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Constructing the Banaschewski
compactification through the functionally

countable subalgebra of C(X)

Mehdi Parsinia

Abstract. Let X be a zero-dimensional space and Cc(X) denote the func-
tionally countable subalgebra of C(X). It is well known that β0X (the Ba-
naschewski compactfication ofX) is a quotient space of βX. In this article, we
investigate a construction of β0X via βX by using Cc(X) which determines
the quotient space of βX homeomorphic to β0X. Moreover, the construction
of υ0X via υCcX (the subspace {p ∈ βX : ∀f ∈ Cc(X), f∗(p) < ∞} of βX)
is also investigated.

1 Introduction

Throughout this article all topological spaces are assumed to be
zero-dimensional (that is, are Hausdorff and contain a base of clopen sets).
For a given topological space X, C(X) denotes the algebra of all real-valued
continuous functions on X, and C∗(X) denotes the subalgebra of C(X) con-
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sisting of all bounded elements. Also, as we recalled earlier, Cc(X) denotes
the subalgebra of C(X) consisting of functions with countable image. It
should be emphasized that this subalgebra is first introduced in [9] and
later studied in various papers such as [4], [6], [10] and [12]. The reader is
referred to [11] and [9] for undefined terms and notations concerning C(X)
and Cc(X), respectively. In [9, Theorem 4.6], it is proved that when we
are dealing with Cc(X), where X is any space (not necessarily even com-
pletely regular) we may take X to be zero-dimensional, by showing that,
there always exists a zero-dimensional space Y which is a continuous image
of X and Cc(X) ∼= Cc(Y ). This also means that the topological property
of zero-dimensionality is an algebraic property (in the sense that if for any
space X, C(X) ∼= Cc(Y ), where Y is any space, then X is zero-dimensional,
see also [10]). It is well-known that every zero-dimensional space X has a
zero-dimensional compactification, which is called the Banaschewski com-
pactification of X and is denoted by β0X, such that every continuous map
f : X −→ Y , where Y is a zero-dimensional compact space, has an extension
to a continuous map F : β0X −→ Y . It is shown in [21] that βX = β0X
if and only if X is a strong zero-dimensional space. Note that a Tychonoff
space X is called strongly zero-dimensional if every two disjoint zero-sets
in X are separated by disjoint clopen sets. It is evident that every strongly
zero-dimensional space is zero-dimensional. However, the converse of this
fact is not true, in general, see [24, 3.39] or [14, Example 2]. A topologi-
cal space X is called N-compact if it can be embedded as a closed subset
in the product space Nκ, for some cardinal number κ. N-compact spaces
were first introduced by S. Mrowka in [13]. It is well-known that, for ev-
ery zero-dimensional space X, there exists an N-compact space υ0X such
that X is dense in it and every continuous function f : X −→ Y , with Y
an N-compact space, has a unique extension F : υ0X −→ Y . It is shown
in [21, 4.7] that the structure of β0X is related to the clopen ultrafilters
defined on X. Also, in [21, Exercise 5E], an outline for recovering υ0X as
a subspace of all clopen ultrafilters on X which have countable intersection
property is given. Therefore we have X ⊆ υ0X ⊆ β0X. Note that, by a
clopen ultrafilter, we mean an ultrafilter of the Boolean algebra of clopen
subsets of X. The authors in [4] have used β0X for studying Cc(X). In
particular in [4, Remark 3.6], they have shown that the structure space of
Cc(X) (that is, the space of maximal ideals of Cc(X) equipped with the
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hull-kernel topology) is homeomorphic to β0X. In Theorem 4.2 of the same
paper, maximal ideals of Cc(X) are also characterized via β0X.

The aim of the present paper is to investigate a construction of β0X and
υ0X via βX and υCcX (= {p ∈ βX : ∀f ∈ Cc(X) : f∗(p) < ∞}) by using
Cc(X) and establishing an outline for recovering these spaces as the spaces
of all the zc-ultrafilters on X and all the zc-ultrafilters with the countable
intersection property, respectively. This paper consists of three sections. In
Section 2, using Cc(X), we define a topology on βX and the induced space
is denoted by βcX. Also, the equivalence relation ∼c is defined on βcX.
It is shown that β0X is homeomorphic to the quotient space βcX

∼c and the
latter space is homeomorphic to the structure space of Cc(X). It follows
that β0X is homeomorphic to the quotient space βX

∼c of βX. Using these,
a different approach to some basic results of [4] follows. In Section 3, the
subspace υCcX is introduced of βX is considered. We use υcX to denote
υCcX as a subspace of βcX. It is proved that υcX

∼c is homeomorphic to the
structure space of real maximal ideals of Cc(X). Moreover, zc-ultrafilters
on X are characterized.

2 β0X as a quotient of βX by using Cc(X)

We recall that an ideal I of a subring R of C(X) is called a z-ideal if
whenever f ∈ I, then Mf (R) ⊆ I, in which Mf (R) denotes the intersection
of all the maximal ideals of R containing f . It is well-known that an ideal
I in C(X) is a z-ideal if and only if g ∈ I whenever f ∈ I, g ∈ C(X)
and Z(f) ⊆ Z(g). Moreover, an ideal I of a subring R of C(X) is called
a zR-ideal if Z(f) ⊆ Z(g), f ∈ I and g ∈ R imply that g ∈ I. Evidently,
zC-ideals of C(X) coincide with z-ideals. However, the same fact does
not hold for subrings of C(X), especially, for subrings containing C∗(X),
see [5, Theorem 2.2]. Following [2], we call a subring R of C(X) an invertible
subring, if f is a unit of R whenever f ∈ R and Z(f) = ∅. It has been
shown in [2, Proposition 3.7] that in an invertible subalgebra R of C(X),
the two notions of z-ideals and zR-ideals coincide. From [2, Proposition 3.7]
and [3, Proposition 4.2] it follows that every maximal ideal of an invertible
subring R is of the form Mp ∩ R for some p ∈ βX. Also, by [9, Remarks
2.2], Cc(X) is an invertible subalgebra of C(X). Thus, z-ideals of Cc(X)
coincide with zCc-ideals, and every maximal ideal in Cc(X) is of the form
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Mp
c = Mp ∩ Cc(X) for some p ∈ βX. Moreover, an ideal J in Cc(X) is a

z-ideal if and only if it is a contraction of a z-ideal of C(X) [4, Proposition
4.3. (a)].

Let Zc(X) denote the collection of all zero-sets of elements of Cc(X). It
is easy to observe that the collection clβXZc(X) = {clβXZ : Z ∈ Zc(X)}
constitutes a base for the closed sets of a topology on βX which we denote
by τc. We denote by βcX the topological space (βX, τc) and by τ the usual
topology on βX. Evidently, τc ⊆ τ and the containment may be proper,
see Example 2.4 in below. As τc ⊆ τ , βcX is compact. Moreover, as X is
a zero-dimensional space, X is dense in βcX, and βcX = βX if and only
if X is strongly zero-dimensional. Thus, whenever X is not strongly zero-
dimensional, βcX is not Hausdorff. Now, define the relation ∼c on βcX as
follows: for p, q ∈ βcX, p ∼c q if and only if Mp

c = M q
c . It easily follows that

∼c is an equivalence relation on βcX which does not identify points of X
due to zero-dimensionality of X. We use [p] to denote the equivalence class
of p ∈ βcX and [clβXZ(f)] to denote the set {[p] : p ∈ clβXZ(f)} for each
f ∈ Cc(X). It is easy to prove that each equivalence class [p] is a connected
subset of βX and the equivalence relation ∼c separates βX into connected
components. The next lemma gives some connections between βX, βcX,
and βcX

∼c .

Lemma 2.1. The following statements hold for each f, g ∈ Cc(X).
(i) clβcXZ(f) = clβXZ(f).
(ii) For each p ∈ βcX, p ∈ clβXZ(f) if and only if [p] ⊆ clβXZ(f), if

and only if [p] ∈ [clβXZ(f)].
(iii) clβcXZ(f)∩clβcXZ(g) = ∅ if and only if [clβXZ(f)]∩[clβXZ(g)] = ∅.
(iv) [clβXZ(f) ∩ clβXZ(g)] = [clβXZ(f)] ∩ [clβXZ(g)].
(v) U is a clopen set in X if and only if clβcXU is clopen in βcX.

Proof. (i) As clβXZ(f) is a closed set in βcX, we have

clβcXZ(f) ⊆ clβcXclβXZ(f) = clβXZ(f).

The reverse inclusion is also clear, since τc ⊆ τ .
(ii) Evident.
(iii) This is clear by (2).
(iv) Let [p] 6∈ [clβXZ(f) ∩ clβXZ(g)]. Thus, there exists q ∈ [p] such

that q 6∈ clβXZ(f)∩ clβXZ(g). Let for example q 6∈ clβXZ(f). Hence, there
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exists h ∈ Cc(X) such that q ∈ clβXZ(h) and clβXZ(f) ∩ clβXZ(h) = ∅. It
follows that [p] ∈ [clβXZ(h)] and [clβXZ(f)] ∩ [clβXZ(h)] = ∅. This clearly
implies that [p] 6∈ [clβXZ(f)]∩ [clβXZ(g)]; that is, [clβXZ(f)∩ clβXZ(g)] ⊆
[clβXZ(f)]∩ [clβXZ(g)]. The reverse inclusion is evident and thus the equal-
ity follows.

(v) Let U be a clopen set in X. Clearly, U = Z(g), where g is the
characteristic function of U . Thus, there exists h ∈ Cc(X) such that Z(g)∩
Z(h) = ∅ and Z(g)∪Z(h) = X. It follows that clβcXZ(g)∪clβcXZ(h) = βcX.
Also, if p ∈ clβcXZ(g), then p ∈ βcX \ clβcXZ(h) ⊆ clβcXZ(g), which means
p ∈ intβcXclβcXZ(g). Thus, clβcXZ(g) is a clopen set. The converse is
evident, as X is zero-dimensional.

By the next example, we investigate the construction of a topological
space X for which βcX 6= βX from which it follows that τc may be properly
contained in τ .

Example 2.2. Let M be the space introduced by Dowker example in [24,
3.39]. We claim that βcM is not a Hausdorff space, which means that τc is
properly contained in τ . As stated in [24, 3.39], {ω1}× I ⊆ βM in which ω1

denotes the first uncountable ordinal and I denotes the unit interval [0, 1] in
R. We show that the two points (ω1, 0) and (ω1, 1) could not be separated by
elements of τc. Assume, on the contrary, that there exists f ∈ Cc(M) such
that (ω1, 0) ∈ clβMZ(f) and (ω1, 1) 6∈ clβMZ(f). As (ω1, 1) 6∈ clβMZ(f),
there exists some g ∈ Cc(M) such that (ω1, 1) ∈ clβMZ(g) and clβMZ(f) ∩
clβMZ(g) = ∅. It follows that Z(f) ∩ Z(g) = ∅ and hence, there exists
h ∈ Cc(M) such that Z(f) = Z(h) and Z(g) = h−1(1). Let 0 < r < 1 be
such that r 6∈ h(M). It follows that U = h−1((−∞, r)) is a clopen set in
M such that Z(f) ⊆ U and Z(g) ⊆ M \ U . By part (5) of Lemma 2.2,
clβXU is a clopen set in βcM . Moreover, (ω1, 0) ∈ clβMZ(f) ⊆ clβMU and
(ω1, 1) 6∈ clβXU and this clearly contradicts the connectedness of {ω1} × I.

The next statement, which is the main result of this section, investigates
the construction of β0X via βX and the relation ∼c which leads to the
existence of a homeomorphism between β0X and the quotient space βX

∼c
of βX. Recall that, whenever X is a dense subspace of a space Y , then
X is said to be 2-embedded in Y if each continuous two-valued function
f : X −→ {0, 1} has a continuous extension F : Y −→ {0, 1}.
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Theorem 2.3. For any zero-dimensional space X, β0X is homeomorphic
to the quotient space βX

∼c of βX.

Proof. We first show that β0X is homeomorphic to βcX
∼c and then show

that the latter space is homeomorphic to βX
∼c . It is easy to prove that

βcX
∼c is a compact zero-dimensional space. Thus, for showing that βcX

∼c is
homeomorphic to β0X, by [21, 4.7 (e)], it suffices to show that X is 2-
embedded in βcX

∼c . Let f : X −→ {0, 1} be a continuous function. As
{1, 2} is a compact space, f has a continuous extension F : βX −→ {0, 1}.
It follows that Z(F ) ∩ X = Z(f) and, as Z(F ) = F−1(0) is a clopen set
in βX, we have clβXZ(f) = Z(F ). Let g : βcX

∼c −→ {0, 1} be defined by
g([p]) = F (p). We show that g is a continuous extension of f . It is clear
that g|X = f , since, [p] = {p} for each p ∈ X. We claim that F (p) = F (q)
for each p, q ∈ βcX with p ∼c q. Let p, q ∈ βcX and p ∼c q. As we
could consider f as an element of Cc(X), thus p, q ∈ clβXZ(f) = Z(f)
or p, q 6∈ clβXZ(f) = Z(F ), which in any case implies that F (p) = F (q).
This means that g is well-defined. Moreover, g−1(0) = {[p] : F (p) = 0} =
[Z(F )] = [clβXZ(f)], which is clearly a clopen set in βcX

∼c , which implies
the continuity of g. Now, let i : βX −→ βcX be the identity mapping. As
τc ⊆ τ , the mapping i is continuous. It follows that the induced mapping
î : βX

∼c −→
βcX
∼c is continuous. Hence, î is a continuous bijection from the

compact space βX
∼c to the Hausdorff space βcX

∼c , which implies that î is a
homeomorphism.

It evidently follows from Lemma 3.12 that maximal ideals of Cc(X) are
precisely the ideals {f ∈ Cc(X) : [p] ⊆ clβXZ(f)}, for p ∈ βX, which

we denote by M
[p]
c for each p ∈ βX. Thus, the mapping ϕ : βcX

∼c −→
Max(Cc(X)) defined by ϕ([p]) = M

[p]
c is a homeomorphism and thus the

structure space of Cc(X) is homeomorphic to β0X.
Let ξ be the homeomorphism from βcX

∼c onto β0X whose existence just
proved in the proof of Theorem 3.4. The next proposition shows that ξ
preserves closures.

Proposition 2.4. Let X be a zero-dimensional space. Then we would have
ξ([clβXZ(f)]) = clβ0XZ(f) for each f ∈ Cc(X).

Proof. Let f ∈ Cc(X) be given. It is clear that Z(f) ⊆ ξ([clβXZ(f)]) and
thus clβ0XZ(f) ⊆ ξ([clβXZ(f)]), since ξ([clβXZ(f)]) is a closed set in β0X.
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Now, let ξ([p]) 6∈ clβ0XZ(f). Thus, there exists g ∈ Cc(X) such that ξ([p]) ∈
clβ0XZ(g) and clβ0XZ(f) ∩ clβ0XZ(g) = ∅. It follows that Z(f) ∩ Z(g) = ∅
and hence clβXZ(f)∩clβXZ(g) = ∅. As f, g ∈ Cc(X), we have [clβXZ(f)]∩
[clβXZ(g)] = ∅. But [p] ∈ [clβXZ(g)], since, as clβ0XZ(g) ⊆ ξ([clβXZ(g)]),
we have ξ−1(clβ0XZ(g)) ⊆ [clβXZ(g)]. Therefore, [p] 6∈ [clβXZ(f)]), which
implies that ξ([p]) 6∈ ξ([clβXZ(f)]); that is, ξ([clβXZ(f)]) ⊆ clβ0XZ(f) and
thus the equality follows.

Corollary 2.5. [4, Theorem 4.2] Maximal ideals of Cc(X) are precisely
the ideals Mp

c = {f ∈ Cc(X) : p ∈ clβ0XZ(f)} for p ∈ β0X.

Corollary 2.6. [16, Lemma 2.1] For each f, g ∈ Cc(X), we have clβ0X(Z(f)∩
Z(g)) = clβ0XZ(f) ∩ clβ0XZ(g).

The ideals Opc = {f ∈ Cc(X) : p ∈ intβ0Xclβ0XZ(f)} for p ∈ β0X
are introduced and studied in [4] as a model for the ideals Op = {f ∈
C(X) : p ∈ intβXclβXZ(f)}. It could be easily proved that, for each
f ∈ Cc(X) and each p ∈ βX, we have p ∈ intβcXclβcXZ(f) if and only

if ξ([p]) ∈ intβ0Xclβ0XZ(f). It follows that O
ξ([p])
c = {f ∈ Cc(X) : p ∈

intβcXclβcXZ(f)} for each p ∈ βX. From this fact, a different approach
to [4, Lemma 4.11 and Remark 4.12] follows.

3 Constructing υ0X via Cc(X)

We recall that a maximal ideal M in a subring R of C(X) is said to be a
real-maximal ideal, if R

M is isomorphic to R. Whenever the residue class
field R

M properly contains a copy of R, then M is called a hyper-real. It is
well-known that a maximal ideal Mp in C(X) is real if and only if p ∈ υX.
For a subset A(X) of C(X), we set υAX = {p ∈ βX : ∀f ∈ A, f∗(p) <
∞}. It follows from [1, Theorem 1.6] that whenever A(X) is a subring of
C(X) containing C∗(X), then the structure space of real maximal ideals
of A(X) is homeomorphic to υAX. However, the same statement does not
hold for arbitrary subrings of C(X), in general. For example, consider
the subring Mp + R, where p ∈ βR \ R, of C(R). By [22, Remark 1.8],
the structure space of real maximal ideals of Mp + R is homeomorphic to
R∪{α}, where neighborhoods of α are of the form U ∪{α} in which U is an
open subset of R. Also, by [18, Proposition 4.7], υMp+RX = R∪{p}, which
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clearly is not homeomorphic to R ∪ {α}. It is clear that υC∗(X)X = βX
and υC(X)X = υX. Also, υX ⊆ υAX ⊆ βX for each A(X) ⊆ C(X)
and thus β(υAX) = βX. Moreover, by [11, 8B.3], a subset K of βX is a
realcompactification of X (that is, a realcompact space containing X as a
dense subspace) if and only if K = υAX for some subset A(X) of C(X).
The next statement investigates the relation between real maximal ideals of
Cc(X) and the space υCcX.

Proposition 3.1. For a zero-dimensional space X, the following statements
are equivalent.

(i) p ∈ υCcX.
(ii) Mp

c is a real maximal ideal in Cc(X).
(iii) Upc is closed under countable intersection.
(iv) Upc has the countable intersection property.

Proof. We only prove the equivalence of (i) and (ii). The equivalence of
other parts follows from [12, Proposition 2.15].

(i)⇒ (ii) If Mp
c is a hyper-real maximal ideal in Cc(X), then there exists

f ∈ Cc(X) such that |Mp
c (f)| is infinitely large. Hence, |Mp

c (|f | − n)| ≥ 0
for each n ∈ N. Thus, for each n ∈ N, there exists Zn ∈ Z[Mp

c ] such that
|f | − n is non-negative on Zn. Evidently, p ∈ clβXZn which implies that
there exists a net (xλ)λ∈Λ in Zn such that xλ → p. Also, f∗(xλ) → f∗(p).
Clearly, f∗(xλ) = f(xλ) and thus |f∗(xλ)| ≥ n for each xλ ∈ Zn. It follows
that |f∗(p)| ≥ n for each n ∈ N and therefore f∗(p) =∞, which contradicts
the hypothesis.

(ii) ⇒ (i) Let f∗(p) = ∞, for some f ∈ Cc(X). We show that, for
each n ∈ N, p ∈ clβXZn, where Zn = {x ∈ X : |f(x)| ≥ n}. Let U be
an open set in βX containing p. Hence, there exists a net (xλ)λ∈Λ in X
such that xλ → p. Thus, there exists λ0 ∈ Λ such that xλ ∈ U for each
λ ≥ λ0. It follows that (f∗(xλ))λ∈Λ converges to f∗(p). Thus, for each
n ∈ N, there exists λn ∈ Λ such that f∗(xλ) ∈ (−∞,−n) ∪ (n,∞) ∪ {∞}
for each λ ≥ λn. As f∗(xλ) = f(xλ), for each λ ∈ Λ, |f(xλ)| > n, for
λ ≥ λn. Choose some λ2 ∈ Λ such that λ2 ≥ λ1, λ2. Thus, for each λ ≥ λ2

we have xλ ∈ U ∩ Zn 6= ∅. Hence, p ∈ clβXZn. Now, for each n ∈ N, define
hn : X −→ R by hn(x) = (|f(x)| − n) ∧ 0. Evidently, hn ∈ Cc(X) and
Z(hn) = Zn. As |f | − n is non-negative on Zn, we have Mp

c (|f | − n) ≥ 0.
This means that Mp

c (f) ≥ n and thus |Mp
c (f)| is infinitely large. This

implies that Mp
c is hyper-real.
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Note that a topological space X is said to be c-realcompact (in the
sense of [12]), if every real maximal ideal in Cc(X) is fixed. By Proposition
3.1, X is c-realcompact if and only if υCcX = X. Evidently, every c-
realcompact space is realcompact. Moreover, υCcX ⊆ υCc(υCcX) ⊆ βX,
since, if p ∈ υCcX, then for each f ∈ Cc(υCcX) we have f |X ∈ Cc(X)
and thus f∗(p) < ∞, which means p ∈ υCc(υCcX). Also, υCcX is the
largest subspace of βX for which elements of Cc(X) could be extended
continuously; that is, υCc(υCcX) ⊆ υCcX. Therefore, υCcX = υCc(υCcX),
which means that υCcX is a c-realcompact space. However, υCcX may not
be the smallest c-realcompact space in which X is embedded. We next
investigate the construction of the smallest c-realcompact space in which
X is dense. We use υcX to denote υCcX as a subspace of βcX. It clearly
follows that {clυcXZ(f) : f ∈ Cc(X)} constitutes a base for the closed sets
of υcX. We denote by Maxr(Cc(X)), the space of real maximal ideals of
Cc(X) endowed with the hull-kernel topology. We need the following lemma.

Lemma 3.2. Let X be a zero-dimensional space. Then for each f ∈ Cc(X),
we have clυcXZ(f) = Z(fυCc ).

Proof. Let p 6∈ clυcXZ(f). Thus, there exists some g ∈ Cc(X) such that
p ∈ clυcXZ(g) and clυcXZ(f) ∩ clυcXZ(f) = ∅ and hence Z(f) ∩ Z(g) = ∅.
Therefore, there exists h ∈ Cc(X) such that (f2 + g2)h = 1. It follows
that ((f2 + g2)h)υCc (p) = (f2h)υCc (p) = 1. Hence, p 6∈ Z(fυCc ) and thus
Z(fυCc ) ⊆ clυcXZ(f). The reverse inclusion is evident.

From Proposition 3.1 and Lemma 3.2, it follows that the mapping ψ :
υcX
∼c −→Maxr(Cc(X)) defined by ψ([p]) = M

[p]
c is a homeomorphism.

Remark 3.3. We denote by Up the unique z-ultrafilter {Z ∈ Z(X) : p ∈
clβXZ} on X converging to p, for each p ∈ βX, and by U [p]

c the set {Z ∈
Zc(X) : [p] ⊆ clβXZ} for each [p] ∈ βcX

∼c . Also, the collection of all zc-
ultrafilters on X is denoted by U(Cc(X)). It is straightforward to prove
that the mapping ϕ : βcX

∼c −→ U(Cc(X)), defined by ϕ([p]) = U [p], is a
homeomorphism. It follows that β0X is homeomorphic to U(Cc(X)). This

means that β0X could be recovered as the space of zc-ultrafilters U [p]
c on X.

Let B(X) denotes the Boolean algebra of all clopen sets of X and CU(X)
denotes the space of all clopen ultrafilters on X equipped with the Stone
topology. Moreover, let CUc(X) and CCU(X) denote the subspaces of Uc(X)
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and CU(X) consisting of all the zc-ultrafilters and all the clopen ultrafilters
with the countable intersection property, respectively. One can easily prove

that the mapping η : Uc(X) −→ CU(X) defined by η(U [p]
c ) = U [p]

c ∩B(X) is
a homeomorphism and its restriction to CUc(X) is a homeomorphism onto
CCU(X).

Theorem 3.4. Let X be a zero-dimensional space X. Then υ0X is home-
omorphic to the quotient space

υCcX
∼c of υCcX.

Proof. For p ∈ β0X, let Ap be the unique clopen ultrafilter converging to

p. By Remark 3.4, there exists [q]p ∈ βcX
∼c such that Ap = U [q]p

c ∩ B(X).

Moreover, for each t ∈ υ0X there exists [s]t ∈ υcX
∼c such that At = U [s]t

c ∩
B(X). It thus follows that the mapping λ : β0X −→ βcX

∼c defined by λ(p) =
[q]p is a homeomorphism and its restriction to υ0X is a homeomorphism

onto υcX
∼c . Also, from Remark 3.4, it follows that î|υCcX

∼c
:
υCcX
∼c −→ υcX

∼c
is a homeomorphism. Thus, the composite of the two mappings λ|υ0X and

î|υCcX
∼c

generates a homeomorphism from υ0X onto
υCcX
∼c .

The next statement determines conditions equivalent to coincidence of
υCcX and υcX.

Proposition 3.5. For a zero-dimensional space X, the following statements
are equivalent:

(i) υCcX = υcX.
(ii) υCcX is N-compact.
(iii) υCcX = υ0X.

Proof. (i) ⇒ (ii) By our hypothesis and the fact that υCcX is a Hausdorff
space, we have υCcX = υcX

∼c which, by Remark 3.4, implies υCcX = υ0X.
(ii) ⇒ (iii) By the hypothesis and the fact X is dense in υCcX, the

identity mapping of X to υCcX has a continuous extension to υ0X and
hence, by Remark 3.6, has a continuous extension to υcX

∼c . It follows that
υCcX = υ0X.

(iii) ⇒ (i) An easy consequence of Remark 3.6.

It follows, from Remark 3.6 and [7, Theorem A], that X is c-realcompact
if and only if υCcX = X if and only if υcX

∼c = X, if and only if υ0X = X if
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and only if X is N-compact. It is easy to see that Theorem 5.2, Proposition
5.8, Theorem 5.14, and Proposition 5.20 of [12] are consequences of the
above mentioned facts and the corollary of [15, Theorem 2].

We recall that a subalgebra A(X) of C(X) is said to be closed under
local bounded inversion, briefly, an LBI-subalgebra, if for each element f in
A(X), which is bounded away from zero on some cozero-set E, there exists
g ∈ A(X) such that fg|E = 1. These subalgebras were first introduced
in [23] and further studied in [17]. By the next statement, we show that
C∗c (X) is an LBI-subalgebra of C(X).

Lemma 3.6. Let X be a zero-dimensional space X, then C∗c (X) is an LBI-
subalgebra of C(X).

Proof. Let f ∈ C∗c (X) and f(x) ≥ c > 0 for each x ∈ E = Coz(h), where
c ∈ R is positive, and h ∈ C(X). It follows that E ⊆ f−1[c,+∞). As
f ∈ Cc(X), there exists some 0 < c0 < c such that c0 6∈ f(X). Thus,
f−1(−∞, c0] is a clopen subset of X and Z(f) ⊆ f−1(−∞, c0). Let A =
f−1(−∞, c0) and B = X \A. It follows that A and B are closed subsets of
X and E ⊆ B. We define g(x) = 0 for each x ∈ A and g(x) = 1

f(x) for each

x ∈ B. It clearly follows that g ∈ C∗c (X) and fg|E = 1.

Following [20], we set SA(f) = {p ∈ βX : (fg)∗(p) = 0, ∀g ∈ A(X)}
for each element f of a subalgebra A(X) of C(X). It is easy to see that
SA(fg) = SA(f)∪SA(g), SA(f2 +g2) = SA(f)∩SA(g) and SA(fn) = SA(f)
for each f, g ∈ A(X) and each n ∈ N. Furthermore, clβXZ(f) ⊆ SA(f) ⊆
Z(f∗) and thus SA(f) ∩ X = Z(f). Also, SC(f) = clβXZ(f) for each
f ∈ C(X) and SC∗(f) = Z(fβ) for each f ∈ C∗(X). From Lemma 3.6
and [20, Proposition 2.7], it easily follows that every maximal ideal of C∗c (X)
is of the form M∗pc = M∗p ∩ C∗c (X) for some p ∈ βX. This implies that
every maximal ideal of C∗c (X) is a contraction of some maximal ideal in
C∗(X) ( [4, Proposition 4.9] and [12, Corollary 2.10, 2.11]).

Remark 3.7. From Lemma 3.6 and [17, Proposition 2.7] it follows that an
ideal I in C∗c (X) is a z-ideal if and only if g ∈ I whenever Z(fβ) ⊆ Z(gβ)
with f ∈ I and g ∈ C∗c (X). Therefore, if I is a z-ideal in C∗c (X), then
J = {f ∈ C∗(X) : ∃g ∈ I, Z(gβ) ⊆ Z(fβ)} is a z-ideal in C∗(X) and
I = J ∩ C∗c (X). Therefore, an ideal I in C∗c (X) is a z-ideal if and only if is
a contraction of some z-ideal of C∗(X).
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It is well-known that every maximal ideal in C∗(X) is real. Thus, every
maximal ideal in C∗c (X) is real ( [12, Theorem 2.6 (1)]).

Theorem 3.8. Let X be a zero-dimensional space. Then the following
statements are equivalent:

(i) M∗pc = Mp
c for each p ∈ βX.

(ii) βcX = υcX.
(iii) βcX

∼c = υcX
∼c .

(iv) β0X = υ0X.
(v) X is a pseudocompact space.

Proof. (i) ⇒ (ii) It clearly follows from the hypothesis that βX = υCcX
and thus βcX = υcX.

(ii) ⇒ (i) Let f ∈ C∗c (X) and f 6∈ Mp
c . Thus, p 6∈ clβcXZ(f) and

hence there exists some g ∈ Cc(X) such that p ∈ clβXZ(g) and clβXZ(f) ∩
clβXZ(g) = ∅. Using our hypothesis, we would have clυcXZ(f)∩clυcXZ(g) =
∅. Therefore, by Lemma 3.2, p 6∈ clυCcXZ(f) = Z(fυCc ) which implies that
p 6∈ Z(fβ) and thus f 6∈M∗pc .

(ii) ⇒ (iii) Evident.
(iii) ⇒ (iv) This is clear by Remark 3.4 and Theorem 3.4.
(iv) ⇒ (ii) Let p ∈ βcX. Then, ξ([p]) ∈ β0X = υ0X which implies that

[p] ∈ ξ−1(υ0X) = υcX
∼c . Therefore, p ∈ υcX; i.e., βcX ⊆ υcX.

(i) ⇒ (iii) If X is not pseudocompact, then, by [19, Lemma 1.9.3], there
exists a continuous onto mapping f : X −→ N. Clearly, we could consider
f as an element of Cc(X). Also, there exists p ∈ βX such that f∗(p) =∞.
Set g = 1

1+|f | . It follows that g ∈ C∗c (X), Z(g) = ∅ and gβ(p) = 0. This

means that g ∈M∗pc \Mp
c , which contradicts the hypothesis.

(iii) ⇒ (i) If f ∈ M∗pc , then, by the hypothesis and Lemma 3.2, p ∈
Z(gβ) = Z(gυc) = clυcXZ(g) = clβXZ(g) and thus f ∈Mp

c ; i.e., M∗p ⊆Mp
c .

The reverse inclusion is obvious.
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