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Separated finitely supported Cb-sets

Khadijeh Keshvardoost∗ and Mojgan Mahmoudi

Abstract. The monoid Cb of name substitutions and the notion of finitely
supported Cb-sets introduced by Pitts as a generalization of nominal sets. A
simple finitely supported Cb-set is a one point extension of a cyclic nominal
set. The support map of a simple finitely supported Cb-set is an injective
map. Also, for every two distinct elements of a simple finitely supported
Cb-set, there exists an element of the monoid Cb which separates them by
making just one of them into an element with the empty support.

In this paper, we generalize these properties of simple finitely supported
Cb-sets by modifying slightly the notion of the support map; defining the no-
tion of 2-equivariant support map; and introducing the notions of s-separated
and z-separated finitely supported Cb-sets. We show that the notions of s-
separated and z-separated coincide for a finitely supported Cb-set whose sup-
port map is 2-equivariant. Among other results, we find a characterization
of simple s-separated (or z-separated) finitely supported Cb-sets. Finally,
we show that some subcategories of finitely supported Cb-sets with injective
equivariant maps which constructed applying the defined notions are reflec-
tive.
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1 Introduction

Let D be a countable infinite set. A permutation π on D is said to be
finitary if it changes only a finite number of elements of D. Consider the
group G = Permf(D) of finitary permutations on D, and take a set X with
an action of G on it, that is, a G-set. An element x ∈ X is said to have
a finite support C ⊆ D if it is invariant (fixed) under the action of each
element π of G which fixes all the elements of C (that is, if πc = c, for all
c ∈ C, then πx = x).

A G-set X all of whose elements have a finite support is said to be a
nominal set. The notion of a nominal set was introduced by Fraenkel in
1922, and developed by Mostowski in the 1930s under the name of legal
sets. The legal sets were used to prove the independence of the axiom of
choice from the other axioms (in Zermelo-Fraenkel set theory: ZFA).

In 2001, Gabbay and Pitts rediscovered those sets in the context of
name abstraction. They called them nominal sets, and applied this notion
to properly model the syntax of formal systems involving variable binding
operations (see [5]).

In [9], Pitts generalized the notion of nominal sets, by first adding two
elements 0, 1 to D, then generalizing the notion of a finitary permutation
to finite substitution and considering the monoid Cb instead of the group
G. Then he defined the notion of a support for Cb-sets, sets with an action
of Cb on them, and invented the notion of finitely supported Cb-sets as a
generalization of nominal sets.

In [8], Pitts defined the support map from a nominal set X to the set
of all finite subsets of D which takes each element of X to its least support.
In [3], we showed that the support map of a simple finitely supported Cb-set
is an injective map.

In this paper, we slightly modify the definition of the support map for
a finitely supported Cb-set, and then consider finitely supported Cb-sets
whose support maps are injective. We call them s-separated finitely sup-
ported Cb-sets. On the other hand, for every two distinct elements of a
simple finitely supported Cb-set, there exists an element of the monoid Cb
which separates them by making just one of them into a zero element. Gen-
eralizing this property, led us to introduce the notion of z-separated finitely
supported Cb-sets. The notions of s-separated and z-separated for simple
finitely supported Cb-sets are the same. This fact, then, motivates us to
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define the notion of 2-equivariant support maps under which z-separated
finitely supported Cb-set are exactly s-separated finitely supported Cb-sets.
Among other things, we find some adjoint relations between the categories
of defined notions and the category (a subcategory) of finitely supported
Cb-sets with injective equivariant maps between them.

2 Preliminaries

This section is devoted to giving some basic notions needed in this paper.
For more information one can see [3, 4, 7, 9].

2.1 M-sets A (left) M -set for a monoid M with identity e is a set X
equipped with a map M ×X → X, (m,x) 7→ mx, called an action of M on
X, such that ex = x and m(m′x) = (mm′)x, for all x ∈ X and m,m′ ∈M .
An equivariant map from an M -set X to an M -set Y is a map f : X → Y
with f(mx) = mf(x), for all x ∈ X,m ∈M .

An element x of an M -set X is called a zero (or a fixed) element if
mx = x, for all m ∈M . We denote the set of all zero elements of an M -set
X by Z(X).

The M -set X all of whose elements are zero is called a discrete M -set,
or an M -set with the identity action.

A subset Y of an M -set X is a sub M -set (or M -subset) of Y if for all
m ∈M and y ∈ Y we have my ∈ Y . The subset Z(X) of X is in fact a sub
M -set.

An equivalence relation ρ on an M -set X is called a congruence on X
if xρx′ implies mxρmx′, for x, x′ ∈ X, m ∈ M . We denote the set of all
congruences on X by Con(X).

For a sub M -set Y of an M -set X, the Rees congruence ρY on X is
defined by

xρY x
′ if and only if x, x′ ∈ Y or x = x′.

The Rees factor of X by the sub M -set Y is denoted by X/Y .
Finally, an M -set X is called simple if Con(X) = {∆X ,∇X}, where

∇X = X ×X, and ∆X = {(x, x) | x ∈ X} is the equality relation.

2.2 Cb-sets Let D be an infinite countable set, whose elements are some-
times called atomic names (data values) and PermD be the group of all
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permutations (bijection maps) on D. A permutation π ∈ PermD is said to
be finite if {d ∈ D | π(d) 6= d} is finite. Clearly the set PermfD of all finitary
permutations is a subgroup of PermD.

Also, we take 2 = {0, 1} with 0, 1 6∈ D.

Definition 2.1. (a) A finite substitution is a function σ : D → D ∪ 2 for
which Domfσ = {d ∈ D | σ(d) 6= d} is finite.

(b) A finite substitution satisfies injectivity condition, if

(∀d, d′ ∈ D), σ(d) = σ(d′) /∈ 2⇒ d = d′.

(c) If d ∈ D and b ∈ 2, we write (b/d) for the finite substitution which
maps d to b, and is the identity mapping on all the other elements of D.
Each (b/d) is called a basic substitution.

(d) If d, d′ ∈ D then we write (d d′) for the finite substitution that trans-
poses d and d′, and keeps fixed all other elements. Each (d d′) is called a
transposition substitution.

Definition 2.2. (a) Let Cb be the monoid whose elements are finite substi-
tutions satisfying injectivity condition, with the monoid operation given by
σ ·σ′ = σ̂σ′, where σ̂ : D∪2→ D∪2 maps 0 to 0, 1 to 1, and on D is defined
the same as σ. The identity element of Cb is the inclusion ι : D ↪→ D ∪ 2.

(b) Take S to be the subsemigroup of Cb generated by basic substitu-
tions. The members of S are of the form δ = (b1/d1) · · · (bk/dk) ∈ S for
some di ∈ D and bi ∈ 2, and we denote the set {d1, · · · , dk} by D

δ
.

Remark 2.3. (1) Notice that each finite permutation π on D can be con-
sidered as a finite substitution ι ◦ π : D→ D∪ 2. Doing so, throughout this
paper, we consider the group PermfD as a submonoid of Cb, and denote
ι ◦ π with the same notation π.

(2) Let d1, · · · , dk ∈ D and b1, · · · , bk ∈ 2. Then, for all π ∈ Permf(D)
and (b1/d1) · · · (bk/dk) ∈ S, one can compute that in Cb,

π(b1/d1) · · · (bk/dk) = (b1/πd1) · · · (bk/πdk)π,

and
(b1/d1) · · · (bk/dk)π = π(b1/π

−1d1) · · · (bk/π−1dk).

(3) Let d 6= d′ ∈ D and b, b′ ∈ 2. Then

(b/d)(b′/d′) = (b′/d′)(b/d).
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But, we see that (1/d)(0/d) = (0/d) and (0/d)(1/d) = (1/d), and hence
(1/d)(0/d) 6= (0/d)(1/d).

Theorem 2.4. [3] For the monoid Cb, we have

Cb = Permf(D) ∪ Permf(D)S.

2.3 Finitely supported Cb-sets In this subsection, basic notions
about finitely supported Cb-sets, which are needed in the sequel, are given,
some of which are in [9].

The following definition introduces the notion of a, so called, support,
which is the central notion to define finitely supported Cb-sets.

Definition 2.5. (a) Suppose X is a Cb-set. A subset C ⊆ D supports an
element x of X if, for every σ, σ′ ∈ Cb,

(σ(c) = σ′(c), (∀c ∈ C))⇒ σx = σ′x.

If there is a finite (possibly empty) support C then we say that x is finitely
supported.

(b) A Cb-set X all of whose elements have finite supports, is called a
finitely supported Cb-set.

We denote the category of all Cb-sets with equivariant maps between
them by Cb-Set, and its full subcategory of all finitely supported Cb-sets
by (Cb-Set)fs.

Lemma 2.6. ( [9], Lemma 2.4) Suppose X is a Cb-set, x ∈ X and b ∈ 2.
Also, let C be a finite subset of D. Then, C is a support of x if and only if

(∀d ∈ D) d /∈ C ⇒ (b/d)x = x.

Remark 2.7. Let X be a Cb-set and x ∈ X.

(1) If X is finitely supported, then the set {d ∈ D | (0/d)x 6= x} is in fact
the least finite support of x. From now on, we call the least finite support
for x the support for x, and denote it by suppx.

(2) x is a zero element if and only if suppx = ∅ if and only if δ x = x,
for all δ ∈ S.

(3) Every non-empty finitely supported Cb-set has a zero element.
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Example 2.8. (1) The set D ∪ 2 is a finitely supported Cb-set, with the
canonical action given by evaluation; that is,

∀σ ∈ Cb, x ∈ D ∪ 2, σx = σ̂(x),

in which σ̂ is defined as in Definition 2.2(a). Also, for each d ∈ D, supp d =
{d}, and supp 0 = supp 1 = ∅.

(2) LetX = D(k)∪{0}, where k is a natural number, D(k)
= {(d1, · · · , dk) :

di ∈ D, di 6= dj , for i 6= j}, and 0 be a zero element which is not included in

D(k)
. Then, we see that X is a finitely supported Cb-set with the following

action of Cb. Let σ ∈ Cb and x ∈ D(k)
. Then, applying Theorem 2.4, σ = π

or σ = πδ, where π ∈ Permf(D) and δ ∈ S. For σ = π or σ = πδ with
D
δ
∩ suppx = ∅, define σx = πx and for σ = πδ with D

δ
∩ suppx 6= ∅, and

σx = 0. Notice that, for each element (d1, · · · , dk), the set {d1, · · · , dk} is
the support.

(3) The set P
f
(D ∪ 2) = {Y | Y is a finite subset of D ∪ 2} is a finitely

supported Cb-set with the natural Cb-action

∗ : Cb× P
f
(D ∪ 2)→ P

f
(D ∪ 2), σ ∗ Y = σY = {σy| y ∈ Y }.

Notice that suppY = Y .

(4) All discrete Cb-sets are clearly finitely supported Cb-sets, because of
Remark 2.7(2).

Lemma 2.9. [3] Let X be a non-empty finitely supported Cb-set and x ∈ X.
Then,

(i) for δ ∈ S, we have

δ x = x if and only if D
δ
∩ suppx = ∅.

(ii) for δ ∈ S, supp δx ⊆ suppx \ D
δ
.

(iii) for π ∈ Permf(D), we have suppπx = π suppx. In particular,
|suppπx| = |πsuppx| = |suppx|.

Remark 2.10. [8] Suppose f : X → Y is an equivariant map between
finitely supported Cb-sets X and Y .

(1) If x ∈ X, then supp f(x) ⊆ suppx.

(2) If x ∈ X and f is injective, then supp f(x) = suppx.
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The following proposition is needed in the next section.

Proposition 2.11. (i) Let A be a subset of D ∪ 2, and δ ∈ S. Then,
(δA) \ 2 = (A \ 2) \ D

δ
.

(ii) Suppose X is a finitely supported Cb-set, and x ∈ X. If σ ∈ Cb,
then suppσx ⊆ (σsuppx) \ 2.

Proof. (i) Notice that δA = {δ(d) : d ∈ A}. Let d ∈ (A \ 2) \ D
δ
. Then,

d ∈ A \ 2 and d /∈ D
δ
. By Lemma 2.9(i), δ(d) = d, and so we get that

d = δ(d) ∈ (δA) \ 2. To prove the reverse inclusion, suppose d ∈ (δA) \ 2.
So, there exists d1 ∈ A with d = δ(d1) and d /∈ 2. If d1 ∈ D

δ
, then

d = δ(d1) ∈ 2, which is impossible. Thus d1 /∈ D
δ

and so, by Lemma 2.9(i),
δ(d1) = d1. Now, we have d = δ(d1) = d1 ∈ A and so d ∈ (A \ 2) \ D

δ
.

Therefore, (δA) \ 2 = (A \ 2) \ D
δ
.

(ii) Let σ ∈ Cb. Then, by Theorem 2.4, σ ∈ Permf(D) or σ = πδ,
where π ∈ Permf(D) and δ ∈ S. If σ ∈ Permf(D), then, by Lemma 2.9(iii),
suppσx = σsuppx. Notice that, 0, 1 /∈ suppx. Let σ = πδ. Then, applying
Lemma 2.9(ii,iii), we have

suppσx = suppπδx = πsupp δx ⊆ π((suppx) \ D
δ
)

= π((δsuppx) \ 2) = (πδsuppx) \ 2 = (σsuppx) \ 2,

where the third equality follows from (i), by replacing A = suppx.

Remark 2.12. [3] The sets

Sx
.
= {δ ∈ S | δx = x} and S′x

.
= S \ Sx = {δ ∈ S | δx 6= x},

are two subsemigroups of S.

Theorem 2.13. ( [3], Theorem 6.3 ) Suppose X is an infinite finitely sup-
ported Cb-set with a unique zero element θ. If X is simple, then there exists
a non-zero element x with X = Permf(D)x∪{θ}. The converse is also true
if the support of each non-zero element of X is a singleton.

3 Separated finitely supported Cb-sets

In [8], Pitts showed that the support map of a nominal set is equivariant,
where the support map is the map supp : X → P

f
(D), which takes x ∈ X
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to suppx. In this section, in Definition 3.1, we modify slightly the defi-
nition of the support map for a finitely supported Cb-set, and define the
notion of 2-equivariant support map. In Theorem 3.6, we characterize sim-
ple finitely supported Cb-sets in the category of finitely supported Cb-sets
with 2-equivariant support maps. Also, in Subsection 3.1 we define the
notions of s-separated and z-separated finitely supported Cb-sets. In The-
orem 3.13, we show that a z-separated finitely supported Cb-set is exactly
an s-separated finitely supported Cb-set if its support map is 2-equivariant.
For this reason we first give the necessary facts about 2-equivariant support
maps.

Definition 3.1. Let X be a finitely supported Cb-set and x ∈ X. Then,

(a) the map

supp : X → P
f
(D ∪ 2), x 7→ suppx

is called the support map of X.

(b) The support map is called 2-equivariant if suppσx = (σsuppx) \ 2,
for all σ ∈ Cb.

We denote the category of all finitely supported Cb-sets with 2-equivariant
support maps by (Cb-Set)2

fs
.

Remark 3.2. Suppose X is a finitely supported Cb-set. Let x ∈ X and
σ ∈ Cb. Then we have the facts

(1) if σ ∈ Permf(D), then (σsuppx) \ 2 = σsuppx. This is because
σsuppx ⊆ D, for all σ ∈ Permf(D). So, by Lemma 2.9(iii), we get that
(σsuppx) \ 2 = suppσx.

(2) if x ∈ Z(X), then (σsuppx) \ 2 = ∅ = suppσx.

Example 3.3. (1) The support maps of D∪2 and D∪{0} are 2-equivariant.

This is because taking d ∈ D and σ = πδ, for π ∈ Permf(D) and δ ∈ S,
we have if d ∈ D

δ
, then σd = πδd ∈ 2 and (σsupp d) = πδ{d} ⊆ 2, which

gives suppσd = ∅ = (σsupp d) \ 2. Also, if d /∈ D
δ
, then σd = πd and the

result holds by Remark 3.2.

(2) The support map of X = D(k) ∪ {0} is 2-equivariant if and only if
k = 1.

Recall Example 2.8(2) where X is a finitely supported Cb-set. By part
(1), if k = 1 then the support map of X is 2-equivariant. Conversely, we
show that if k > 1 then the support map of X is not 2-equivariant. Let k > 1
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and x = (d1, · · · , dk). Then suppx = {d1, · · · , dk}, and taking δ = (0/d1)
we get δx = 0, and so supp δx = ∅, while

(δsuppx) \ 2 = {0, d2, · · · , dk} \ 2 = {d2, · · · , dk}.

Notice that, by part (2) of the above example, the support map of X =

D(k) ∪ {0}, for k > 1, is not 2-equivariant.

Theorem 3.4. Let X be a finitely supported Cb-set and x a non-zero ele-
ment of X. Then, the support map of X is 2-equivariant if and only if

∀δ ∈ S′
x
, (suppx) \ D

δ
⊆ (supp δx) (∗)

where S′
x

is defined as in 2.12.

Proof. Let X have a 2-equivariant support map and δ ∈ S′
x
. Then, by

Definition 3.1(b) and Proposition 2.11(i), we get that

supp δx = (δ suppx) \ 2 = (suppx) \ D
δ
.

Conversely suppose (∗) holds and σ ∈ Cb. Applying Definition 3.1(b),
we must show that suppσx = (σsuppx) \ 2. By Theorem 2.4, we have the
cases

Case (1): If σ ∈ Permf(D), then, by Lemma 2.9(iii), we get suppσx =
σ(suppx).

Case (2): Suppose σ = πδ where π ∈ Permf(D) and δ ∈ S. Now, if
δ ∈ Sx , then, by Lemma 2.9(i), D

δ
∩ suppx = ∅. So, δ(suppx) = suppx

and δx = x. Therefore,

suppσx = suppπx = π(suppx) = πδ(suppx).

If δ ∈ S′
x
, then, applying the assumption and Lemma 2.9(ii), we have

supp δx = (suppx) \ D
δ
. Thus by Proposition 2.11 and Lemma 2.9(iii),

suppσx = suppπδx = π(supp δx)
= π((suppx) \ D

δ
) = π((δsuppx) \ 2) = (σsuppx) \ 2.

Corollary 3.5. Let X be a finitely supported Cb-set, and x ∈ X. Then, the
support map of X is 2-equivariant if and only if (suppx) \ D

δ
= (supp δx),

for all δ ∈ S′
x
.
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Proof. This follows from Theorem 3.4 and Lemma 2.9(ii).

Theorem 3.6. Let X be an infinite finitely supported Cb-set with 2-equivariant
support map, and a unique zero element θ. Then, the following statements
are equivalent:

(i) X is simple ;
(ii) X = Permf(D)x ∪ {θ} with |suppx| = 1 ;
(iii) X is isomorphic to D ∪ {0}.

Proof. (i)⇒(ii) Let X be simple and x ∈ X \ {θ}. Then, applying Theorem
2.13, we have X = Permf(D)x∪{θ}, and so, by Theorem 5.6 and Corollary
5.5 of [3], supp δx = ∅, for all δ ∈ S′

x
. We show that suppx is singleton.

On the contrary, let |suppx| > 1 and d ∈ suppx. Then, by Lemma 2.9(i),
(0/d) ∈ S′

x
. Now, since the support map of X is 2-equivariant, we get that

supp (0/d)x = (suppx) \ {d} 6= ∅, which is a contradiction.
(ii)⇒(i) Follows by Theorem 2.13.
(ii)⇔(iii) This holds by Corollary 5.7 of [3].

3.1 Stabilizer separated and zero-separated finitely supported
Cb-sets In Theorem 6.4(iv) of [3], we showed that the support map of a
simple finitely supported Cb-set is an injective (one-one) map. In other
words, every two distinct elements have different least supports. Also, for
every two distinct elements of a simple finitely supported Cb-set, there ex-
ists an element of the monoid Cb which makes just one of them into a zero
element. In this subsection, we generalize these properties and define the
notions of s-separated and z-separated finitely supported Cb-sets (see Def-
inition 3.7). In Theorem 3.10, we show that s-separated finitely supported
Cb-sets are exactly ones with injective support maps on non-zero elements.
A characterization of simple finitely supported Cb-sets is given in Theorem
3.14. In Theorem 3.13, it is shown that the notions of z-separated and s-
separated finitely supported Cb-sets are the same in the category of finitely
supported Cb-sets with 2-equivariant support maps.

Definition 3.7. Let X be a finitely supported Cb-set. Then,
(a) X is called stabilizer-separated or briefly s-separated if for every two

non-zero elements x 6= x′ ∈ X, we have Sx′ \ Sx 6= ∅, or Sx \ Sx′ 6= ∅. In
other words, for every x 6= x′ ∈ X \ Z(X), there exists some δ ∈ S with
(δ x 6= x and δ x′ = x′) or (δ x = x and δ x′ 6= x′).
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(b) X is zero-separated or briefly z-separated, if for all non-zero elements
x 6= x′ ∈ X, there exists δ ∈ S with (δx ∈ Z(X) and δx′ /∈ Z(X)) or
(δx /∈ Z(X) and δx′ ∈ Z(X)).

Example 3.8. The set D∪2 is a z-separated (s-separated) finitely supported
Cb-set. To see this, for all d 6= d′, it is sufficient to take δ = (0/d).

Lemma 3.9. Any finitely supported Cb-set X whose support map is injec-
tive over non-zero elements, is s-separated.

Proof. Let x 6= x′ ∈ X \ Z(X). Then, since the support map of X is
injective, we get suppx 6= suppx′, and so there exists some d ∈ D, with
d ∈ suppx\suppx′ or d ∈ suppx′\suppx. Assuming d ∈ suppx\suppx′, we
show that Sx′\Sx 6= ∅. For the case d ∈ suppx′\suppx, it is similarly proved
that Sx \Sx′ 6= ∅. Let δ = (0/d). Then, by Lemma 2.9(i), δ x = (0/d)x 6= x
and δ x′ = (0/d)x′ = x′, which means (0/d) ∈ S

x′ \ Sx .

In the following theorem, we show that the converse of the above lemma
is also true, that is, distinct non-zero elements of an s-separated finitely
supported Cb-set have different least supports.

Theorem 3.10. Let X be a finitely supported Cb-set. Then, X is s-
separated if and only if the support map of X over non-zero elements is
an injective map.

Proof. Let X be s-separated and x 6= x′ be two non-zero elements of X.
Then, we must show suppx 6= suppx′. Since X is s-separated, applying
Definition 3.7(a) we get S′x∩Sx′ 6= ∅ or S′x′∩Sx 6= ∅. Assuming δ ∈ S′x∩Sx′ ,
we show that suppx 6= suppx′. The other case is proved similarly. Since
δ ∈ S′x∩Sx′ , by Lemma 2.9(i), we get D

δ
∩ suppx 6= ∅ and D

δ
∩ suppx′ = ∅.

Therefore, suppx 6= suppx′.
Conversely, let the support map ofX over non-zero elements be injective.

Then, by Lemma 3.9, we get the result.

Theorem 3.11. Let X be an s-separated finitely supported Cb-set and x, x′

be two distinct non-zero elements of X. Then, |suppx| = |suppx′| if and
only if Permf(D)x = Permf(D)x′ if and only if Cbx = Cbx′.



66 Kh. Keshvardoost and M. Mahmoudi

Proof. We prove the non-trivial parts. Let |suppx| = |suppx′|. Then, we
show that Permf(D)x = Permf(D)x′. Since X is s-separated, by Theorem
3.10, suppx 6= suppx′. We have the following two cases:

Case (1): Suppose suppx ∩ suppx′ 6= ∅. Let

suppx = {d1, · · · , dk, d′′1, · · · , d′′l }

and

suppx′ = {d′1, · · · , d′k, d′′1, · · · , d′′l }.

Take π = (d1 d
′
1) · · · (dk d′k) ∈ Permf(D). Then, by Lemma 2.9(iii),

suppπx = π suppx
= π{d1, · · · , dk, d′′1, · · · , d′′l }
= {d′1, · · · , d′k, d′′1, · · · , d′′l }
= suppx′.

Case (2): Suppose suppx∩suppx′ = ∅. Take suppx = {d1, · · · , dk} and
suppx′ = {d′1, · · · , d′k}. In this case, similar to Case (1), applying Lemma
2.9(iii), we have

suppπx = πsuppx = π{d1, · · · , dk} = {d′1, · · · , d′k} = suppx′,

where π = (d1 d
′
1) · · · (dk d′k) ∈ Permf(D).

Therefore, in each case we get suppπx = suppx′. Now, by Theorem
3.10, πx = x′, and so Permf(D)x = Permf(D)x′.

Assuming Cbx = Cbx′, we show that Permf(D)x = Permf(D)x′. Since
Cbx = Cbx′, there exist σ, σ′ ∈ Cb with x = σx′ and x′ = σ′x. By Theorem
2.4, σ, σ′ ∈ Permf(D) ∪ Permf(D)S. Now, we have the following cases:

(a) x = πx′ and x′ = π′x, for some π, π′ ∈ Permf(D);

(b) x = πx′ and x′ = π′δ′x, for some π′, π ∈ Permf(D) and δ′ ∈ S′x;

(c) x = πδx′ and x′ = π′x, for some π′, π ∈ Permf(D) and δ ∈ S′x′ ;
(d) x = πδx′ and x′ = π′δ′x, for some π, π′ ∈ Permf(D), δ ∈ S′x′ and

δ′ ∈ S′x.

We show that only (a) occures. In case (b), by Lemma 2.9, we have

|suppx| = |suppπx′| = |suppx′| = |suppπ′δ′ x| = |supp δ′ x| < |suppx|,



Separated finitely supported Cb-sets 67

which is impossible. Similarly, case (c) does not occure. Also, in case (d),
we have x = πδx′ = πδπ′δ′x. Now, by Remark 2.3(2), δπ′ = π′δ′′, and so,
by Lemma 2.9,

|suppx| = |suppπδπ′δ′x| = |suppππ′δ′′δ′ x| = |supp δ′′δ′ x| < |suppx|,

which is again impossible.

In the following proposition, we show that in a cyclic finitely supported
Cb-set with an additional property, the notions of z-separated and s-separated
are the same. We first notice that a cyclic finitely supported Cb-set is of
the form Cbx, also, recall from [3], that for every cyclic finitely supported
Cb-set Cbx, we have

Cbx = Permf(D)x ∪ Permf(D)S′
x
x.

Proposition 3.12. Let X = Cbx be a cyclic finitely supported Cb-set with
supp δx = ∅, for all δ ∈ S′

x
. Then, X is s-separated if and only if X is

z-separated.

Proof. Suppose X is s-separated and z 6= z′ are two non-zero elements of
X. Thus supp z 6= supp z′ and so there exists some d ∈ (supp z) \ supp z′ or
d ∈ (supp z′) \ supp z. Assuming d ∈ supp z \ supp z′, we prove that X is z-
separated. The other case is proved similarly. Since d ∈ (supp z)\supp z′, by
Remark 2.5, we get (0/d)z 6= z and (0/d)z′ = z′. Applying the assumption,
we have supp (0/d)z = ∅ and (0/d)z′ = z′. So (0/d)z ∈ Z(X) and (0/d)z′ /∈
Z(X).

Conversely, supposeX is z-separated and z 6= z′. Thus, there exists some
δ ∈ S with (δz ∈ Z(X) and δz′ /∈ Z(X)) or (δz′ ∈ Z(X) and δz /∈ Z(X)).
Assuming δz ∈ Z(X) and δz′ /∈ Z(X), we show that X is z-separated.
The other case is proved similarly. Notice that, since δz′ /∈ Z(X), we get
supp δz′ 6= ∅, and so, by the assumption, δ /∈ S′

z′
. Also, since δz ∈ Z(X)

and z is a non-zero element, we get δz 6= z. Thus, δ ∈ S′
z

and so δ ∈ S′
z
\S′

z′
,

which means X is s-separated.

Now, in the following theorem, we show that the notions of z-separated
and s-separated finitely supported Cb-sets in the category of finitely sup-
ported Cb-sets with 2-equivariant support maps are the same.
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Theorem 3.13. Let X be a finitely supported Cb-set with 2-equivariant
support map. Then, X is s-separated if and only if X is z-separated.

Proof. Let X be z-separated and x 6= x′ two non-zero elements of X. Then,
there exists δ ∈ S with (δx ∈ Z(X) and δx′ /∈ Z(X)) or (δx /∈ Z(X) and
δx′ ∈ Z(X)). We show that suppx 6= suppx′ and so, by Theorem 3.10, X
is s-separated. Assuming δx ∈ Z(X) and δx′ /∈ Z(X), we prove the result.
The other case is proved similarly. Since δx ∈ Z(X) and the support map
of X is 2-equivariant, we have ∅ = supp δx = (suppx)\D

δ
. So suppx ⊆ D

δ
.

On the other hand, notice that δx′ /∈ Z(X). Thus, by the assumption, we
get that suppx′ \ D

δ
= supp δx′ 6= ∅, and so there exists d ∈ suppx′ \ D

δ
,

which means that d ∈ suppx′ and d /∈ D
δ
. Since suppx ⊆ D

δ
, d /∈ suppx.

Therefore, suppx 6= suppx′.

To prove the converse, suppose X is s-separated and x 6= x′ are two
non-zero elements of X. Thus suppx 6= suppx′ and so there exists some
d ∈ suppx \ suppx′ or d ∈ suppx′ \ suppx. Assuming d ∈ suppx \ suppx′,
we prove that X is z-separated. The other case is proved similarly. To show
this claim, take δ ∈ S with D

δ
= suppx′. Then, d ∈ (suppx) \ D

δ
. So

supp δx′ = suppx′ \ D
δ

= ∅ and supp δx = suppx \ D
δ
6= ∅. Therefore,

δx′ ∈ Z(X) and δx /∈ Z(X).

Theorem 3.14. Let X be an s-separated (z-separated) finitely supported
Cb-set with a unique zero element θ. Then, X is simple if and only if
X = Permf(D)x ∪ {θ}, where x ∈ X \ Z(X).

Proof. First, notice that, applying Theorem 5.6 and Corollary 5.5 of [3],
X = Permf(D)x ∪ {θ} is cyclic and supp δx = ∅, for all δ ∈ S′

x
. Therefore,

for X = Permf(D)x ∪ {θ}, by Lemma 3.12, the notions z-separated and
s-separated are the same.

Now, let X be a finitely supported Cb-set with a unique zero element θ,
and x a non-zero element of X. Then, by Theorem 6.7 of [3], X is simple
if and only if X = Permf(D)x ∪ {θ} and the support map of X is injective.
So, by Theorem 3.10, X is simple if and only if X = Permf(D)x ∪ {θ}.
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4 Some reflective subcategories of the category of finitely
supported Cb-sets with injective equivariant maps

Let us denote the category of all finitely supported Cb-sets with injective
equivariant maps between them by Inj-(Cb-Set)

fs
, and its full subcategory

of all finitely supported Cb-sets with unique zero elements by Inj-(Cb-Set)θ
fs

.

In this section, we show that Inj-(Cb-Set)θ
fs

is a reflective subcategory
of Inj-(Cb-Set)

fs
. We also construct some reflective subcategories of Inj-

(Cb-Set)θ
fs

using z-separated and s-separated finitely supported Cb-sets in-
troduced in the last section.

4.1 Inj-(Cb-Set)θ
fs

is a reflective subcategory of Inj-(Cb-Set)
fs
.

To define the reflector functor, given a finitely supported Cb-set X, we
construct the Rees factor of X by its sub Cb-set Z(X).

Remark 4.1. Let X be a finitely supported Cb-set. Consider the Rees
factor on X by the sub Cb-set Z(X), of all zero elements of X. Then

X/Z(X) = {Z(X), {x} : x ∈ X − Z(X)}

and for x ∈ X \ Z(X), we have suppx 6= ∅.
Lemma 4.2. For a a finitely supported Cb-set, X/Z(X) is a finitely sup-
ported Cb-set with a unique zero element.

Proof. Define the action on X/Z(X) by

σ ∗X a =





a, if a = Z(X)
Z(X), if a = {x}, x ∈ X \ Z(X), suppσx = ∅
{σx}, if a = {x}, x ∈ X \ Z(X), suppσx 6= ∅

for σ ∈ Cb and a ∈ X/Z(X). It is really an action, because ι∗X a = a, for all
a ∈ X/Z(X). Also, if σ1, σ2 ∈ Cb, then (σ1σ2) ∗X a = σ1 ∗X (σ2 ∗X a). This
is because, if a = Z(X) or a = {x}, x ∈ X −Z(X) with σ1, σ2 ∈ Permf(D),
then the result holds. If a = {x}, x ∈ X − Z(X) with σ1 /∈ Permf(D) or
σ2 /∈ Permf(D), then we have the following cases:

Case (1): Let σ1 ∈ Permf(D). If σ2 = π2δ2 with suppσ2x = ∅, then
σ1 ∗X (σ2 ∗X a) = Z(X). On the other hand,

suppσ1σ2x = suppσ1σ2x = σ1suppσ2x = ∅,
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and so (σ1σ2) ∗X a = Z(X).
Case (2): Let σ1 = π1δ1 and σ2 = π2δ2. Then,

(σ1σ2) ∗X a = (π1δ1π2δ2) ∗X a, and σ1 ∗X (σ2 ∗X a) = π1δ1 ∗X (π2δ2 ∗X a).

Applying Remark 2.3(2), δ1σ2x = δ1π2δ2x = π2δ
′
1δ2x. Now, we have the

following subcases:
Subcase (a): Suppose supp δ2x = ∅. Applying Lemma 2.9(ii), we have

supp δ1σ2x ⊆ π2[(supp δ2x) \ D
δ′1

]. Thus supp δ1σ2x = ∅, and so

(σ1σ2) ∗X a = Z(X) = σ1 ∗X (σ2 ∗X a).

Subcase (b): Let supp δ2x 6= ∅. Then, π1δ1 ∗X (π2δ2 ∗X a) = π1δ1 ∗X
({π2δ2x}), and (π1δ1π2δ2) ∗X {x} = (π1π2δ

′
1δ2) ∗X {x}.

Notice that, |supp δ′1δ2x| = |supp δ1π2δ2x|. Thus supp δ′1δ2x = ∅ if and only
if supp δ1π2δ2x = ∅. Therefore, σ1 ∗X (σ2 ∗X a) = (σ1σ2) ∗X a.

Finally, we show that all elements of X/Z(X) have a finite support,
and so X/Z(X) is a finitely supported Cb-set. Let a ∈ X/Z(X). Then,
a = Z(X) or a = {x} with x ∈ X \Z(X). If a = Z(X), then it is clear that
a is a zero element, and so, by Remark 2.7(2), supp a = ∅. If a = {x} with
x ∈ X \ Z(X), then, by Lemma 2.6 we show that suppx is a finite support
of a. To prove this, let d /∈ suppx. Then, (0/d)x = x and so, applying the
definition of the action ∗X on X/Z(X), we get that

(0/d)a = (0/d){x} = {(0/d)x} = {x} = a.

Theorem 4.3. The inclusion functor Inj-(Cb-Set)θ
fs
↪→ Inj-(Cb-Set)fs has

a left adjoint L : Inj-(Cb-Set)fs → Inj-(Cb-Set)θ
fs

.

Proof. Take X to be a finitely supported Cb-set. Define L(X) = X/Z(X).
By Lemma 4.2, L(X) is a finitely supported Cb-set with a unique zero
element Z(X). Suppose g : X → Y is an injective equivariant map between
finitely supported Cb-sets X,Y . We show that L(g) : X/Z(X) → Y/Z(Y )
defined by

L(g)(a) =

{
{g(x)} if a = {x}, x ∈ X − Z(X)
Z(Y ) if a = Z(X)
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is an injective equivariant map. Notice that, if a = {x} with x ∈ X−Z(X),
then, applying Remark 2.10(2), we get that supp g(x) = suppx 6= ∅, and so
L(g)(a) = {g(x)} ∈ Y \ Z(Y ). Also, since g is injective, L(g) is injective.
To prove that L(g) is equivariant, let σ ∈ Cb. Then, by Theorem 2.4, we
have σ ∈ Permf(D) or σ = πδ with π ∈ Permf(D) and δ ∈ S.

If a = Z(X), then

L(g)(σ ∗X a) = L(g)(Z(X)) = Z(Y ) = σ ∗Y Z(Y )
= σ ∗Y L(g)(Z(X)) = σ ∗Y L(g)(a).

If a = {x} with x ∈ X − Z(X), then we have the following cases;
Case (1): If σ ∈ Permf(D) or σ = πδ with supp δx 6= ∅, then we have

σx ∈ X \ Z(X), and so

L(g)(σ ∗X a) = L(g)({σx}) = {g(σx)} = {σg(x)} = σ ∗Y L(g)(a).

Case (2): Suppose σ = πδ with supp δx = ∅. Since g is equivariant, by
Remark 2.10, we get that supp δg(x) = supp g(δx) ⊆ supp δx = ∅. Thus

L(g)(σ ∗X a) = L(g)(Z(X)) = Z(Y )
= σ ∗Y {g(x)} = σ ∗Y L(g)(a).

Checking the properties of L(idX ) = id
L(X)

and L(g2g1) = L(g2)L(g1),
where g1 : X → Y and g2 : Y → Z are two injective equivariant maps
between finitely supported Cb-sets, is clear.

Now, we define the reflection arrow rX : X → L(X) by

rX (x) =

{
{x}, if suppx 6= ∅
Z(X), if suppx = ∅.

Then rX is equivariant. To see this, taking σ ∈ Cb, we consider the following
cases:

Case (1): If σ ∈ Permf(D), then since suppσx = σsuppx, for the case
suppx = ∅, we get σ ∗X rX (x) = σ ∗X Z(X) = Z(X) = rX (σx), and for the
case suppx 6= ∅, we get σ ∗X rX (x) = σ ∗X {x} = {σx} = rX (σx).

Case (2): Suppose σ = πδ and suppx = ∅. By Proposition 2.11(ii), we
have suppσx ⊆ σ(suppx) \ 2 = ∅. So

σ ∗X rX (x) = σ ∗X Z(X) = Z(X) = rX (σx).
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Case (3): Suppose σ = πδ with suppx 6= ∅. If suppσx = ∅, then

σ ∗X rX (x) = σ ∗X {x} = Z(X) = rX (σx).

If suppσx 6= ∅, then σ ∗X rX (x) = σ ∗X {x} = {σx} = rX (σx).
Finally, we prove the universal property of rX . Let Y be a finitely

supported Cb-set with a unique zero element θ and f : X → Y be an
injective equivariant map. Define the map f̄ : X/Z(X)→ Y by

f̄(a) =

{
f(x) if a = {x}, x ∈ X − Z(X)
θ if a = Z(X).

We show that f̄ is equivariant. If a = Z(X), then σf̄(a) = θ = f̄(σ ∗X a).
Now, suppose a = {x} with x ∈ X−Z(X). If σ ∈ Permf(D) or σ = πδ with
supp δx 6= ∅, then

σf̄(a) = σf(x) = f(σx) = f̄(σ ∗X a).

Suppose σ = πδ with supp δx = ∅. Since f is equivariant, by Remark
2.10(1), we get that supp f(δx) ⊆ supp δx, and so f(δx) = θ. On the other
hand, since σ ∗X a = Z(X), we get that

σf̄(a) = σf(x) = f(σx) = θ = f̄(σ ∗X a).

Also, f̄ rX (x) = f(x), for all x ∈ X. This is because, if suppx 6= ∅, then
f̄ rX (x) = f̄({x}) = f(x), and if suppx = ∅, then rX (x) = Z(X) and so
f̄ rX (x) = f̄(Z(X)) = θ = f(x). To show uniqueness, suppose ¯̄frX = f . If
a = Z(X), then ¯̄f(Z(X)) = θ = f̄(Z(X)). Let a = {x} with x ∈ X−Z(X).
Then suppx 6= ∅, and so

¯̄f(a) = ¯̄f(rX (x)) = f(x) = f̄(a)

as required.

4.2 Inj-(Cb-Set)2
fs

is a reflective subcategory of Inj-(Cb-Set)
fs

Let us denote the category of finitely supported Cb-sets equipped with 2-
equivariant support maps and injective equivariant maps between them by
Inj-(Cb-Set)2

fs
. We show that it is a reflective subcategory of Inj-(Cb-Set)

fs
.

Let X be a finitely supported Cb-set. Consider the Cb-set Cb×X with
the action σ1(σ, x) = (σ̂1σ, x), for x ∈ X and σ ∈ Cb. Here, we define a
congruence relation on Cb × X, which makes it into a finitely supported
Cb-set.
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Remark 4.4. Notice that, the Cb-set Cb×X is not finitely supported. To
prove this, on the contrary, we assume that Cb×X is a finitely supported
Cb-set. Then taking C to be a finite support for (ι, x) ∈ Cb × X, apply-
ing Lemma 2.6, we get (0/d)(ι, x) = (ι, x), for all d /∈ C, and hence we

have ( ˆ(0/d)ι, x) = (ι, x). This implies that ˆ(0/d)ι = ι, which contradicts
ˆ(0/d)ι(d) = 0 6= d = ι(d).

Lemma 4.5. Let X be a finitely supported Cb-set. Then, the relation ∼2

defined on Cb×X by

(σ, x) ∼2 (σ′, x′)⇔ σx = σ′x′ and (σ suppx) \ 2 = (σ′ suppx′) \ 2,
is a congruence relation on the Cb-set Cb×X.

Proof. First notice that ∼2 is clearly an equivalence relation on Cb × X.
Let us denote the equivalence class of (σ, x) by xσ . To show that it is a
congruence relation, let xσ = x′

σ′
. Then, (σ suppx)\2 = (σ′ suppx′)\2 and

σx = σ′x′. So, for all σ1 ∈ Cb, we have

(σ̂1σsuppx)\2 = σ1 [(σ suppx)\2] = σ1[(σ′ suppx′)\2] = (σ̂1σ
′suppx′)\2,

and σ̂1σx = σ̂1σ
′x′. Therefore, x

σ̂1σ
= x′

σ̂1σ
′ .

Lemma 4.6. Let X be a finitely supported Cb-set, x ∈ X, and σ ∈ Cb.
Then suppxσ = (σ suppx) \ 2.

Proof. First, we show that (σ(suppx)) \ 2 is a finite support for xσ . Let
d /∈ (σ suppx) \ 2 and b ∈ 2. Then, applying Lemma 2.6, we show that
(b/d)xσ = xσ . In other words, we prove x

ˆ(b/d)σ
= xσ . Notice that, by

Proposition 2.11(ii), suppσx ⊆ (σ suppx)\2. Now, since d /∈ (σ suppx)\2,
we get (b/d)((σ suppx) \ 2) = (σ suppx) \ 2 and d /∈ suppσx. Therefore,

( ˆ(b/d)σ suppx) \ 2 = (σ suppx) \ 2 and ˆ(b/d)σx = σx. This implies that
suppxσ ⊆ (σ suppx) \ 2.

Now, to prove the reverse inclusion, we define a map g : (Cb×X)/ ∼2→
Pf(D∪ 2) as g(xσ) = (σ suppx) \ 2. Notice that g is well-defined and equiv-
ariant. To see this, suppose xσ = x′

σ′
. Then, (σ suppx)\2 = (σ′ suppx′)\2.

To prove that g is equivariant, let σ1 ∈ Cb. Then

g(σ1xσ) = g(x
σ̂1σ

)

= (σ̂1σ suppx) \ 2
= σ1((σ suppx) \ 2)
= σ1g(xσ).
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Finally, we see that

(σ suppx) \ 2 = supp [(σ suppx) \ 2]
= supp g(xσ)
⊆ supp (xσ),

where the inclusion is because of the fact that g is equivariant.

Theorem 4.7. The inclusion functor Inj-(Cb-Set)2
fs
↪→ Inj-(Cb-Set)fs has

a left adjoint K : Inj-(Cb-Set)fs → Inj-(Cb-Set)2
fs

.

Proof. Let X be a finitely supported Cb-set and take K(X) = (Cb×X)/ ∼2 .
Then, as a corollary of Lemma 4.6, we get that (Cb ×X)/ ∼2 is a finitely
supported Cb-set. We show that the support map of K(X) is 2-equivariant.
Let δ ∈ S′

xσ
. Then, by Lemma 4.6, we have

supp δxσ = suppx
δ̂σ

= (δ̂σsuppx) \ 2
= [(σsuppx) \ 2] \ D

δ
= (suppxσ) \ D

δ
,

where the third equality is because of Proposition 2.11(i). Now, apply-
ing Theorem 3.4, we get that the support map of K(X) is 2-equivariant.
Therefore, K(X) is in the category Inj-(Cb-Set)2

fs
.

Now, given an injective equivariant map g : X → Y between finitely
supported Cb-sets, we define K(g) : K(X)→ K(Y ) by K(g)(xσ) = (g(x))σ .
Notice that K(g) is an injective equivariant map. It is injective, since so is
g, and so, by Remark 2.10(2), suppx = supp g(x), for all x ∈ X, and thus

xσ = x′
σ′

⇔ σx = σ′x′, and (σsuppx) \ 2 = (σ′suppx′) \ 2
⇔ σg(x) = g(σx) = g(σ′x′) = σ′g(x′), and
(σsupp g(x)) \ 2 = (σsuppx) \ 2 = (σ′suppx′) \ 2 = (σ′supp g(x′)) \ 2
⇔ K(g)(xσ) = K(g)(x′

σ′
).

Also, K(g) is equivariant, since for σ1 ∈ Cb, we have

σ1K(g)(xσ) = σ1(g(x))σ = (g(x))
σ̂1σ

= K(g)(x
σ̂1σ

) = K(g)(σ1xσ).

Finally, the proofs of K(idX ) = id
K(X)

and K(g2g1) = K(g2)K(g1) are
straightforward.
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Now, we define the reflection arrow rX : X → K(X) by rX (x) = xι . It
is equivariant, because

σrX (x) = σxι = x
σ̂ι

= xσ = rX (σx),

for σ ∈ Cb. To prove the universal property of rX , suppose Y is a finitely
supported Cb-set with 2-equivariant support map, and f : X → Y is an
injective equivariant map. Define f̄ : (Cb×X)/ ∼2→ Y by f̄(xσ) = σf(x),
for all xσ ∈ (Cb × X)/ ∼2 . To see that f̄ is well-defined, let xσ = x′

σ′
.

Then, (σ (suppx)) \ 2 = (σ′ (suppx′)) \ 2 and σx = σ′x′. Now, since f is an
equivariant map, we get

σf(x) = f(σx) = f(σ′x′) = σ′f(x′).

To show that f̄ is equivariant, let σ1 ∈ Cb. Then,

σ1f̄(xσ) = σ1σf(x) = f(σ1σx) = f̄(xσ1σ
) = f̄(σ1xσ).

Notice that, since f is injective, f̄ is also injective. Also, for all x ∈ X, we
have f̄ rX (x) = f̄(xι) = ιf(x) = f(x). Further, f̄ is unique. This is because,
if ¯̄frX = f , then

¯̄f(xσ) = ¯̄f(σxι) = σ ¯̄f(xι) = σ( ¯̄frX (x))
= σf(x) = σf̄rX (x) = f̄(σxι) = f̄(xσ).

Denoting by Inj-(Cb-Set)2θ
fs

, the full subcategory of Inj-(Cb-Set)θ
fs

, con-
sisted of all finitely supported Cb-sets with unique zero elements, as a corol-
lary of Theorem 4.7, we conclude the following result.

Corollary 4.8. The inclusion functor Inj-(Cb-Set)2θ
fs

↪→ Inj-(Cb-Set)θfs
has a left adjoint.

4.3 zsep-Inj-(Cb-Set)θ
fs

is reflective in Inj-(Cb-Set)θfs Let us de-

note the full subcategory of Inj-(Cb-Set)θfs consisting of all z-separated
finitely supported Cb-sets equipped with unique zero elements by zsep-
Inj-(Cb-Set)θfs. We show that it is a reflective subcategory.

We first define a congruence relation on a finitely supported Cb-set which
makes it into a z-separated finitely supported Cb-set.
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Lemma 4.9. Suppose X is a finitely supported Cb-set, and x, x′ ∈ X.
Define

x ∼z x′ ⇔ (∀δ ∈ S) (δx ∈ Z(X)⇔ δx′ ∈ Z(X)).

Then ∼z is a z-congruence on X.

Proof. The relation ∼z is clearly an equivalence relation on X. Suppose
σ ∈ Cb and x ∼z x′. We show that σx ∼z σx′. Notice that, by Theorem
2.4, σ ∈ PermfD or σ ∈ PermfDS.

Case (1): Let σ = π ∈ PermfD. Then, for all δ ∈ S we have

δπx ∈ Z(X) ⇔ πδ′x ∈ Z(X) (by Remark 2.3(2))
⇔ δ′x ∈ Z(X)
⇔ δ′x′ ∈ Z(X) (since, by the assumption, x ∼z x′)
⇔ πδ′x′ ∈ Z(X)
⇔ δπx′ ∈ Z(X) (by Remark 2.3(2)).

Case (2): Let σ ∈ PermfDS. Then σ = π1δ1, where π1 ∈ Permf(D) and
δ1 ∈ S. For all δ ∈ S, we have

δπ1δ1x ∈ Z(X) ⇔ π1δ
′δ1x ∈ Z(X) (by Remark 2.3(2))

⇔ δ′δ1x ∈ Z(X)
⇔ δ′δ1x

′ ∈ Z(X) (by the assumption, x ∼z x′)
⇔ π1δ

′δ1x
′ ∈ Z(X)

⇔ δπ1δ1x
′ ∈ Z(X) (by Remark 2.3(2)).

Remark 4.10. Let X be a finitely supported Cb-set, and x ∈ X. Then,
(1) The set (suppx) is a finite support for [x]∼z . To prove this, let

d /∈ suppx. Then, applying Remark 2.7(1), we get (0/d)x = x and so
(0/d)[x]∼z = [(0/d)x]∼z = [x]∼z . Thus, by Lemma 2.6, we get the result.

(2) If θ1 6= θ2 ∈ Z(X), then [θ1]∼z = [θ2]∼z and so Z(X/ ∼z), the set of
zero elements of X/ ∼z , is singleton.

(3) [x]∼z ∈ Z(X/ ∼z) if and only if x ∈ Z(X). To show this, if x ∈ Z(X),
then by (1), suppx = ∅ is a support of [x]∼z and so, by Remark 2.7(3),
[x]∼z ∈ Z(X/ ∼z). Now let [x]∼z ∈ Z(X/ ∼z). Then, by (2), we have
[x]∼z = [θ]∼z , where θ ∈ Z(X). Now, we have δx ∈ Z(X), for all δ ∈ S.
Take δ = (0/d) with d /∈ suppx. Then, x = (0/d)x ∈ Z(X).



Separated finitely supported Cb-sets 77

Lemma 4.11. If X is a non-discrete finitely supported Cb-set, then X/ ∼z
is a z-separated finitely supported Cb-set with a unique zero element.

Proof. Let [x]∼z 6= [x′]∼z be two non-zero elements in X/ ∼z . Then,
(x, x′) /∈ ∼z , and so there exists δ ∈ S with (δx ∈ Z(X) and δx′ /∈ Z(X))
or (δx /∈ Z(X) and δx′ ∈ Z(X)). Notice that, by Remark 4.10(3), we have
x, x′ /∈ Z(X). Assuming δx ∈ Z(X) and δx′ /∈ Z(X), we show that δ[x]∼z ∈
Z(X/ ∼z) and δ[x′]∼z /∈ Z(X/ ∼z). The other case is proved similarly.
By Remark 4.10(3), we get [δx]∼z ∈ Z(X/ ∼z) and [δx′]∼z /∈ Z(X/ ∼z).
Therefore, δ[x]∼z = [δx]∼z ∈ Z(X/ ∼z), and δ[x′]∼z = [δx′]∼z /∈ Z(X/ ∼z).
Also, by Remark 4.10(2), X/ ∼z has a unique zero element [θ]∼z , where
θ ∈ Z(X).

Remark 4.12. Let X be a finitely supported Cb-set with a unique zero
element. Then, X is z-separated if and only if for all distinct elements
x, x′ ∈ X, there exists δ ∈ S with (δx ∈ Z(X) and δx′ /∈ Z(X)) or (δ′x ∈
Z(X) and δx /∈ Z(X)) if and only if for all distinct elements x, x′ ∈ X we
have (x, x′) /∈∼z if and only if [x]∼z = {x}, for all x ∈ X if and only if
∼z = ∆X .

Theorem 4.13. The category zsep-Inj-(Cb-Set)θfs is a reflective subcate-

gory of Inj-(Cb-Set)θfs.

Proof. We show that F : Inj-(Cb-Set)θfs → zsep-Inj-(Cb-Set)θfs is a left

adjoint of the inclusion functor zsep-Inj-(Cb-Set)θfs ↪→ Inj-(Cb-Set)θfs. Let
X be a finitely supported Cb-set. Define F (X) = X/ ∼z , where ∼z is
the congruence relation given in Lemma 4.9. Notice that, by Lemma 4.11,
X/ ∼z is a z-separated finitely supported Cb-set with a unique zero element.
Also, since the morphisms in Inj-(Cb-Set)θfs are injective, F is a functor.

Now, we take the canonical epimorphism rX : X → F (X) , rX (x) =
[x]∼z , to be the reflection arrow. To prove its universal property, let Y ∈
zsep-Inj-(Cb-Set)θ

fs
and f : X → Y is an injective equivariant map. We

define f̄ : X/ ∼z→ Y by f̄([x]∼z ) = f(x), for [x]∼z ∈ X/ ∼z . Then, f̄ is

an equivariant map and f̄ rx = f . It is well-defined, since [x]∼z = [x′]∼z
implies δx ∈ Z(X) if and only if δx′ ∈ Z(X), for all δ ∈ S, and then,
since f is injective and equivariant, δf(x) = f(δx) ∈ Z(Y ) if and only if
δf(x′) = f(δx′) ∈ Z(Y ). Therefore, f(x) ∼′

z
f(x′), but Y is a z-separated
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finitely supported Cb-set with a unique zero element, and, by Remark 4.12,
we have ∼′

z
= ∆Y . This gives f(x) = f(x′). Also, since f is injective and

equivariant, so is f̄ . Further, f̄ rX (x) = f̄([x]∼z ) = f(x), for all x ∈ X.

4.4 ssep-Inj-(Cb-Set)2θ
fs

is reflective in Inj-(Cb-Set)2θfs Let us de-

note the full subcategory of Inj-(Cb-Set)2θfs consisting of all s-separated
finitely supported Cb-sets equipped with unique zero elements by ssep-Inj-
(Cb-Set)2θfs . We show that it is a reflective subcategory.

We first define a congruence relation on a finitely supported Cb-set with
2-equivariant support map which makes it into an s-separated finitely sup-
ported Cb-set.

Lemma 4.14. Let X be a finitely supported Cb-set with the 2-equivariant
support map. Then the relation ≈ on X defined by

x ≈s x′ if and only if suppx = suppx′,

is a congruence on X. Furthermore, ≈s=∼z .

Proof. The relation ≈s is clearly an equivalence relation. To prove that it is
a congruence, let x, x′ ∈ X with x ≈s x′ and σ ∈ Cb. Then, suppx = suppx′

and, by Theorem 2.4, σ ∈ Permf(D) or σ = πδ, where π ∈ Permf(D) and
δ ∈ S. Let σ = π ∈ Permf(D) or σ = πδ with D

δ
∩ suppx = ∅. Then, by

Lemma 2.9, σx = πx and so

suppσx = suppπx = πsuppx = πsuppx′ = suppπx′ = suppσx′.

Now, if σ = πδ with D
δ
∩suppx 6= ∅, then we show that supp δx = supp δx′.

Applying Corollary 3.5,

supp δx = suppx \ D
δ

= suppx′ \ D
δ

= supp δx′.

Therefore, for all σ ∈ Cb, we have σx ≈s σx′.
Furthermore, ≈s=∼z . For, if (x, x′) ∈ ≈s , then suppx = suppx′. Also,

for δ ∈ S such that δx ∈ Z(X), by Corollary 3.5, we get

∅ = supp δx = suppx \ D
δ

= suppx′ \ D
δ

= supp δx′,

and so δx′ ∈ Z(X). Similarly, if δx′ ∈ Z(X), then δx ∈ Z(X).
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Now, assuming (x, x′) /∈ ≈s , we show that (x, x′) /∈∼z and so ∼z⊆≈s .
Since suppx 6= suppx′, there exists some d ∈ suppx \ suppx′ or some
d ∈ suppx′ \ suppx. Assuming d ∈ suppx \ suppx′, we prove the result.
The other case is proved similarly. Take δ ∈ S such that D

δ
= suppx′.

Thus we have d ∈ (suppx) \ D
δ
, and so supp δx′ = suppx′ \ D

δ
= ∅ and

supp δx = suppx \ D
δ
6= ∅. Therefore, δx′ ∈ Z(X) and δx /∈ Z(X), which

means that (x, x′) /∈∼z .

Remark 4.15. Let X be a finitely supported Cb-set equipped with the
2-equivariant support map, and x ∈ X. Then,

(1) supp [x]≈s = suppx. To show this equality, notice that, we have
supp [x]≈s ⊆ suppx. To prove the reverse inclusion, let d /∈ supp [x]≈s .
Then, [x]≈s = (0/d)[x]≈s = [(0/d)x]≈s and so ((0/d)x, x) ∈≈s . Thus
supp (0/d)x = suppx. Now, applying Remark 2.7(1), d /∈ suppx.

(2) For x ∈ Z(X), we have [x]≈ = Z(X). This is because

[x]≈ = {x′ ∈ X : x′ ≈s x}
= {x′ ∈ X : suppx′ = suppx}
= {x′ ∈ X : suppx′ = ∅}
= {x′ ∈ X : x′ ∈ Z(X)}
= Z(X).

Corollary 4.16. Let X be a finitely supported Cb-set with the 2-equivariant
support map. Then,

(i) X/ ≈s is an s-separated finitely supported Cb-set with a unqiue zero
element.

(ii) X/ ≈s is a z-separated finitely supported Cb-set with a unique zero
element.

Proof. (i) Let [x]≈s 6= [x′]≈s be non-zero elements of (X/ ≈s). Then,
(x, x′) /∈≈s and so suppx 6= suppx′. Applying Remark 4.15(1), we have
supp [x]≈s = suppx and supp [x′]≈s = suppx′. So supp [x]≈s 6= supp [x′]≈s .
Also, by Remark 4.15(2), X/ ≈s has a unique zero element.

(ii) This follows from (i) and Theorem 3.13.

Theorem 4.17. The full subcategory ssep-Inj-(Cb-Set)2θfs of the category

Inj-(Cb-Set)2θfs is reflective.
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Proof. Define the functor H : Inj-(Cb-Set)2θfs → ssep-Inj-(Cb-Set)2θfs , by
H(X) = X/ ≈s , whereX is a finitely supported Cb-set with the 2-equivariant
support map and ≈s is the congruence relation given in Lemma 4.14. By
Corollary 4.17, X/ ≈s is an s-separated finitely supported Cb-set with a
unique zero element. Let δ ∈ S′

[x]≈s
. Then, since the support map of X is

2-equivariant, by Remark 4.15, we get that

δ[x]≈s = [δx]≈s = δx = (suppx) \ D
δ

= (supp [x]≈s ) \ D
δ
,

which means that X/ ≈s is an s-separated finitely supported Cb-set with
2-equivariant support map. Also, since morphisms in Inj-(Cb-Set)2θfs are
injective, H is a functor. Now, by Lemma 4.14, since ≈s=∼z , the rest of
the proof is similar to the proof for Theorem 4.13.
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