open for any c ∈ Ok \ {0}. Then O satisfies the open set axiom of the
underlying set of Kk, for which ιcK is continuous and Kk forms a topological
k-vector space because O is stable under the action of k×. Therefore by
the universality of the strongest topology, O coincides with the set of open
subsets of Kk.

Proof of Proposition 3.28. Take a uniformiser $ ∈ Ok. Put Kr := K for an
r ∈ ω, and denote by Kω the colimit in C` of (Kr)r∈ω with respect to the
transition maps Kr → Kr+1, m 7→ cm indexed by r ∈ ω. Then Kω forms a
CG linear topological Ok-module by Proposition 2.1 (ii), Proposition 2.9 (i),
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and Corollary 2.10. It is Hausdorff by the same computation as that in the
proof of [6] Proposition 1.27 using Corollary 2.7 and a well-known property
of T1 normal topological spaces. By Corollary 3.12 and the functoriality of
the colimit, the scalar multiplication A ⊗cg K → K induces a continuous
Ok-linear homomorphism A ⊗cg Kω → Kω, for which Kω forms a CGLT
A-module.

By the universality of the colimit and the flatness of K, ιcK induces a
continuous bijective Ok-linear homomorphism kιcK : Kω → Kk. By Corol-
lary 2.7, the map Kω → Kω, m 7→ $m is an isomorphism in C`, and hence
Kω forms a topological k-vector space. We show that kιcK is an open map.
Let L ∈ O(Kω). For any c ∈ Ok \ {0}, (ιcK)−1(c(kιcK)(L)) coincides with
the preimage of cL in K0, and hence is open by the continuity of the canon-
ical embedding K0 ↪→ Kω. It ensures (kιcK)(L) ∈ O(Kk) by Lemma 3.29.
Therefore kιcK is an isomorphism in C`, and Kk forms a Hausdorff CGLT A-
module. Since K is compact and Kk is Hausdorff, ιcK is a homeomorphism
onto the image, which is a core of Kk.

We obtain a characterisation of a CGHLT A-module.

Proposition 3.30. If M is a CGHLT A-module with a core K ⊂M , then
the bijective Ok-linear homomorphism Kk → M induced by the inclusion
K ↪→M is an isomorphism in Modcgh

` (A).

Proof. We denote by ϕ : Kk →M the map in the assertion, and by i : K ↪→
Kk the canonical embedding. By the universality of the strongest topology,
ϕ is continuous. Let L ∈ Kk. For any c ∈ Ok \ {0}, we have cϕ(L) ∩K =
ϕ(cL) ∩K = i−1(cL) ∈ O(K). It implies ϕ(L) ∈ O(M). Therefore ϕ is an
open map.

The correspondenceK  Kk gives anOk-linear functor ΦA : Modch
f` (A)→

Modcgh
` (A) by Proposition 3.28. We denote by ΦA,k : kModch

f` (A)→ Modcgh
` (A)

its k-linear extension.

Proposition 3.31. The k-linear functor ΦA,k is fully faithful and essen-
tially surjective.

Proof. The faithfulness of ΦA,k follows from the faithfulness of ΦA and the
flatness of hom objects. The fullness follows from the same computation as
that in the proof of [13] Lemma 1.5 ii and iii using Baire category theorem.
The essential surjectivity follows from Proposition 3.30.
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By Proposition 2.1 (ii), Proposition 3.28, and Proposition 3.29, Ok forms
a commutative CGLT Ok-algebra. By Proposition 3.27, IOk induces an
equivalence C ch

f` → Modch
f` (Ok) of categories. By Proposition 3.28 and

Proposition 3.29, we obtain an Ok-linear functor C ch
f` → Modcgh

` (Ok), which
extends to a fully faithful essentially surjective k-linear functor kC ch

f` →
Modcgh

` (Ok).

4 Modules over Iwasawa algebras

We study relation between module theory over Ok[[G]] and representation
theory of G. As a main result, we generalise Schneider–Teitelbaum duality
to duality applicable to G, and give a criterion of the irreducibility of unitary
Banach k-linear representations of G.

4.1 Unitary Banach representations A Banach k-linear represen-
tation of G is a pair (V, ρ) of a V ∈ ob(Ban(k)) and a continuous map
ρ : G × V → V giving a k-linear action of G on V . Let (V, ρ) be a Banach
k-linear representation of G. We say that (V, ρ) is unitarisable if there is an
R ∈ (0,∞) such that ‖ρ(g, v)‖ ≤ R‖v‖ for any (g, v) ∈ G× V , is isometric
if ‖ρ(g, v)‖ = ‖v‖ for any (g, v) ∈ G × V , and is said to be unitary if V is
unramified and (V, ρ) is isometric. A map between Banach k-linear repre-
sentations is said to be a k[G]-linear homomorphism if it is a G-equivariant
k-linear homomorphism. We denote by RepG(Ban(k)) the k-linear category
of unitarisable Banach k-linear representations of G and bounded k[G]-
linear homomorphisms, by RepG(Ban≤(k)) ⊂ RepG(Ban(k)) the Ok-linear
subcategory of isometric Banach k-linear representations of G and submet-
ric k[G]-linear homomorphisms, and by RepG(Banur

≤ (k)) ⊂ RepG(Ban≤(k))
the full subcategory of unitary Banach k-linear representations of G.

We compare the notion of a BT Ok[[G]]-module and the notion of a
Banach k-linear representation of G. For this purpose, we consider a partial
generalisation of Banach–Steinhaus theorem (cf. [11] Corollary 6.16). Let
(X0, (Vi)) ∈ ob(Top× Ban(k)2).

Proposition 4.1. A map ϕ : X0 → S ((Vi)) is continuous if and only if the
map X0 × V1 → V2 : (x, v) 7→ ϕ(x)(v) is continuous.
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Proof. We denote by ρ : X0 × V1 → V2 the induced map. The direct impli-
cation follows from the continuity of the map X0 → X0×V1, x 7→ (x, v) for
any v ∈ V1. Suppose that ϕ is continuous. Let U2 ⊂ V2 be an open subset.
Let (x, v) ∈ X0 × V1. Suppose ρ(x, v) ∈ U2. Take an ε ∈ (0,∞) satisfying
{v′ ∈ V2 | ‖v′ − ρ(x, v)‖ < ε} ⊂ U2. Put U1 := {v′ ∈ V1 | ‖v′ − v‖ < ε}. By
the continuity of ϕ, there is an open neighbourhood U0 ⊂ X0 of x such that
‖ρ(x′, v) − ρ(x, v)‖ < ε for any x′ ∈ U0. We obtain ‖ρ(x′, v′) − ρ(x, v)‖ ≤
max{‖ρ(x′, v′ − v)‖, ‖ρ(x′, v) − ρ(x, v)‖} < ε for any (x′, v′) ∈ ∏Ui, and
hence

∏
Ui ⊂ ρ−1(U2). It implies that ρ is continuous.

Let (X, (V, ρ)) ∈ ob(Top × RepG(Ban≤(k))). By Proposition 4.1, the
monoid homomorphism ϕρ : G → S (V )× induced by ρ is continuous. In
order to obtain a submetric BT Ok[[G]]-module structure on V associated
to ρ, we prepare a partial generalisation of [13] Lemma 2.1 for the Banach
space side.

Proposition 4.2. The map L (M(X),S (V )) → HomTop(X,U (S (V ))),
F 7→ F ◦ δX is bijective.

Proof. Denote by δ∗X the map in the assertion. By Proposition 2.16 (iii),
δ∗X is injective. Let ϕ ∈ HomTop(X,U (S (V ))). Denote by O⊕ϕk : O⊕Xk →
S (V ) the Ok-linear extension of ϕ. Let (v, ε) ∈ V × (0, 1]. Put L := {f ∈
S (V ) | |f(v)| < ε}. By the continuity of ϕ, the set of the preimages of open
balls in V of radius ε by the map X → V, x 7→ ϕ(x)(v) gives a P ∈ P(X).
We have (O⊕δXk )−1(M(X;P, ε)) ⊂ (O⊕ϕk )−1(L). Therefore O⊕ϕk extends
to a unique continuous Ok-linear homomorphism ϕ̃ : M(X) → S (V ) by
Proposition 2.16 (iii). We have δ∗X(ϕ̃) = ϕ. Thus δ∗X is surjective.

As a consequence of Theorem 3.19 and Proposition 4.2, we obtain the
following:

Corollary 4.3. For any continuous monoid homomorphism ϕ : G→ S (V )×

there is a unique continuous Ok-linear homomorphism F : M(G) → S (V )
satisfying F ◦ δG = ϕ, and F ◦ ιcg

M(G) preserves the multiplication and the
unit.

By Corollary 4.3, ϕρ induces a continuous Ok-linear homomorphism
Π̃ρ : M(G) → S (V )such that Π̃ ◦ ιcg

M(G) preserves the multiplication and

the unit. We have a comparison between the closed unit balls of H omcg

and B.
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Proposition 4.4. The identity map

H omcg(Ik(V ),Ik(V )) ∩ EndBan≤(k)(V )→ S (V )

is an isomorphism in C`.

Proof. Denote by i the map in the assertion. By Corollary 2.5, i is continu-
ous. Let L ∈ O(H omcg(Ik(V ),Ik(V )) ∩ EndBan≤(k)(V )). Take a (K, ε) ∈
K (Ik(V ))× (0,∞) satisfying {f ∈ EndBan≤(k)(V ) | ∀v ∈ K, |f(v)| < ε} ⊂
L and a K0 ∈ P<ω(K) satisfying K ⊂ ⋃v∈K0

{v′ ∈ V | |v′ − v| < ε}. We
have {f ∈ S (V ) | ∀v ∈ K0, |f(v)| < ε} ⊂ i(L), and hence i(L) ∈ O(S (V )).
Therefore i is an isomorphism in C`.

By Corollary 2.10 (i) and Proposition 4.4, Π̃ρ induces a continuous Ok-
linear homomorphism Πρ : Ok[[G]] → Ik(V )Ik(V ) preserving the multipli-
cation and the unit. By Theorem 3.8, Πρ gives a CGLT Ok[[G]]-module
structure on Ik(V ), for which Ik(V ) forms a submetric BT Ok[[G]]-module∫
G(V, ρ). By the construction, the correspondence (V, ρ)  

∫
G(V, ρ) gives

Ok-linear functors
∫ d
G,≤ : RepG(Ban≤(k))→ BT≤(Ok[[G]]) and

∫ d

G,ur
: RepG(Banur

≤ (k))→ BTur
≤ (Ok[[G]]).

Each step of the construction of
∫
G(V, ρ) is obviously invertible, and hence

we obtain a comparison between the notion of a submetric BT Ok[[G]]-
module and the notion of an isometric Banach k-linear representation of
G.

Theorem 4.5. The functors
∫ d
G,≤ and

∫ d
G,ur are equivalences of Ok-linear

categories.

We also consider a similar comparison without the assumption of the
submetric condition. Let (V, ρ) ∈ ob(RepG(Ban(k))). Take a c ∈ k× satis-
fying ‖ρ(g, v)‖ ≤ |c| ‖v‖ for any (g, v) ∈ G×V . By Proposition 4.1, the map
G→ S (V ) induced by the continuous map G×V → V, (g, v) 7→ c−1ρ(g, v)
is continuous. By Proposition 4.2, it induces a continuous Ok-linear homo-
morphism M(G) → S (V ), which does not necessarily preserve the multi-
plication. By Corollary 2.10 (i) and Proposition 4.4, it induces a contin-
uous Ok-linear homomorphism Ok[[G]] → Ik(V )Ik(V ). Multiplying c, we
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obtain a continuous Ok-linear homomorphism Πρ : Ok[[G]] → Ik(V )Ik(V )

independent of the choice of c preserving the multiplication and the unit.
By Theorem 3.8, Πρ gives a CGLT Ok[[G]]-module structure on Ik(V ),
for which Ik(V ) forms a bounded BT Ok[[G]]-module

∫
G(V, ρ). By the

construction, the correspondence (V, ρ)  
∫
G(V, ρ) gives a k-linear func-

tor
∫ d
G : RepG(Ban(k)) → BT(Ok[[G]]). Each step of the construction of∫

G(V, ρ) is obviously invertible, and hence we obtain a comparison between
the notion of a bounded BT Ok[[G]]-module and the notion of a unitarisable
Banach k-linear representation of G.

Theorem 4.6. The functor
∫ d
G is a k-linear equivalence of categories.

4.2 CHFLT modules A CGLT Ok-linear representation of G is a
pair (M,ρ) of an M ∈ ob(C cg

` ) and a continuous map ρ : G × M → M
giving an Ok-linear action of G on M . A map between CGLT Ok-linear
representations is said to be an Ok[G]-linear homomorphism if it is a G-
equivariant Ok-linear homomorphism. Let (M,ρ) be a CGLT Ok-linear
representation of G. We say that (M,ρ) is a CHFLT Ok-linear representa-
tion of G if M ∈ ob(C ch

f` ). We denote by RepG(C cg
` ) the Ok-linear category

of CGLT Ok-linear representations of G and continuous Ok[G]-linear homo-
morphisms, and by RepG(C ch

f` ) ⊂ RepG(C cg
` ) the full subcategory of CHFLT

Ok-linear representations of G.

We compare the notion of a CHFLT Ok[[G]]-module and the notion of a
CHFLT Ok-linear representation of G. For this purpose, we consider a com-
pact analogue of Banach–Steinhaus theorem (cf. [11] Corollary 6.16). We
denote by Unf the category of compact uniform spaces and uniformly contin-
uous maps. Let (X0, (Ci+1)) ∈ ob(Top× Unf2). We equip HomUnf((Ci+1))
the topology of uniform convergence.

Proposition 4.7. A map ϕ : X0 → HomUnf((Ci+1)) is continuous if and
only if the induced map X0 × C1 → C2 : (x,m) 7→ ϕ(x)(m) is continuous.

Proof. If C1 = ∅, then the assertion is obvious. We assume C1 6= ∅. We
denote by ρ : X0×C1 → C2 the induced map. Suppose that ϕ is continuous.
Let U2 ⊂ C2 be an open neighbourhood of ρ(x0,m0) for a (x0,m0) ∈ X0×C1.
Take entourages E0, E1 ⊂ C2

2 satisfying {m1 ∈ C2 | (ρ(x0,m0),m1) ∈ E0} ⊂
U2 and that for any (mi)

2
i=0 ∈ C3

2 , ((mi), (mi+1)) ∈ E2
1 implies (m2i) ∈ E0.
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By the uniform continuity of ϕ(x0), there is an entourage E2 ⊂ C2
1 such that

every (mi) ∈ E2 satisfies (ϕ(x0)(mi)) ∈ E1. By the continuity of ϕ, there
exists an open neighbourhood U0 ⊂ X of x0 such that (ϕ(x1−i)(m1)) ∈ E1

for any (x1,m1) ∈ U0 × C1. Put U1 := {m1 ∈ C1 | (mi) ∈ E2}. Then for
any (x1,m1) ∈ ∏Ui, we have ((ρ(x0,mi)), (ρ((xi,m1))) ∈ E2

1 , and hence
(ρ(xi,mi)) ∈ E0. It implies that

∏
Ui ⊂ ρ−1(U2). Therefore ρ is continuous.

Suppose that ρ is continuous. Let U ⊂ HomUnf((Ci+1)) be an open
neighbourhood of ϕ(x0) for a x0 ∈ X0. For an entourage E ⊂ C2

2 , set
UE := {f ∈ HomUnf((Ci+1)) | ∀m ∈ C1, (ϕ(x0)(m), f(m)) ∈ E}. Then
the collection of subsets of the form UE forms a fundamental system of
neighbourhoods of ϕ(x0). Take entourages E0, E1 ⊂ C2

2 satisfying UE0 ⊂ U
and that for any (mi)

2
i=0 ∈ C3

2 , ((mi), (m2i)) ∈ E2
1 implies (mi+1) ∈ E0. For

each m0 ∈ C1, there are open neighbourhoods U0 ⊂ X and U1 ⊂ C1 of x0

and m0, respectively, such that (ρ(xi,mi)) ∈ E1 for any (x1,m1) ∈∏Ui by
the continuity of ρ. We denote by S the set of such an (m0, (Ui)) satisfying
m0 ∈ C1. Since C1 is compact and non-empty, there is an S0 ∈P<ω(S)\{∅}
such that C1 =

⋃
(m0,(Ui))∈S0

U1. Put V0 :=
⋂

(m0,(Ui))∈S0
U0. Let x1 ∈ V0.

We show ϕ(x1) ∈ UE0 . Let m0 ∈ C1. Take an (m1, (Ui)) ∈ S0 satisfying
m0 ∈ U1. We have ((ρ(x0,mi)), (ρ(xi,mi))) ∈ E2

1 by the choice of m1 and
U1. Therefore we obtain (ϕ(xi)(m1)) = (ρ(xi,m1)) ∈ E0 by the choice of
E1. It ensures ϕ(x1) ∈ UE0 . It implies that V0 ⊂ ϕ−1(UE0). Thus ϕ is
continuous.

Let (K, ρ) ∈ ob(RepG(C ch
f` )). The monoid homomorphism ϕρ : G →

H omc(K,K)× induced by ρ is continuous by Proposition 4.7. In order
to obtain a CHFLT Ok[[G]]-module structure on K associated to ρ, we
prepare a partial generalisation of [13] Lemma 2.1 for the compact side. By
Proposition 3.3 and Proposition 4.2, we obtain the following:

Proposition 4.8. The map

L (M(X),H omc(K,K))→ C(X,H omc(K,K)), F 7→ F ◦ δX

is bijective.

By Theorem 3.19 and Proposition 4.8, we obtain a locally profinite coun-
terpart of [13] Corollary 2.2 for the compact side.
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Corollary 4.9. For any continuous monoid homomorphism

ϕ : G→H omc(K,K)×,

there is a unique continuous Ok-linear homomorphism

F : M(G)→H omc(K,K)

such that F ◦ δG = ϕ, and F ◦ ιcg
M(G) preserves the multiplication and the

unit.

By Corollary 2.10 (i) and Corollary 4.9, ϕρ induces a continuous Ok-

linear homomorphism Πρ : Ok[[G]] → IOk(K)IOk (K) preserving the multi-
plication and the unit. By Theorem 3.8, Πρ gives a CGLT Ok[[G]]-module
structure on IOk(K), for which IOk(K) forms a CHFLT Ok[[G]]-module∫
G(K, ρ). By the construction, the correspondence (K, ρ) 

∫
G(K, ρ) gives

an Ok-linear functor
∫ c
G : RepG(C ch

f` ) → Modch
f` (Ok[[G]]). Each step of the

construction of
∫
G(K, ρ) is obviously invertible, and hence we obtain a com-

parison between the notion of a CHFLT Ok[[G]]-module and the notion of
a CHFLT Ok-linear representation of G.

Theorem 4.10. The functor
∫ c
G is an Ok-linear equivalence of categories.

Let (M,ρ) ∈ ob(RepG(C cg
` )). A G-stable Ok-submodule K ⊂ M is

said to be a core of (M,ρ) if K is compact, the inclusion K ↪→ M induces
an isomorphism k ⊗Ok F c(K) → F cg(M) in C , and every Ok-submodule
L ⊂ M satisfying cL ∩ K ∈ O(K) for any c ∈ Ok \ {0} is open. We say
that (M,ρ) is a CGHLT k-linear representation of G if M is Hausdorff
and (M,ρ) admits a core. If (M,ρ) is a CGHLT k-linear representation
of G, then M forms a topological k-vector space because O(M) is closed
under the action of k×. We denote by RepG(kC ch

f` ) ⊂ RepG(C cg
` ) the full

subcategory of CGHLT k-linear representations of G. We give an example
of a CGHLT k-linear representation of G. We denote by (K, ρ)k the pair of

Kk ∈ ob(Modcgh
` (Ok)) and the k-linear extension of ρ.

Proposition 4.11. The pair (K, ρ)k forms a CGHLT k-linear represen-
tation of G, and ιcK is a homeomorphic Ok[G]-linear isomorphism onto a
core.



Schneider-Teitelbaum duality for locally profinite groups 155

Proof. By Proposition 3.28 applied to A = Ok, Kk is a CGHLT Ok-module,
and ιcK is a homeomorphism onto a core of Kk. By Corollary 2.7, the k-
linear extension of ρ gives a continuous map G × Kk → Kk. Therefore
(K, ρ)k forms a CGLT Ok-linear representation of G. Since ιcK is Ok[G]-
linear, ιcK(K) forms a core of (K, ρ)k.

By Proposition 4.11, the correspondence (K, ρ)  (K, ρ)k gives an Ok-
linear functor Ψ: RepG(C ch

f` )→ RepG(kC ch
f` ). We denote by

Ψk : kRepG(C ch
f` )→ RepG(kC ch

f` )

its k-linear extension. By a similar argument to that in the proof of Propo-
sition 3.31, we obtain a characterisation of a CGHLT k-linear representation
of G.

Proposition 4.12. The k-linear functor Ψk is fully faithful and essentially
surjective.

We compare the notion of a CGHLT Ok[[G]]-module and the notion
of a CGHLT k-linear representation of G. Let (M,ρ) ∈ ob(RepG(kC ch

f` )).
Take a core K ⊂ (M,ρ). We abbreviate the pair of K and the restriction
G×K → K of ρ to (K, ρ). The scalar multiplication Ok[[G]]⊗cg

∫
G(K, ρ)→∫

G(K, ρ) induces a continuous Ok-linear homomorphism Ok[[G]]⊗cg Kk →
Kk by Corollary 3.12 and the functoriality of the colimit. Through the
isomorphism (K, ρ)k → (M,ρ) in RepG(kC ch

f` ) induced by the inclusion
K ↪→M , we obtain a continuous Ok-linear homomorphism Ok[[G]]⊗cgM →
M , for which M forms a CGHLT Ok-module

∫
G(M,ρ) with a core K. By

the construction, the correspondence (M,ρ)  
∫
G(M,ρ) gives a k-linear

functor
∫ c
G,k : RepG(kC ch

f` ) → Modcgh
` (Ok[[G]]). We obtain a comparison

between the notion of a CGHLT Ok[[G]]-module and the notion of a CGHLT
k-linear representation of G.

Theorem 4.13. The functor
∫ c
G,k is a k-linear equivalence of categories.

Proof. We construct an inverse. Let M ∈ ob(Modcgh
` (Ok[[G]])). We de-

note by M0 the underlying CGHLT Ok-module of M . We show that the
map ρM : G × M0 → M0, (g,m) 7→ dG,gm is continuous. Take a core
K1 ⊂M . We consider the composite Ok[[G]]⊗cg K1 →M of the Ok-linear



156 T. Mihara

homomorphism Ok[[G]] ⊗cg K1 → Ok[[G]] ⊗cg M induced by the inclusion
K1 ↪→ M , which is continuous by the functoriality of ⊗cg, and the scalar
multiplication Ok[[G]]⊗cgM →M . Since K1 is a left Ok[[G]]-submodule, it
factors through K1 ⊂M . We obtain a continuous Ok-linear homomorphism
Ok[[G]]⊗cg K1 → K1, for which K1 forms a CHFLT Ok[[G]]-module.

Let U2 ⊂ M0 be an open subset. Take an open profinite subgroup
H ⊂ G. For a g ∈ G, put Ug,1 := gH and Ug,2 := {m ∈ M0 | ∀g′ ∈
Ug,1, ρM (g′,m) ∈ U2}. Then we have ρ−1

M (U2) =
⋃
g∈G

∏
Ug,i. Therefore

in order to show that ρ−1
M (U2) is open, it suffices to show Ug,2 is open for

any g ∈ G. Let g ∈ G. We show that cUg,2 ∩ K1 is open in K1 for any
c ∈ Ok \ {0}. Let c ∈ Ok \ {0}. Let m ∈ cUg,2 ∩K1. By Proposition 2.1 (ii),
Corollary 2.5, and Proposition 2.17 (ii), we have K0 :=

∑
g′∈H OkdG,gg′ ∈

K (Ok[[G]]). By Proposition 2.1 (ii) and the continuity of the scalar mul-
tiplication Ok[[G]] ⊗cg K1 → K1, there is an (Li) ∈

∏
O(Ki) such that

(dG,g ⊗m) + (Li)(Ki) (cf. §3.1) is contained in the preimage of ρ−1
M (cU2) in

K0 ⊗c K1. In particular, we have m + L1 ⊂ cUg,2 ∩ K1. It ensures that
cUg,2 ∩ K1 is open in K1. By Lemma 3.29 and Proposition 3.30, Ug,2 is
open. It implies that ρM is continuous. We obtain a CGHLT k-linear rep-
resentation (M0, ρM ) with a core K1. The correspondence M  (M0, ρM )

gives a functor Modcgh
` (Ok[[G]]) → RepG(kC ch

f` ) which is a strict inverse of∫ c
G,k.

4.3 Generalised Schneider-Teitelbaum duality
Imitating the method of [13] Theorem 2.3, we extend (Dd,Dc) to an Ok-
linear equivalence (Dd,Dc) of RepG(Banur

≤ (k))op and Modch
f` (Ok[[G]]). Let

(V, ρ) ∈ ob(RepG(Banur
≤ (k))). For a (g,m) ∈ G × V Dd , we denote by

ρDd(g,m) the submetric k-linear homomorphism V → k, v 7→ m(ρ(g−1, v)).
We obtain a map ρDd : G× V Dd → V Dd : (g,m) 7→ ρDd(g,m).

Proposition 4.14. The map ρDd is continuous.

Proof. By Proposition 4.1, ρ induces a continuous monoid homomorphism
ϕ : G→ S (V )×. The mapG→H omc(V Dd , V Dd)×, g 7→ T(•)−1

V Dd ,V Dd
(ϕ(g−1))

is a continuous by Proposition 3.3. Therefore ρDd is continuous by Propo-
sition 4.7.

By Proposition 4.14, the correspondence (V, ρ)  (V Dd , ρDd) gives an
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Ok-linear functor dDd : RepG(Banur
≤ (k))op → RepG(C ch

f` ). We denote by

Dd : RepG(Banur
≤ (k))op → Modch

f` (Ok[[G]]) the composite of
∫ c
G and dDd.

Let K ∈ ob(Modch
f` (Ok[[G]])). We denote by K0 ∈ ob(C ch

f` ) the un-
derlying topological Ok-module of K. For a (g, v) ∈ G × KDc

0 , we de-
note by ρK(g, v) the continuous Ok-linear homomorphism K0 → k, m 7→
v(dG,g−1m). We obtain a map ρK : G×KDc

0 → KDc
0 : (g, v) 7→ ρK(g, v).

Proposition 4.15. The map ρK is continuous.

Proof. By Proposition 2.17 (ii) and Proposition 3.27, the map G × K →
K, (g,m) 7→ dG,gm is continuous. By Proposition 4.7, it induces a con-
tinuous monoid homomorphism ϕ : G → H omc(K0,K0)×. The map G →
H omc(KDc

0 ,KDc
0 )×, g 7→ Tϕ(g−1)K0,K0 is continuous by Proposition 3.3.

Therefore ρK is continuous by Proposition 4.1.

We put KDc := (KDc
0 , ρK). By Proposition 4.15, the correspondence

K  KDc gives anOk-linear functor Dc : Modch
f` (Ok[[G]])→ RepG(Banur

≤ (k))op.
By Proposition 2.12, we obtain the following:

Theorem 4.16. The pair (Dd,Dc) is an Ok-linear equivalence between
RepG(Banur

≤ (k))op and Modch
f` (Ok[[G]]).

We obtain a generalised Schneider–Teitelbaum duality (cf. [13] Theorem
2.3).

Theorem 4.17. The composite kModch
f` (Ok[[G]])→ RepG(Ban(k)) of kDc

and the k-linear extension kRepG(Banur
≤ (k)) → RepG(Ban(k)) of the in-

clusion RepG(Banur
≤ (k)) ↪→ RepG(Ban(k)) is fully faithful and essentially

surjective.

Proof. The assertion follows from Theorem 4.5, Theorem 4.6, and Theo-
rem 4.16 because the composite of the k-linear functor kRepG(Banur

≤ (k))→
RepG(Ban(k)) and

∫ d
G coincides with the composite of k

∫
G,ur and the k-

linear extension kBTur
≤ (Ok[[G]])→ BT(Ok[[G]]) of the inclusion

BTur
≤ (Ok[[G]]) ↪→ BT(Ok[[G]]).
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Let (V, ρ) ∈ ob(RepG(Ban(k))) (respectively,M ∈ ob(Modcgh
` (Ok[[G]]))).

We say that (V, ρ) (respectively, M) is irreducible (respectively, simple) if it
admits exactly two closed G-stable k-vector subspaces (respectively, closed
left Ok[[G]]-submodules which are k-vector spaces). As an analogue of [13]
Corollary 3.6, we obtain a criterion for the irreducibility.

Theorem 4.18. Suppose that (V, ρ) is unitary. Then (V, ρ) is irreducible
if and only if ((V, ρ)Dd)k is simple.

Proof. Suppose that ((V, ρ)Dd)k is simple. We show that (V, ρ) is irreducible.
We have (V, ρ)Dd 6= {0} by ((V, ρ)Dd)k 6= {0}, and hence V 6= {0}. Let
V0 ⊂ V be a proper closed G-stable k-vector subspace. Then (V0, ρ) forms a
unitary Banach k-linear representation of G. By Hahn–Banach theorem (cf.
[5] Theorem 3 and [11] Proposition 9.2), the restriction map π : (V Dd)k →
(V Dd

0 )k is surjective and kerπ is a non-zero closed Ok[[G]]-submodule of
((V, ρ)Dd)k which is a k-vector space. Since ((V, ρ)Dd)k is simple, we obtain
kerπ = ((V, ρ)Dd)k. It ensures V Dd

0 = {0}, and hence V0 = {0} again by
Hahn–Banach theorem. It implies that (V, ρ) is irreducible.

Suppose that (V, ρ) is irreducible. We show that ((V, ρ)Dd)k is sim-
ple. Let M0 ⊂ ((V, ρ)Dd)k be a proper closed Ok[[G]]-submodule which is
a k-vector space. The identity map F c((V, ρ)Dd) → HomBanur

≤ (k)(V, k) in-

duces a bijective k-linear homomorphism F cg((V Dd)k)→ HomBan(k)(V, k),
through which we regard F (M0) as a k-vector subspace of HomBan(k)(V, k).

We have ((V, ρ)Dd)k 6= {0} by V 6= {0} and Hahn–Banach theorem. Put
V0 :=

⋂
m∈M0

ker(m) ⊂ V . We show V0 6= {0}. Let M denote the quo-

tient (V Dd)k/M0. Since M0 is a proper closed Ok[[G]]-submodule of (V Dd)k
which is a k-vector space, M is a non-zero Hausdorff linear topological Ok-
module which is a topological k-vector space. Therefore there is a non-zero
continuous Ok-linear homomorphism v : M → k by [6] Theorem 2.1. By the
compactness of V Dd and the continuity of ιc

V Dd
and the canonical projec-

tion ((V, ρ)Dd)k �M , we have supm∈V Dd v(ιc
V Dd

(m) +M0) <∞. Therefore

there is a v ∈ V \ {0} such that v(ιc
V Dd

(m) +M0) = m(v) for any m ∈ V Dd

by Theorem 2.12. It ensures m(v) = v(0) = 0 for any m ∈ M0. We obtain
v ∈ V0 and hence V0 6= {0}. Since V0 is a closed G-stable k-vector subspace
of (V, ρ) and (V, ρ) is irreducible, we obtain V0 = V . It ensures M0 = {0}.
It implies that ((V, ρ)Dd)k is simple.
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5 Applications

As applications of the module theory in the monoidal structure, we give an
explicit description of a continuous parabolic induction of unitary Banach
k-linear representations.

5.1 Duality of operations Let P ⊂ G be a closed subgroup. Suppose
that P\G is compact. We study relations between the dual functors in §4.3
and operations on representations. Let (V, ρ) ∈ ob(RepG(Banur

≤ (k))). We

put ResGP (V, ρ) := (V, ρ|P×V ). The correspondence (V, ρ)  ResGP (V, ρ)
gives an Ok-linear functor ResGP : RepG(Banur

≤ (k))→ RepP (Banur
≤ (k)).

Let K ∈ ob(Modch
f` (Ok[[G]])). We denote by Res

Ok[[G]]
Ok[[P ]](K) the scalar

restriction of K by the natural embedding Ok[[P ]] ↪→ Ok[[G]]. The corre-

spondence K  Res
Ok[[G]]
Ok[[P ]](K) gives an Ok-linear functor

Res
Ok[[G]]
Ok[[P ]] : Modch

f` (Ok[[G]])→ Modch
f` (Ok[[P ]]).

We have Dd ◦ ResGP = Res
Ok[[G]]
Ok[[P ]] ◦ Dd : RepG(Banur

≤ (k)) → Modch
f` (Ok[[P ]])

by the construction.

Let (V0, ρ0) ∈ ob(RepP (Banur
≤ (k))). We denote by ρ : G×Cbd(G,V0)→

Cbd(G,V0) the map given by setting ρ(g, f)(g′) := f(g′g) for an (f, g, g′) ∈
Cbd(G,V0) × G2, which is not necessarily continuous. We set IndGP (V0) :=
{f ∈ Cbd(G,V0) | ∀(h, v) ∈ P ×G, f(hg) = ρ0(h, f(g))}. Then IndGP (V0) ⊂
Cbd(G,V0) is a closed G-equivariant k-vector subspace. We denote by
IndGP (ρ0) : G × IndGP (V0) → IndGP (V0) the restriction of ρ. It can be eas-
ily verified that IndGP (ρ0) is continuous by Banach–Steinhaus theorem (cf.
[11] Corollary 6.16), and IndGP (V0, ρ0) := (IndGP (V0), IndGP (ρ0)) forms a uni-
tary Banach k-linear representation of G. The correspondence (V0, ρ0)  
IndGP (V0, ρ0) gives an Ok-linear functor

IndGP : RepP (Banur
≤ (k))→ RepG(Banur

≤ (k)).

Let K0 ∈ ob(Modch
f` (Ok[[P ]])). We describe IndGP (KDc

0 )Dd explicitly by
G and K0. Since the underlying topological space of G is a disjoint union
of compact clopen subspaces, a map ϕ : G → KDc

0 is continuous if and
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only if the induced map G ×K0 → k : (g,m) 7→ ϕ(g)(m) is continuous by
Proposition 4.7. Therefore we obtain an isometric k-linear homomorphism
Cbd(G,KDc

0 ) ↪→ Cbd(G×K0, k) onto the closed image. We consider the map
ρ : G×Cbd(G×K0, k)→ Cbd(G×K0, k) given by setting ρ(g, f)(g′,m) :=
f(g′g,m) for a (g, f, g′,m) ∈ G × Cbd(G × K0, k) × G × K0, which is
not necessarily continuous. The inclusion IndGP (KDc

0 ) ↪→ Cbd(G,KDc
0 ) ⊂

Cbd(G×K0, k) is an isometric G-equivariant k-linear homomorphism, and
its image is the closed G-stable k-vector subspace consisting of functions
f : G×K0 → k satisfying the following:

(I) The equality f(g, cm) = cf(g,m) holds for any (g, c,m) ∈ G×Ok×K0.

(II) The equality f(g,
∑
mi) =

∑
f(g,mi) holds for any (g, (mi)) ∈ G ×

K2
0 .

(III) The equality f(hg,m) = f(g, δ−1
G,hm) holds for any (h, g,m) ∈ P ×G×

K0.

The inclusion IndGP (KDc
0 ) ↪→ Cbd(G × K0, k) induces a continuous surjec-

tive G-equivariant Ok-linear homomorphism ϕG,P : Cbd(G × K0, k)Dd �
IndGP (KDc

0 )Dd by Hahn–Banach theorem (cf. [5] Theorem 3 and [11] Propo-
sition 9.2). Since the target and the source of ϕG,P are compact and
Hausdorff, the target is homeomorphic to the coimage. We determine
ker(ϕG,P ) in order to describe the target. We denote by eg,m the sub-
metric k-linear homomorphism Cbd(G × K0, k) → k, f 7→ f(g,m) for
a (g,m) ∈ G × K0. We put µI

g,c,m := ceg,m − eg,cm for a (g, c,m) ∈
G × Ok × K0, µII

g,(mi)
:= eg,

∑
mi −

∑
eg,mi for a (g, (mi)) ∈ G × K2

0 , and

µIII
g,h,m := ehg,m − eg,dG,h−1m for a (g, h,m) ∈ G × P × K0. We denote by

µI+µII+µIII ⊂ Cbd(G×K0, k)Dd the closed Ok-submodule generated by the
union of {µI

g,c,m | (g, c,m) ∈ G×Ok ×K0}, {µII
g,(mi)

| (g, (mi)) ∈ G×K2
0},

and {µIII
g,h,m | (g, h,m) ∈ G× P ×K0}.

Proposition 5.1. The equality ker(ϕG,P ) = µI + µII + µIII holds.

Proof. We have µI + µII + µIII ⊂ ker(ϕG,P ) by the characterisation of the

image of IndGP (KDc
0 ) in Cbd(G × K0, k). Let µ ∈ ker(ϕG,P ). We show

µ ∈ µI + µII + µIII. Let f ∈ Cbd(G × K0, k) and ε ∈ (0,∞). We verify
that there is a µ′ ∈ µI + µII + µIII such that |µ(f)− µ′(f)| < ε. In the case
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f ∈ IndGP (KDc
0 ), we have µ(f) = ϕG,P (µ)(f) = 0, and hence µ′ := 0 satisfies

the desired inequality. Suppose f /∈ IndGP (V0). Then f does not satisfy at
least one of the conditions (I)–(III) in the characterisation of of the image
of IndGP (KDc

0 ) in Cbd(G×K0, k). First, suppose that f does not satisfy (I).
Take a (g, c,m) ∈ G × Ok × K0 satisfying f(g, cm) − cf(g,m) 6= 0. Set
µ′ := (f(g, cm) − cf(g,m))−1µ(f)µI

g,c,m. Then we have µ′(f) = µ(f) by
the construction, and hence |µ(f) − µ′(f)| = 0 < ε. Next, suppose that
f does not satisfy (II). Take a (g, (mi)) ∈ G ×K2

0 satisfying f(g,
∑
mi) −∑

f(g,mi) 6= 0. Set µ′ := (f(g,
∑
mi) −

∑
f(g,mi))

−1µ(f)µII
g,m,m′ . Then

we have µ′(f) = µ(f) by the construction, and hence |µ(f) − µ′(f)| =
0 < ε. Finally, suppose that f does not satisfy (III). Take a (g, h,m) ∈
G × P ×K0 satisfying f(hg,m) − f(g, δ−1

G,hm) 6= 0. Set µ′ := (f(hg,m) −
f(g, δ−1

G,hm))−1µ(f)µIII
g,h,m. Then we have µ′(f) = µ(f), and hence |µ(f) −

µ′(f)| = 0 < ε. It ensures µ ∈ µI + µII + µIII. We obtain ker(ϕG,P ) =
µI + µII + µIII.

We set Ind
Ok[[G]]
Ok[[P ]](K0) := Cbd(G×K0, k)Dd/(µI + µII + µIII). By Propo-

sition 5.1, we obtain the following:

Theorem 5.2. The continuous surjective Ok-linear homomorphism ϕG,P
induces a homeomorphic Ok-linear isomorphism

Ind
Ok[[G]]
Ok[[P ]](K0)→ IndGP (KDc

0 )Dd .

We equip Ind
Ok[[G]]
Ok[[P ]](K0) with a CHFLT Ok[[G]]-module structure by

pulling back that of IndGP (KDc
0 )Dd by the isomorphism in Theorem 5.2. The

correspondence K0  Ind
Ok[[G]]
Ok[[P ]](K0) gives an Ok-linear functor

Ind
Ok[[G]]
Ok[[P ]] : Modch

f` (Ok[[P ]])→ Modch
f` (Ok[[G]]).

By Theorem 4.16 and Theorem 5.2, we obtain the following:

Corollary 5.3. There is a natural equivalence IndGP ⇒ Dc ◦ Ind
Ok[[G]]
Ok[[P ]] ◦Dd.

5.2 Continuous parabolic inductions As an application of Corol-
lary 5.3, we compute the continuous parabolic induction. For this purpose,
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we give a more practical description of Ind
Ok[[G]]
Ok[[P ]]. To begin with, we prepare

a compact complete representative C ⊂ G of P\G. We denote by Σ the set
of open subsets U ⊂ P\G admitting a continuous section U ↪→ G of the
canonical projection G � P\G. Take an open profinite subgroup G0 ⊂ G.
Since G is a topological group, the canonical projection G � P\G is an
open map. Therefore the image G0g ⊂ P\G of G0g is an open subset, and
the map G0 ↪→ G, h 7→ hg induces a homeomorphism (P ∩G0)\G0 → G0g
for any g ∈ G. It implies that Σ forms an open covering of P\G by [9]
Theorem 2. Take a Σ0 ∈P<ω(Σ) satisfying P\G =

⊔
U∈Σ0

U . Gluing con-
tinuous sections on each U ∈ Σ0, we obtain a continuous section P\G ↪→ G,
whose image forms a compact subset C ⊂ G such that the multiplication
P × C → G is a continuous bijective map. Conversely, let C ⊂ G be an
arbitrary compact subset such that the multiplication P × C → G is a
continuous bijective map. As is mentioned in Example 3.22 (iii), the mul-
tiplication P × C → G is a homeomorphism, and induces a homeomorphic
Ok-linear isomorphism Ok[[P × C]] → Ok[[G]]. We denote by π0 : G � P
(respectively, π1 : G � C) the composite of the inverse G → P × C of
the multiplication and the canonical projection P × C � P (respectively,
P × C � P ). As a result, C is obtained as the image of the continuous
section P \G ↪→ G induced by π1.

Let F be a local field, G an algebraic group over Spec(F ), and P ⊂ G a
parabolic subgroup. Then G(F ) forms a locally profinite group with respect
to the topology induced by the valuation of F , and P(F ) is naturally iden-
tified with a closed subgroup of G(F ). Since P\G forms a proper algebraic
variety over Spec(F ), P(F )\G(F ) forms a totally disconnected compact
Hausdorff topological space. Henceforth, we consider the case G = G(F )
and P = P(F ).

Let (V0, ρ0) ∈ ob(RepP (Banur
≤ (k))). We consider the composite

rC,V0 : IndGP (V0) → C(C, V0) of the inclusion IndGP (V0) ↪→ Cbd(G,V0) and
the restriction map Cbd(C, V0) → C(C, V0). Then rC,V0 is injective by the
conditions (III) in §5.1 and PC = G. The quotient norm on the source of
rC,V0 coincides with the norm restricted to the image of rC,V0 because P acts
isometrically on V0. Therefore rC,V0 is isometric. For any f ∈ C(C, V0), the
map f̃ : G→ V0, g 7→ ρ0(π0(g), (f ◦ π1(g))) lies in IndGP (K0). We obtain an
isometric section C(C, V0) → IndGP (V0), f 7→ f̃ , and hence rC,V0 is an iso-
morphism in Banur

≤ (k). Pulling back IndGP (ρ0) by rC,V0 and the isomorphism
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C(C, k)⊗̂kV0 → C(C, V0) in Banur
≤ (k) introduced in Proposition 3.13, we

equip C(C, k)⊗̂kV0 with a continuous action C⊗̂kρ0 of G. By Theorem 5.2,

we obtain an isomorphism Ind
Ok[[G]]
Ok[[P ]]((V0, ρ0)Dd)→ (C(C, k)⊗̂kV0, C⊗̂kρ0)Dd

in Modch
f` (Ok[[G]]). By Proposition 2.15 and [7] Theorem 2.2, we have a nat-

ural isomorphism Ok[[C]]⊗̂OkV Dc
0 → (C(C, k)⊗̂kV0)Dd in C ch

f` . Pulling back
the scalar multiplication of Ok[[G]] on (C(C, k)⊗̂kV0, C⊗̂kρ0)Dd , we regard
Ok[[C]]⊗̂OkV Dc

0 as a CHFLT Ok[[G]]-module. By Theorem 4.16, we obtain
the following:

Theorem 5.4. The continuous parabolic induction IndGP (V0, ρ0) admits a
natural isomorphism to (Ok[[C]]⊗̂OkV Dd

0 )Dc in RepG(Banur
≤ (k)).

The induced action of Ok[[G]] on (Ok[[C]]⊗̂OkV Dd
0 )Dc is a little com-

plicated, but this presentation enable us to describe the deformation of
IndGP (V0, ρ) associated to a deformation of ρ0 as a deformation of actions of
G on a single Banach k-vector space (Ok[[C]]⊗̂OkV Dd

0 )Dc .

Example 5.5. Let n ∈ ω. We denote by B+
n (k) ⊂ GLn(k) the Borel sub-

group consisting of upper triangular invertible matrices, by C−n ⊂ GLn(k)
the compact subset consisting of lower triangular invertible matrix whose
entries are contained in Ok and whose diagonals are 1, and by Sn ⊂ GLn(k)
the finite subgroup consisting of permutations of the canonical basis. By
the LUP -decomposition, GLn(k) is expressed as the product B+

n (k)C−nSn,
and the multiplication B+

n (k) × C−nSn → GLn(k) is bijective. Therefore
for a (V0, ρ) ∈ ob(RepB+

n (k)(Banur
≤ (k))), we have a natural isomorphism

Ind
GLn(k)

rB+
n

(V0, ρ0)→ (Ok[[C
−
nSn]]⊗̂OkV Dc

0 )Dc in RepGLn(k)(Banur
≤ (k)) by the

argument above, and also a natural isomorphism (Ok[[C
−
nSn]]⊗̂OkV Dc

0 )Dc →
(((Ok[[C

−
n ]]⊗̂OkK0))Dc)Sn in Banur

≤ (k).
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