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Product preservation and stable units for
reflections into idempotent subvarieties

Isabel A. Xarez and João J. Xarez∗

Abstract. We give a necessary and sufficient condition for the preserva-
tion of finite products by a reflection of a variety of universal algebras into
an idempotent subvariety. It is also shown that simple and semi-left-exact
reflections into subvarieties of universal algebras are the same. It then fol-
lows that a reflection of a variety of universal algebras into an idempotent
subvariety has stable units if and only if it is simple and the above-mentioned
condition holds.

1 Introduction

Throughout this paper, by a reflection we mean a reflection H ` I : C →
M, with unit η : 1C → HI, of a finitely complete category C into a full
subcategoryM of it, that is, a left-adjoint I of a full embedding H :M→ C
into a category with finite limits. T will always denote a terminal object of
a given category C; for instance, if C is a variety of universal algebras, then
T is any one-element algebra in C.
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Simple reflections, semi-left-exact reflections and reflections having sta-
ble units were originally introduced in [3], as reflections preserving certain
pullbacks. An additional structure on a reflection was described in [10],
involving a pullback-preserving functor U : C → S (in particular, S can be
the category of sets), allowing to simplify those preservation conditions by
reducing them to the preservation of very special pullbacks.

The categorical version of monotone-light factorization for continuous
maps of compact Hausdorff spaces was obtained in [2]. The results on the
reflection of semigroups into semilattices obtained in [6] look similar to the
results on the reflection of compact Hausdorff spaces into Stone spaces.
In [10], it was shown that this is not similarity, but two special cases of the
same ‘theory’.

In the same setting of [10], the present paper provides new results con-
cerning the preservation of finite products, in case S = Set and either C or
M is an ‘idempotent’ category (see Definition 2.8). Then, it is possible to
apply these results to the classification of reflections in the sense of [3].

In particular, we studied - with special care - reflections of varieties of
universal algebras into subvarieties, where, to begin with, semi-left-exact
and simple reflections are the same.

Now, we will give a brief account of the contents of this work. The
reader may also find it helpful to check the two tables at the end of the
paper, summarizing all the presented results.

In Section 3, we state a necessary and sufficient condition (see Proposi-
tion 3.3) for the preservation of the product of two objects by a reflection into
an ‘idempotent’ subcategory, provided there exists a functor U : C → Set
which preserves finite limits and reflects isomorphisms, and such that U(ηC)
is a surjection, for every unit morphism ηC : C → HI(C), C ∈ C. It follows
from Proposition 3.3 that:

• if C is an ‘idempotent’ category (for instance, an idempotent variety
of universal algebras), then finite products are preserved by the left-adjoint
I (see Proposition 3.4);

• if C is a variety of universal algebras andM is one of its ‘idempotent’
subvarieties (see Definition 2.7), then I preserves finite products if and only
if I preserves the product F (x)×F (x), here F (x) stands for the free algebra
on one generator in C (see Proposition 3.8).

In Section 4 (see Proposition 4.1), we will show that a reflection is simple
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if and only if it is semi-left-exact, provided its unit morphisms are effective
descent morphisms (see the footnote in Section 4). In particular, this holds
for a reflection of a variety of universal algebras into a subvariety.

It is a consequence of Propositions 3.8 and 4.1 that a reflection of a
variety of universal algebras C into an ‘idempotent’ subvarietyM, has stable
units in the sense of [3] if and only if it is simple and I preserves the product
F (x)× F (x) (see Proposition 4.4).

2 Preliminaries

Three types of reflections: simple, semi-left-exact,

and having stable units

In this section we review the definition of simple and semi-left-exact reflec-
tions and reflections having stable units (notions introduced in [3]). One
easily checks, from Definitions 2.1, 2.2 and 2.3 below, that if a reflection has
stable units then it is semi-left-exact, which implies that it is simple.

Consider a reflection and let (EI ,MI) be a prefactorization system as
in [2, §3], that is,

EI = (H(morM))↑, MI = (H(morM))↑↓,

where H(morM) stands for the class of all morphisms in C which belong to
the full subcategory M, and the arrows correspond to the diagonal fill-in
Galois connection (see [2, §2.1]).

A morphism e : A → B in C belongs to EI if and only if I(e) is an
isomorphism. Hence, if e ∈ EI and e ◦ f ∈ EI then f ∈ EI . In particular
ηC : C → HI(C) lies in EI , since M is a full subcategory of C.

Notice that every morphism in M lies in MI . Recall that the class MI

is pullback stable (see [2, §2]), and that (EI ,MI) is a factorization system
if, for some morphisms e ∈ EI and m ∈ MI , f = me for every morphism f
in C.

Definition 2.1. A reflection is called simple if w ∈ EI in every diagram of
the form
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B

B ×HI(B) HI(A)

HI(B)

HI(A)

π1 HI(f)

ηB

A

f

ηA
w

(2.1)
where ηA and ηB are unit morphisms, and w is the unique morphism which
makes the diagram commute.

Hence, (EI ,MI) is a factorization system if the reflection is simple, since
π1 in diagram (2.1) is a pullback of a morphism in MI , and so it is in MI .

Definition 2.2. A reflection is semi-left-exact if π2 ∈ EI in every pullback
diagram of the form

C

C ×HI(C) M

HI(C)

M

π1 g

ηC

π2

where ηC is a unit morphism and M ∈M.

A semi-left-exact reflection is also called admissible in categorical Galois
theory (see [1]).

Definition 2.3. A reflection has stable units if the left-adjoint I preserves
all pullback diagrams of the form

C

C ×HI(C) D

HI(C)

D

π1 g

ηC

π2

where ηC is a unit morphism.

The following proposition is a well-known characterization of reflections
having stable units.
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Proposition 2.4. A reflection has stable units if and only if the left-adjoint
I preserves all pullback diagrams

B

A

Z

C

f k

h

g

in C for which Z ∈M.

The ground structure

We now define ‘Ground Data’. The definition of an idempotent variety of
universal algebras will be given in Definition 2.7, and then will be generalized
in Definition 2.8 to an abstract category.

Definition 2.5. A reflection is said to satisfy Ground Data if there is a
functor U : C → Set, from C into the category of sets, such that the following
three conditions hold:

(i) U preserves finite limits;
(ii) U reflects isomorphisms;
(iii) U(ηC) : U(C) → UHI(C) is a surjection, for every unit morphism

ηC , C ∈ C.
Example 2.6. A reflection of a variety of universal algebras C into a sub-
variety M satisfies Ground Data:

• there exists a functor U : C → Set, the functor that assigns to an
algebra C ∈ C its underlying set U(C), which reflects isomorphisms
since these are just bijective homomorphisms in a variety of universal
algebras;

• U : C → Set preserves finite limits, since it is a right adjoint of
F : Set→ C, the functor that assigns to a set S the free algebra F (S)
generated by the elements of S;

• every unit morphism ηC : C → HI(C) is a surjection in Set, since
ηC is the canonical projection of C into the quotient algebra C/ ∼C ;
here ∼C is the congruence generated by the ‘extra identities’ satisfied
in the subvariety M.
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On the contrary, a forgetful functor U : C → Set from a category C of
topological spaces, does not reflect isomorphisms in general. For instance,
in the category C = Top of all topological spaces, consider the map i :
(X, δ) → (X, τ), in which X = {a, b}, δ is the discrete topology, τ is the
topology {∅, X}, and U(i) is the identity function on the set X.

There still are cases for which a forgetful functor from a category of
topological spaces reflects isomorphisms, such as for the category of compact
Hausdorff spaces C = CompHaus. In fact, it is well known that U :
CompHaus→ Set is monadic.

In every case, either varieties of universal algebras or the two above-
mentioned categories of topological spaces, the forgetful functor U preserves
finite limits, since U is always a right adjoint.1

Definition 2.7. We say that a variety of universal algebras C is idempotent
if any of the following three equivalent conditions hold:

(i) every one-element subset {x} of any C ∈ C is a subalgebra;
(ii) the free algebra F (x) on one generator2 in C is a singleton;
(iii) x = θ(x, ..., x), for every n-ary operation θ on any C ∈ C, with

x ∈ C and n ∈ N0.

Definition 2.8. Let C be a category with terminal object, such that there
exists a functor U : C → Set, from C into sets, which preserves terminal
objects. The category C is called idempotent with respect to the functor
U : C → Set, when

UT,A : C(T,A)→ Set(U(T ), U(A)),

the restriction of U to the hom-set C(T,A), is a surjection for every object
A ∈ C, with T a terminal object in C.

The category C will just be called idempotent when the functor U is the
obvious one, as in the case in which C is a variety of universal algebras, or
if it is the larger category in a reflection satisfying Ground Data.

1If C is determined by a class of algebras of the same type closed under products
and subalgebras, then (i) and (ii) in Definition 2.5 hold, and provided C is also closed
under isomorphisms then U is a right adjoint, as it is well known. The following results
concerning varieties could be easily adapted to this more general context (remember
that a variety of universal algebras is just such a category C of algebras closed under
homomorphic images).

2A more precise notation would be F ({x}).
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Example 2.9. A category of topological spaces C with terminal object is
idempotent (with respect to the forgetful functor into sets), since every map
from a singleton into any topological space is a continuous map in such a
category.

Semi-left-exactness and stable units via
connected components

In Definition 2.10 and Lemmas 2.11 and 2.12 below, the reflection satisfies
Ground Data and the subcategory M is idempotent (with respect to the
composite functor UH in Definition 2.5). These two Lemmas were proved
in [10].

Definition 2.10. Consider any morphism µ : T → HI(C) from a terminal
object into HI(C), for some C ∈ C. The connected component associated
to the morphism µ is the pullback Cµ in the following pullback square:

C

Cµ

HI(C)

T

µ

ηC

Lemma 2.11. The reflection is semi-left-exact if and only if HI(Cµ) ∼= T ,
for every connected component Cµ.

Lemma 2.12. The reflection has stable units if and only if HI(Cµ×Dν) ∼=
T , for every product of any pair of connected components Cµ and Dν .

3 Preservation of finite products by reflections into subva-
rieties

In this section, we begin by recalling a known lemma in the category of
sets. This lemma (Lemma 3.1) will be used in the proof of Lemma 3.2,
which states a sufficient condition for the preservation of finite products by
a reflection satisfying Ground Data.

In Proposition 3.3, we state necessary and sufficient conditions for the
preservation of finite products by a reflection into an idempotent subcate-
gory, provided it satisfies Ground Data.
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In Proposition 3.4, it is shown that finite products are preserved if the
reflection satisfies Ground Data and C is idempotent. Note that just asking
the full subcategoryM to be idempotent would not be enough. See Exam-
ple 4.6, where, in the reflection of M -sets into the idempotent category of
sets, there is no preservation of finite products if the non-trivial monoid M
satisfies the cancellation law.

In Lemma 3.7, we state a sufficient condition for the preservation of
finite products by a reflection into a subvariety of universal algebras.

Finally, in Proposition 3.8, we state a necessary and sufficient condition
for the preservation of finite products by a reflection into an idempotent
subvariety of universal algebras.

Lemma 3.1. Consider the following commutative diagram in Set, where
αD, αD×E, and αE are surjections, and the bottom line is a product diagram:

D

B

D × E

A

αD

f

pr1 pr2

αD×E

C

E

αE

g

The following two conditions are equivalent:
(i) for every e ∈ E the map Γe : D → A, d 7→ αD×E(d, e) (in the left-

hand commutative diagram), factorizes through αD, and for every d ∈ D the
map Γd : E → A, e 7→ αD×E(d, e) (in the right-hand commutative diagram),
factorizes through αE:

D

D × E

A

αD×E

Γe

d

(d, e)

E

D × E

A

αD×E

Γd

e

(d, e)

(ii) the maps f and g are jointly monic.

Lemma 3.2. Consider a reflection satisfying Ground Data, with unit η :
1C → HI. The left-adjoint I preserves the product Q × R if the following
conditions hold:
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(i) for each r fixed in U(R), there exists a morphism γr : Q→ HI(Q×
R), such that

U(γr)(d) = U(ηQ×R)(d, r), for all d ∈ U(Q);

(ii) for each q fixed in U(Q), there exists a morphism γq : Q→ HI(Q×
R), such that

U(γq)(e) = U(ηQ×R)(q, e), for all e ∈ U(R).

Proof. Since ηQ : Q → HI(Q) is universal from Q to H, it induces a mor-
phism β : I(Q)→ I(Q×R), such that the following diagram commutes:

Q HI(Q)

HI(Q×R)

ηQ

H(β)γr

(3.1)

Applying the functor U to Diagram (3.1), one concludes that U(γr) fac-
torizes through the surjective map U(ηQ). By analogous arguments, one can
also conclude that U(γq) factorizes through the surjective map U(ηR). Now,
consider the following:

HI(Q) HI(Q)×HI(R) HI(R)
p1 p2

〈HI(π1), HI(π2)〉1HI(Q) 1HI(R)

HI(Q) HI(Q×R) HI(R)
HI(π1) HI(π2)

ηQ×RηQ ηR

Q Q×R R
π1 π2

(3.2)

where the upper and bottom lines are both product diagrams. Applying
the finite limits preserving functor U to Diagram (3.2) and Lemma 3.1,
UHI(π1) and UHI(π2) are jointly monic. So 〈UHI(π1), UHI(π2)〉 is an
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injective map. On the other hand, since U(ηQ) and U(ηR) are surjective
maps, U(ηQ)×U(ηR) = 〈UHI(π1), UHI(π2)〉 ◦U(ηQ×R) is also a surjective
map. Finally, since U reflects isomorphisms, I(Q×R) ∼= I(Q)× I(R).

Proposition 3.3. Consider a reflection into an idempotent subcategoryM,
satisfying Ground Data, with unit η : 1C → HI. The left-adjoint I preserves
the product Q×R if and only if the following conditions hold:

(i) for each r fixed in U(R), there exists a morphism γr : Q→ HI(Q×R),
such that

U(γr)(d) = U(ηQ×R)(d, r), for all d ∈ U(Q);

(ii) for each q fixed in U(Q), there exists a morphism γq : Q→ HI(Q×R),
such that

U(γq)(e) = U(ηQ×R)(q, e), for all e ∈ U(R).

Proof. If the product Q × R is preserved by the reflector I, then w =
〈HI(π1), HI(π2)〉 in Diagram (3.2) is an isomorphism in M. Now consider
for r ∈ U(R) fixed the following morphism in C:

γr : Q Q×R HI(Q)×HI(R) HI(Q×R) ,
〈idQ, !〉 〈ηQ, hr〉 w−1

(3.3)

where hr : T → HI(R) is a morphism in M, such that U(hr) = fr : {r} →
UHI(R); r 7→ U(ηR)(r). It is easy to check that U(γr)(q) = U(ηQ×R(q, r),
for all q ∈ U(Q). There exists analogously a morphism γq : R→ HI(Q×R)
in C, for any fixed q ∈ U(Q), such that U(γq)(r) = U(ηQ×R)(q, r), for all
r ∈ U(R). The converse follows from Lemma 3.2.

Proposition 3.4. Consider a reflection of an idempotent category C, sat-
isfying Ground Data. The left-adjoint I preserves finite products.

Proof. Let Q and R be objects of C. For every r ∈ U(R), consider the
inclusion map fr of {r} into U(R). Since, by hypothesis, there exists
a morphism f : T → R such that U(f) = fr, and since C has finite
products, there is a morphism 1Q × f : Q × T → Q × R, such that
U(1Q × f) ∼= 1U(Q) × fr : U(Q) × {r} → U(Q) × U(R), as in the fol-
lowing product diagram:
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Q

Q

Q× T

Q×R

1Q

π1

πQ πT

1Q × f

R

T

f

π2

1Q !

〈1Q, !〉

Q

(3.4)

Since T is a terminal object, there exists a unique morphism ! : Q→ T such
that U(!) : U(Q) → {r} is the unique map from U(Q) to {r}. Then, there
exists a morphism 〈1Q, !〉 : Q→ Q× T (see Diagram 3.4). Therefore, there
exists a morphism

γr = ηQ×R ◦ (1Q × f) ◦ 〈1Q, !〉 : Q→ Q× T → Q×R→ HI(Q×R),
such that

U(γr) = U(ηQ×R ◦ (1Q × f) ◦ 〈1Q, !〉)
= U(ηQ×R) ◦ (1U(Q) × fr) ◦ 〈1U(Q), U(!)〉
= U(ηQ×R) ◦ 〈1U(Q), fr ◦ U(!)〉.

Hence, U(γr)(a) = U(ηQ×R)(a, r), for all a ∈ U(Q), with r ∈ U(R). One
can construct, for every q ∈ U(Q), by analogous arguments, a morphism

γq = ηQ×R ◦ (g × 1R) ◦ 〈!, 1R〉 : R→ Q× T → Q×R→ HI(Q×R),
such that

U(γq) = U(ηQ×R ◦ (g × 1R) ◦ 〈!, 1R〉)
= U(ηQ×R) ◦ (fq × 1U(R)) ◦ 〈U(!), 1U(R)〉
= U(ηQ×R) ◦ 〈fq ◦ U(!), 1U(R)〉,

where fq : {q} → U(Q) is the inclusion map. Hence, U(γq)(b) = U(ηQ×R)(q, b),
for all b ∈ U(R), with q ∈ U(Q). Finally, by Lemma 3.2, one concludes that
the left-adjoint I preserves the product Q×R.

Corollary 3.5. Consider a reflection of an idempotent variety of universal
algebras into a subvariety. The left-adjoint preserves finite products.

Example 3.6. Any reflection of an idempotent variety of magmas into one
of its subvarieties preserves finite products. The reflection of the idempo-
tent variety of quandles into its subvariety of sets preserves finite products
(although it is not semi-left-exact; see [4] and check Corollary 4.5 below.



12 Isabel A. Xarez and João J. Xarez

In the following, we will see that the sufficient condition for the preserva-
tion of finite products in Lemma 3.2 holds for a reflection into a subvariety
of universal algebras, provided I(F (x)× F (x)) = T .

Lemma 3.7. Consider a reflection of a variety C of universal algebras into
a subvariety, and let F (x) be the free algebra on one generator in C. If
I(F (x)× F (x)) = T then the left-adjoint I preserves finite products.

Proof. Let Q and R be objects in C, and U : C → Set be the forgetful
functor into sets. The maps

q : {x} → U(Q) and r : {x} → U(R),
x 7→ q x 7→ r

extend uniquely and respectively to the homomorphisms hq : F (x) → Q
and hr : F (x) → R, because the inclusion map {x} ⊂ UF (x) is universal
from {x} to U . Hence, for any (q, r) ∈ Q×R, there exists a unique homo-
morphism hq × hr which makes the following product diagram commute:

F (x)

Q

F (x)× F (x)

Q×R

hq

πQ

hq × hr

R

F (x) .

hr

πR

Since η : 1C → HI is a natural transformation, the following is a com-
mutative diagram:

Q×R

F (x)× F (x)

HI(Q×R)

HI(F (x)× F (x))

hq × hr HI(hq × hr)
ηQ×R

ηF (x)×F (x)

and so, as I(F (x)× F (x)) = T , the following condition holds:

(hq(w1), hr(w2)) ∼Q×R (hq(w3), hr(w4)), (3.5)

for all q ∈ Q and r ∈ R, and for all w1, w2, w3 and w4 ∈ F (x), where
∼Q×R is the congruence associated to the surjective homomorphism ηQ×R :
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Q×R→ HI(Q×R). We will prove next that the map

λr : Q→ HI(Q×R), q 7→ [(q, r)]∼Q×R

is a homomorphism, for every r ∈ R. Let θ be an operation on C, of arity
n ∈ N0, and let q1, . . . , qn ∈ Q. Since θQ(q1, . . . , qn) = q = hq(x), for some
q ∈ Q, and r = hr(x), then

λr(θQ(q1, . . . , qn)) = [(hq(x), hr(x))]∼Q×R
= [(hq(x), hr(θF (x)(x, . . . , x)))]∼Q×R by (3.5)

= [(θQ(q1, . . . , qn), θR(r, . . . , r))]∼Q×R
= [θQ×R((q1, r), . . . , (qn, r))]∼Q×R
= θHI(Q×R)([(q1, r)]∼Q×R , . . . , [(qn, r)]∼Q×R)

= θHI(Q×R)(λr(q1), . . . , λr(qn)).

Hence, there is a homomorphism λr : Q→ HI(Q×R), such that U(λr)(q) =
U(ηQ×R)(q, r), with q ∈ Q, for every r ∈ R. By analogous arguments
we would conclude that, for every q ∈ Q, there exists a homomorphism
λq : R → HI(Q× R), such that U(λq)(r) = U(ηQ×R)(q, r), r ∈ R. Finally,
by Lemma 3.2, the left-adjoint I preserves the product Q×R.

Proposition 3.8. If H ` I : C →M is a reflection of a variety of universal
algebras into an idempotent subvariety, then the following conditions are
equivalent:

(i) I preserves finite products;

(ii) I preserves the product F (x)× F (x);

(iii) I(F (x)× F (x)) = T .

Proof. If I preserves finite products, then, in particular, I preserves the
product F (x) × F (x). If I preserves the product F (x) × F (x), that is,
I(F (x) × F (x)) ∼= I(F (x)) × I(F (x)), then I(F (x) × F (x)) = T , since M
is idempotent, T = I(F (x)) is the free algebra on one generator in M. If
I(F (x)× F (x)) = T , then I preserves finite products by Lemma 3.7.

Example 3.9. Consider the reflection of the variety of power associative
magmas into its subvariety of semilattices (or, more generally, into any
variety of bands). Recall that a magma is power-associative if any sub-
magma generated by one of its elements is associative. The free power
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associative magma on one-element set F (x) is isomorphic to the commuta-
tive semigroup (N,+) of positive integer numbers. Therefore, F (x)×F (x) ∼=
N× N. On the other hand, N× N is semilattice indecomposable since it is
archimedean (see [6] or [9]), that is, I(N × N) = T . Hence, the reflector I
preserves finite products by Proposition 3.8.

4 Classifying reflections

In this section, we show that a reflection is semi-left-exact if and only if it
is simple, provided its unit morphisms are effective descent morphisms3 in
C. This holds for every reflection of a variety of universal algebras into one
of its subvarieties. Finally, we characterize the reflections into idempotent
subvarieties of universal algebras having stable units.

Proposition 4.1. Consider a reflection in which every unit morphism is
an effective descent morphism in C. Then, the reflection is simple if and
only if it is semi-left-exact.

Proof. H ` I is semi-left-exact, by Definition 2.2, if and only if π2 ∈ EI , in
every pullback square of the following form:

B

P

HI(B) .

H(X)

ηB

gπ1

π2

Consider the following commutative diagrams:

B

P

HI(B)

H(X)

π1

π2

ηB ηHI(B)

g

HIH(X) ∼= H(X)

HIHI(B) ∼= HI(B)

HI(g) ∼= g(i)

ηH(X)

(4.1)

3A morphism p : E → B in C is an effective descent morphism when the functor
“pullback along p” p∗ : C/B → C/E is monadic.
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B

P

HI(B)

HI(P )

π1

ηP

ηB HI(ηB)

HI(π1)

HIH(X) ∼= H(X)

HIHI(B) ∼= HI(B)

HI(g) ∼= g

HI(π2)

(iii)(ii) (4.2)

First note that g, π1 ∈ MI , because g ∈ M (see [2, §3]) and the class
of morphisms MI is stable for pullbacks. Since the reflection is simple, the
square (i) is a pullback, and so the outside square of Diagram (4.1) is a
pullback. As HI(π2) ◦ ηP = ηH(X) ◦ π2 and HI(ηB) ◦ ηB = ηHI(B) ◦ ηB, the
outside square of Diagram (4.2) is also a pullback. According to Lemma
4.6 in [2], since the outside square of Diagram (4.2) is a pullback, (ii) is
a pullback (because the reflection is simple) and ηB is an effective descent
morphism in C, then (iii) is a pullback, too. On the other hand, HI(ηB) is an
isomorphism, because H ` I : C →M is a reflection into a full subcategory.
Hence, HI(π2) is also an isomorphism. Therefore, π2 ∈ EI .

Last Proposition 4.1 applies to any reflection of a variety of universal
algebras into one of its subvarieties, as stated in the following proposition.

Proposition 4.2. The reflection of a variety of universal algebras into a
subvariety is semi-left-exact if and only if it is simple.

Proof. It is well known that a variety of universal algebras is an exact cat-
egory. In an exact category the effective descent morphisms are just the
regular epimorphisms (see [2, §4.7]). On the other hand, it is easy to check
that, in a variety of universal algebras the regular epimorphisms are just the
surjective homomorphisms. Hence, the unit morphisms of a reflection of a
variety of universal algebras into one of its subvarieties, are always effective
descent morphisms, since they are surjective homomorphisms. Therefore,
by Proposition 4.1, simple and semi-left-exact reflections of varieties of uni-
versal algebras are the same.

The following lemma will be used in Proposition 4.4, which characterizes
the property of having stable units for reflections into idempotent subvari-
eties of universal algebras.
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Lemma 4.3. Consider a reflection into an idempotent subcategory, satis-
fying Ground Data, and such that the left-adjoint preserves finite products.
Then, the reflection has stable units if and only if it is semi-left-exact.

Proof. The proof follows straightforwardly from Lemmas 2.11 and 2.12.

Proposition 4.4. Consider a reflection of a variety of universal algebras C
into an idempotent subvariety. The following two conditions are equivalent,
where F (x) is the free algebra on one generator in C:

(i) the reflection is simple and the left-adjoint preserves the product
F (x)× F (x);

(ii) the reflection has stable units.

Proof. If the left-adjoint I preserves the product F (x) × F (x) then, by
Proposition 3.8, I preserves finite products. On the other hand, by Propo-
sition 4.2, the reflection is semi-left-exact. Hence, by Lemma 2.12 and
Lemma 2.11 the reflection has stable units. Conversely, a product Q × R
in C is just the pullback Q ×T R, where T is a terminal object in C. This
pullback Q ×T R is preserved by I according to Proposition 2.4, provided
T ∈ M. In fact, one can assume, without loss of generality, that T ∈ M,
since T and HI(T ) are isomorphic.

The next corollary follows straightforwardly from Corollary 3.5 and
Proposition 4.4.

Corollary 4.5. Consider a reflection of an idempotent variety of universal
algebras into one of its subvarieties. The reflection has stable units if and
only if it is simple.

Example 4.6. Let S be a set and M a monoid with unit 1M (1Mm =
m = m1M , for every m ∈ M). An M -set whose underlying set is S (an
object in the category M -Set, which is a variety of universal algebras) is
an algebra with only unary operations m(s) = ms (one operation for each
element of the monoid), such that 1Ms = s and m′(ms) = (m′m)s for all
m,m′ ∈ M , s ∈ S. Every set S ∈ Set can be seen as an M -set, provided
we state ms = s, for all m ∈M , s ∈ S.

We present now an example of application of Proposition 4.4 to the
reflection H ` I : M -Set → Set of M -sets into its idempotent subvariety
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of sets, associated to the congruence generated, on every S ∈ M -Set, by
ms = s, for all m ∈M , s ∈ S.

It is well known that this reflection of M -Set into Set is semi-left-
exact (that is, simple; see Proposition 4.2), which follows from more general
results (see [1, §6.2]). Here, we study the preservation of finite products
and the stable units property, when M satisfies the cancellation law (ca =
cb ⇒ a = b, for any a, b and c ∈ M)4 and when M has a zero element 0M
(0Mm = 0M = m0M , for every m ∈M).

A congruence on an M -set S contains R = {(s,ms) ∈ S×S | s ∈ S,m ∈
M} if and only if it contains R? = {(ms,m′s) ∈ S × S | s ∈ S,m,m′ ∈M},
by symmetry and transitivity. Therefore, R and R∗ generate the same
congruence.

Let CS be a subset of S × S consisting of those elements (a, b) ∈ S for
which there exist z0, . . . , zn ∈ S where n ∈ N satisfying the following:

a = z0 ∧ b = zn ∧ (zi, zi+1) ∈ R∗, i ∈ {0, . . . , n− 1} (4.3)

Since CS is the transitive closure of R∗, CS is contained in every con-
gruence that contains R. In fact, CS is the congruence generated by R,
because

• {(a, a) | a ∈ S} ⊆ CS ,

• CS is obviously symmetric and transitive, and

• CS respects the (unary) operations on S, since if there exists a finite
sequence between a and b as in (4.3), then there exists a finite sequence
between ma and mb as in (4.3), for all m ∈M .

As usual, a ∼S b will state that a and b are related, which is equivalent
to (a, b) ∈ CS , and the class of equivalence of (a, b) in CS will be denoted
by [(a, b)]∼S , for any elements a, b ∈ S.

Finally, note that F (x) = M , F (x) × F (x) = M × M and clearly
I(F (x)) = T , in M -Set.

When M satisfies the cancellation law

4Left-cancellation law, to be more precise, since M -sets were defined above as left
monoid actions.
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We are going to show that, if M(6= T ) is a cancellative monoid then
I(F (x) × F (x)) 6= T . It is clear that, I(F (x) × F (x)) = T if and only
if (1M , 1M ) ∼M×M (m,m′) for all m,m′ ∈ M . Then, according to (4.3),
(1M , 1M ) ∼M×M (m,m′) if and only if there exists a finite sequence

(1M , 1M ) = (m0,m
′
0), (m1,m

′
1), . . . , (mi,m

′
i), (mi+1,m

′
i+1), . . . , (mn,m

′
n) = (m,m′),
(4.4)

such that, for every pair ((mi,m
′
i), (mi+1,m

′
i+1)), (mi,m

′
i) = c(a, b) and

(mi+1,m
′
i+1) = d(a, b), for some a, b, c, d ∈ M . That is, for each i ∈

{0, 1, . . . , n − 1}, there exist a, b, c, d ∈ M , such that ca = mi, cb = m′i,
da = mi+1 and db = m′i+1.

Let M 6= {1M} be a cancellative monoid. It can be easily checked
that [(1M , 1M )]∼M×M 6= [(m,m′)]∼M×M for m 6= m′. We will prove it by
induction on the length of the finite sequence (4.4), as follows.

Let n = 1. Then, there exist a, b, c, d ∈M , such that c(a, b) = (1M , 1M )
and d(a, b) = (m,m′), that is, ca = 1M , cb = 1M , da = m and db = m′.
Since M satisfies the cancellation law, ca = cb implies a = b, and therefore
m = m′. Now, suppose that, for any sequence (4.4) of length n between
(1M , 1M ) and (m,m′), for every pair ((mi,m

′
i), (mi+1,m

′
i+1)) we must have

mi = m′i, mi+1 = m′i+1, with 0 ≤ i ≤ n − 1. Then, for a sequence as in
(4.4) of length n+ 1 between (1M , 1M ) and (m,m′), we have

(1M , 1M ), (m1,m1), . . . , (mn,mn), (m,m′),

such that there exist a, b, c, d ∈ M with c(a, b) = (mn,mn) and d(a, b) =
(m,m′), that is, ca = mn−1, cb = mn−1, da = m, and db = m′. By the
cancellation law, a = b, and therefore m = m′. Hence, I(F (x)×F (x)) 6= T .
Thus, if the monoid M( 6= T ) satisfies the cancellation law this reflection
does not have stable units, according to Proposition 4.4, although it is
semi-left-exact (simple, see Proposition 4.2).

When M has a zero element

We will see that I(F (x)× F (x)) = T , provided M has a zero element 0M .
I(F (x) × F (x)) = T if and only if (0M , 0M ) ∼M×M (m,m′), for all

m,m′ ∈M.
According to (4.3), (0M , 0M ) ∼M×M (m,m′) if there exist a, b, c, and

d ∈M , such that c(a, b) = (0M , 0M ) and d(a, b) = (m,m′), that is, ca = 0M ,
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cb = 0M , da = m, and db = m′. This condition is satisfied for every pair
(m,m′) by taking c = 0M , a = m, b = m′, and d = 1M .

Hence, if the monoidM has a zero element then the reflectionH ` I : M -
Set→ Set has stable units (see Proposition 4.4).

Finite product preservation
for reflections I: C →M with unit η : 1C → HI,

satisfying Ground Data, into idempotent subcategories M

I preserves Q×R
if and only if

for each r ∈ U(R),
there exists γr : Q→ HI(Q×R),

M is an idempotent such that U(γr)(d) = U(ηQ×R)(d, r),
subcategory of C for all d ∈ U(Q); Pr. 3.3

and
for each q ∈ U(Q),

there exists γq : Q→ HI(Q×R),
such that U(γq)(e) = U(ηQ×R)(q, e),

for all e ∈ U(R)

C is an idempotent
category I preserves finite products Pr. 3.4

M is an idempotent I preserves finite products
subvariety of a variety C if and only if Pr. 3.8
of universal algebras I(F(x)× F(x)) = T

C is an idempotent variety Cor. 3.5
of universal algebras I preserves finite products
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Stable units for reflections I: C →M
into idempotent subvarieties of universal algebras

the reflection has stable units Pr. 4.2
M is an idempotent if and only if and

subvariety of C it is simple and I preserves F(x)× F(x) Pr. 4.4

C is an idempotent the reflection has stable units Pr. 4.2
variety if and only if and

it is simple Cor. 4.5
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[3] Cassidy, C., Hébert, M., and Kelly, G.M., Reflective subcategories, localizations and
factorization systems, J. Aust. Math. Soc. 38A (1985), 287-329.

[4] Even, V., A Galois-theoretic approach to the covering theory of quandles, Appl.
Categ. Structures 22 (2014), 817-831.

[5] Grillet, P.A., “Abstract Algebra”, 2nd ed., Springer, 2007.

[6] Janelidze, G., Laan, V., and Márki, L., Limit preservation properties of the greatest
semilattice image functor, Internat. J. Algebra Comput. 18(5) (2008), 853-867.

[7] Mac Lane, S., “Categories for the Working Mathematician”, 2nd ed., Springer, 1998.

[8] Xarez, I.A., “Reflections of Universal Algebras into Semilattices, their Galois Theo-
ries and Related Factorization Systems”, University of Aveiro, Ph.D. Thesis, 2013.

[9] Xarez, I.A. and Xarez, J.J., Galois theories of commutative semigroups via semilat-
tices, Theory Appl. Categ. 28(33) (2013), 1153-1169.



Product preservation and stable units 21

[10] Xarez, J.J., Generalising connected components, J. Pure Appl. Algebra 216(8-9)
(2012), 1823-1826.

Isabel A. Xarez Department of Mathematics, University of Aveiro, Portugal.

Email: isabel.andrade@ua.pt

João J. Xarez CIDMA - Center for Research and Development in Mathematics and Applica-

tions, Department of Mathematics, University of Aveiro, Portugal.

Email: xarez@ua.pt




