Categories and General Algebraic Structures with Applications Volume 11, Special Issue Dedicated to Professor George A. Grätzer, July 2019, 19-31.

The function ring functors of pointfree topology revisited

Bernhard Banaschewski

Dedicated to George Grätzer

in recognition of his many contributions to mathematics

Abstract. This paper establishes two new connections between the familiar function ring functor \Re on the category **CRFrm** of completely regular frames and the category **CR** σ **Frm** of completely regular σ -frames as well as their counterparts for the analogous functor \Im on the category **ODFrm** of 0-dimensional frames, given by the integer-valued functions, and for the related functors \Re^* and \Im^* corresponding to the bounded functions. Further it is shown that some familiar facts concerning these functors are simple consequences of the present results.

For general background, see [2] and its references.

The function ring functor given by the real-valued continuous functions on frames is considered here as

$\mathfrak{R}:\mathbf{CRFrm}\to\mathfrak{R}\mathbf{Frm}$

with the categories of completely regular frames and of ℓ -rings isomorphic to

ISSN: Print 2345-5853, Online 2345-5861.

© Shahid Beheshti University

Keywords: Completely regular frames, zero dimensional frames, completely regular σ -frames, zero dimensional σ -frames, real-valued continuous functions and integer-valued continuous functions on frames.

Mathematics Subject Classification[2010]: 06D22, 06F25.

Received: 10 September 2018, Accepted: 11 February 2019.

some $\Re L$, $L \in \mathbf{CRFrm}$, (with all their ℓ -ring homomorphisms) as domain and codomain, respectively, and its left adjoint $\Re : \Re \mathbf{Frm} \to \mathbf{CRFrm}$ is then provided by the familiar correspondence $A \mapsto \Re A$ where the latter is the (indeed completely regular) frame of archimedean kernels of A. In addition, we then have the adjunction maps

$$\lambda_A : A \to \mathfrak{RR}A, \ a \mapsto \hat{a}, \ \hat{a}(p,q) = \langle (a - \mathbf{p})^+ \land (\mathbf{q} - a)^+ \rangle$$

where $\langle \cdot \rangle$ indicates the archimedean kernel of A generated by \cdot and **p** and **q** are the elements of A corresponding to $p, q \in \mathbf{Q}$, and

$$\mu_L: \mathfrak{KR}L \to L, \ J \mapsto \bigvee \{ \operatorname{coz}(\gamma) \mid \gamma \in J \},$$

with the familiar adjunction identities

$$(\mathfrak{R}\mu_L)\lambda_{\mathfrak{R}L} = \mathrm{i}d_{\mathfrak{R}L}$$
 and $\mu_{\mathfrak{K}A}(\mathfrak{K}\lambda_A) = \mathrm{i}d_{\mathfrak{K}A}$

for all $L \in \mathbf{CRFrm}$ and $A \in \mathfrak{RFrm}$. It should be noted that, in this setting, all λ_A are isomorphisms: for any $A \in \mathfrak{RFrm}$, $A \cong \mathfrak{R}L$ for some $L \in \mathbf{CRFrm}$, and the $\lambda_{\mathfrak{R}L}$ are isomorphisms by the adjunction identities.

On the other hand, we consider the functor Coz: $\mathbf{CRFrm} \to \mathbf{CR}\sigma\mathbf{Frm}$ with its left adjoint $\mathfrak{H} : \mathbf{CR}\sigma\mathbf{Frm} \to \mathbf{CRFrm}$ where $\mathbf{CR}\sigma\mathbf{Frm}$ is the category of completely regular σ -frames, Coz L is the sub- σ -frame of L given by its cozero elements, and $\mathfrak{H}S$ is the frame of σ -ideals of $S \in \mathbf{CR}\sigma\mathbf{Frm}$, with the obvious effects on the maps involved. Here, the adjunction maps are

$$\pi_S: S \to \operatorname{Coz} \mathfrak{H}S, \ a \mapsto \downarrow a = \{s \in S \mid s \le a\},\$$

and

$$\eta_L : \mathfrak{H} \operatorname{Coz} L \to L, \ J \mapsto \bigvee J \ (\text{in } L),$$

such that

 $(\operatorname{Coz} \eta_L) \pi_{\operatorname{Coz} L} = \operatorname{id}_{\operatorname{Coz} L}$ and $\eta_{\mathfrak{H}S}(\mathfrak{H}\pi_S) = \operatorname{id}_{\mathfrak{H}S}.$

Concerning **CRFrm** \rightarrow **CR** σ **Frm**, recall that a σ -frame S is completely regular if each $a \in S$ is a countable join of elements $s \prec a$ where $\prec i$ is the usual strong inclusion, and Coz L is well known to be of that kind.

Next, entirely parallel to the above, we shall consider the functor \mathfrak{Z} : **ODFrm** $\to \mathfrak{Z}$ **Frm** where $\mathfrak{Z}L$ is the usual ℓ -ring of integer-valued continuous functions on L and **3Frm** the present analogue of **\ReFrm**. Further, **3** has a left adjoint, also provided by the archimedean kernels and denoted by $\mathbf{\hat{\kappa}}: \mathbf{3Frm} \rightarrow \mathbf{ODFrm}$, based on the fact that the principal archimedean kernels of the **3**L are complemented because the **3**L satisfy the **Z**-identity $\gamma \wedge (\mathbf{1} - \gamma) \leq \mathbf{0}$.

The adjunction maps in the present situation are

$$\kappa_A: A \to \mathfrak{ZR}A, \ a \mapsto \tilde{a}, \ \tilde{a}(m) = \langle (\mathbf{1} - |\mathbf{m} - a|)^+ \rangle \text{ (where } \mathbf{m} = m\mathbf{1})$$

and

$$\nu_L : \mathfrak{KJ}L \to L, \ J \mapsto \bigvee \{ \operatorname{coz}(\gamma) \mid \gamma \in J \},$$

with identities analogous to the case of \Re ; also, all κ_A are isomorphism here by the nature of **3Frm**.

Now, the counterpart of Coz in the present situation is the functor

$\mathbf{S}: \mathbf{ODFrm} \to \mathbf{OD}\sigma\mathbf{Frm}, \ L \mapsto \mathbf{S}L,$

where the latter is the sub- σ -frame of L generated by its complemented elements, with formally the same left adjoint as in the earlier situation,

$\mathfrak{H}: \mathbf{OD}\sigma\mathbf{Frm} \to \mathbf{ODFrm},$

and the adjunction maps

$$\iota_S: S \to \mathbf{S}\mathfrak{H}S, \ a \mapsto \downarrow a,$$

and

$$\theta_L : \mathfrak{H}\mathbf{S}L \to L, \ J \mapsto \bigvee J \ (\text{in } L),$$

subject to the exact analogues of the adjunction identities in the case of Coz.

The following familiar facts will be used later on:

(I) μ_L and ν_L are isomorphisms if and only if L is Lindelöf.

(II) For any Lindelöf $L \in \mathbf{CRFrm}$, its cozero elements are exactly its Lindelöf elements; similarly, for any Lindelöf $L \in \mathbf{ODFrm}$ the $a \in \mathbf{S}L$ are exactly the Lindelöf elements of L.

(III) $\eta_L : \mathfrak{H} \operatorname{Coz} L \to L$ is the Lindelöf coreflection map in **CRFrm** and the same holds for $\theta_L : \mathfrak{H} \mathbf{S} L \to L$ in **ODFrm**.

Proposition 1. $\operatorname{Coz} \mathfrak{K} : \mathfrak{R}\mathbf{Frm} \to \mathbf{CR}\sigma\mathbf{Frm}$ is a category equivalence with inverse \mathfrak{RH} .

Proof. Concerning Coz £9.5, there is the composite homomorphism

$$\operatorname{Coz}\mathfrak{KRH}S \xrightarrow{\operatorname{Coz}\mu_{\mathfrak{H}S}} \operatorname{Coz}\mathfrak{H}S \xrightarrow{\pi_S^{-1}} S$$

for each $S \in \mathbf{CR}\sigma\mathbf{Frm}$, where $\operatorname{Coz} \mu_{\mathfrak{H}S}$ is an isomorphism because this holds already for $\mu_{\mathfrak{H}S}$ by (I) since $\mathfrak{H}S$ is Lindelöf, and

$$\pi_S: S \to \operatorname{Coz} \mathfrak{H}S, \ a \mapsto \downarrow a,$$

is an isomorphism by (II) as the Lindelöf elements of $\mathfrak{H}S$ are clearly the principal ideals. Hence $\operatorname{Coz} \mathfrak{KH} \mathfrak{H} \cong$ Id since all maps involved here are natural in S. Similarly, for $\mathfrak{RH} \operatorname{Coz} \mathfrak{K}$, one has the analogous situation

$$\mathfrak{RH}\operatorname{Coz}\mathfrak{RR}L \xrightarrow{\mathfrak{RH}_{R\mathfrak{RL}}} \mathfrak{RRR}L \xrightarrow{\mathfrak{R}\mu_L} \mathfrak{RL}$$

where $\Re \eta_{\Re \Re L}$ is an isomorphism since this holds for $\eta_{\Re \Re L}$ by (III) given that $\Re \Re L$ is Lindelöf, and $\Re \mu_L$ is an isomorphism by the adjunction identities for \Re and \Re .

Remark 1. As an obvious alternative of the above proof, one might note the following where Λ is the category of completely regular Lindelöf frames. Given the familiar facts that the adjunction maps λ_A and μ_L are isomorphisms for $A \in \Re Frm$ and $L \in \Lambda$ and every $\Re \mu_L$ is an isomorphism, \Re induces a category equivalence $\Lambda \to \Re Frm$ with inverse induced by \Re . On the other hand, there are the functors

$$\operatorname{Coz} : \mathbf{\Lambda} \to \mathbf{CR}\sigma\mathbf{Frm}, \ L \mapsto \operatorname{Coz} L,$$

and

$$\mathfrak{H}: \mathbf{CR}\sigma\mathbf{Frm} \to \mathbf{\Lambda}, \ S \mapsto \mathfrak{H}S,$$

with the natural isomorphisms

$$\eta_L : \mathfrak{H} \operatorname{Coz} L \to L, \ J \mapsto \bigvee J \ (\text{in } L)$$

and

$$\pi_S: S \to \operatorname{Coz} \mathfrak{H}S, \ a \mapsto \downarrow a,$$

which show that Coz provides a category equivalence with inverse given by \mathfrak{H} , and combining the two then proves the proposition. Maybe this twostep approach has a certain appeal, but somehow the more direct argument seemed preferable here.

The following adds some detail concerning the situation in Proposition 1.

Proposition 2. For any $L \in \mathbf{CRFrm}$, the natural homomorphism $\operatorname{Coz} \mu_L$: $\operatorname{Coz} \mathfrak{KR}L \to \operatorname{Coz} L$ is an isomorphism.

Proof. To begin with, note that $\mu_L : \mathfrak{KR}L \to L$ and $\eta_L : \mathfrak{HCoz} L \to L$ are both the Lindelöf coreflection map in **CRFrm**, by (I) and (III) respectively, so that there exists a natural isomorphism $h_L : \mathfrak{KR}L \to \mathfrak{HCoz} L$ such that $\mu_L = \eta_L h_L$ and hence $\operatorname{Coz} \mu_L = (\operatorname{Coz} \eta_L)(\operatorname{Coz} h_L)$; on the other hand,

$$\operatorname{Coz}\left(\mathfrak{H}\operatorname{Coz}L\right) = \{\downarrow c \mid c \in \operatorname{Coz}L\}$$

by (II), showing that $\operatorname{Coz} \eta_L$ is an isomorphism, and the same then holds for $\operatorname{Coz} \mu_L$.

Corollary 1. (i) For any $L, M \in \mathbf{CRFrm}$, $\mathfrak{R}L \cong \mathfrak{R}M$ if and only if $\operatorname{Coz} L \cong \operatorname{Coz} M$.

(ii) For any $h: L \to M$ in **CRFrm**, $\Re h$ is an isomorphism if and only if $\operatorname{Coz} h$ is an isomorphism.

Proof. (i) For any isomorphism $\varphi : \Re L \to \Re M$, the proposition trivially provides the isomorphism

$$(\operatorname{Coz} \mu_M)(\operatorname{Coz} \mathfrak{K} \varphi)(\operatorname{Coz} \mu_L)^{-1}: \operatorname{Coz} L \to \operatorname{Coz} M.$$

Conversely, given any isomorphism $\sigma : \operatorname{Coz} L \to \operatorname{Coz} M$, the corresponding isomorphism $\mathfrak{RH} \circ : \mathfrak{RH} \operatorname{Coz} L \to \mathfrak{RH} \operatorname{Coz} M$ determines an isomorphism $\mathfrak{RL} \to \mathfrak{RM}$ as follows: since the frame of reals is Lindelöf, (III) implies any $\mathfrak{RH}_L : \mathfrak{RH} \operatorname{Coz} L \to \mathfrak{RL}$ is onto and hence an isomorphism so that one obtains

$$(\mathfrak{R}\eta_M)(\mathfrak{R}\mathfrak{H}\sigma)(\mathfrak{R}\eta_L)^{-1}:\mathfrak{R}L\to\mathfrak{R}M.$$

(ii) Any $h: L \to M$ as given determines the commuting square

$$\begin{array}{c|c} \operatorname{Coz} \mathfrak{KR}L & \xrightarrow{\operatorname{Coz} \mathfrak{KR}h} \operatorname{Coz} \mathfrak{KR}M \\ \operatorname{Coz} \mu_L & & & & & \\ \operatorname{Coz} \mu_L & & & & & \\ \operatorname{Coz} L & \xrightarrow{\operatorname{Coz} h} \operatorname{Coz} M \end{array}$$

and if $\Re h$ is an isomorphism this trivially makes $\operatorname{Coz} h$ an isomorphism by the proposition. On the other hand, given the latter, each of the following is also an isomorphism

the first by the above square; the second by acting \mathfrak{H} on the first and then using the isomorphisms $\eta_{\mathfrak{RR}}$ and $\eta_{\mathfrak{RR}}$ (note (III)); the third trivially now; and the fourth because $\mathfrak{R}\mu_L$ and $\mathfrak{R}\mu_M$ are isomorphisms by the adjunction identities for \mathfrak{R} and \mathfrak{K} .

Remark 2. The above (ii) appeared first in [1].

Proposition 3. Sf: \Im Frm \rightarrow OD σ Frm is a category equivalence with inverse $\Im\mathfrak{H}$.

Proof. Of course, this turns out to be entirely parallel to the proof of Proposition 1, now involving the maps

$$\mathbf{S}\mathfrak{K}\mathfrak{Z}\mathfrak{H}S \xrightarrow{\mathbf{S}} \mathbf{S}\mathfrak{H}S \xrightarrow{\mathbf{S}} \mathbf{S}\mathfrak{H}S \xrightarrow{\iota_S^{-1}} S$$

and

$$\mathfrak{ZHSRJL} \xrightarrow{\mathfrak{ZHSL}} \mathfrak{ZRJL} \xrightarrow{\mathfrak{ZLL}} \mathfrak{ZL}$$

for $S \in \mathbf{OD}\sigma\mathbf{Frm}$ and $L \in \mathbf{ODFrm}$, respectively, with identically the same reasoning, where the counterpart of Coz is the functor **S** introduced earlier. Specifically, then, the following are isomorphisms: $\nu_{\mathfrak{HS}}$ by (I) since \mathfrak{HS} is Lindelöf, ι_S by (II), $\theta_{\mathfrak{R3}L}$ by (III) as $\mathfrak{R3}L$ is Lindelöf, and $\mathfrak{J}\nu_L$ by the adjunction identities for \mathfrak{Z} and \mathfrak{K} .

Remark 3. Exactly analogous to Remark 1, there is an alternative twostep argument possible here, using the equivalence of the category of 0dimensional Lindelöf frames with \Im Frm and with $OD\sigma$ Frm, provided by the pairs of adjoint functors (\Im, \Re) and $(\mathbf{S}, \mathfrak{H})$, respectively.

Proposition 4. For any $L \in \text{ODFrm}$, the natural homomorphism $\mathbf{S}\nu_L$: $\mathbf{S}\mathfrak{K}\mathfrak{Z}L \to \mathbf{S}L$ is an isomorphism.

Proof. In the present setting, $\nu_L : \mathfrak{K}\mathfrak{Z}L \to L$ and $\theta_L : \mathfrak{H}\mathfrak{S}L \to L$ are both the Lindelöf coreflection map in **ODFrm**, by (I) and (III) respectively, and the same approach applied earlier to μ_L and η_L then shows that $\mathfrak{S}\nu_L$ is an isomorphism.

Corollary 2. (i) For any $L, M \in \mathbf{ODFrm}$, $\mathfrak{Z}L \cong \mathfrak{Z}M$ if and only if $\mathbf{S}L \cong \mathbf{S}M$.

(ii) For any $h: L \to M$ in **ODFrm**, $\Im h$ is an isomorphism if and only if **S**h is an isomorphism.

Proof. Again, this is formally the same as the proof of its counterpart for \mathfrak{R} , now with

 Coz , \mathfrak{R} , $\operatorname{Coz} \mu_L$, and $\eta_L : \mathfrak{H} \operatorname{Coz} L \to L$

replaced by

S, \mathfrak{Z} , $\mathbf{S}\nu_L$, and $\theta_L : \mathfrak{H}\mathbf{S}L \to L$

where $\Im \theta_L$ is an isomorphism by (III).

In particular, regarding (i), any isomorphism $\varphi : \Im L \to \Im M$ trivially determines the isomorphism

$$\mathbf{S}\nu_M(\mathbf{S}\mathfrak{K}\varphi)(\mathbf{S}\nu_L)^{-1}:\mathbf{S}L\to\mathbf{S}M.$$

Conversely, for any isomorphism $\sigma : \mathbf{S}L \to \mathbf{S}M$, the isomorphism $\mathfrak{Z}\mathfrak{H}\sigma : \mathfrak{Z}\mathfrak{H}\mathfrak{S}\mathfrak{S}L \to \mathfrak{Z}\mathfrak{H}\mathfrak{S}\mathfrak{S}M$ provides an isomorphism $\mathfrak{Z}L \to \mathfrak{Z}\mathfrak{H}$ since $\mathfrak{Z}\theta_L$ and $\mathfrak{Z}\theta_M$ are isomorphisms.

Regarding (ii), any $h: L \to M$ as given determines the commuting square

and since the downward maps are isomorphisms $\mathbf{S}h$ is an isomorphism whenever $\mathfrak{Z}h$ is. Conversely, given the former, each of the following is an isomorphism

$$S$$
£3 h , £3 h , 3£3 h , 3 h

the first by the above square, the second by acting \mathfrak{H} on the first and using the isomorphisms $\theta_{\mathfrak{K}\mathfrak{Z}L}$ and $\theta_{\mathfrak{K}\mathfrak{Z}M}$ (note (III)), the third trivially by acting \mathfrak{Z} on the second, and the last because $\mathfrak{Z}\nu_L$ and $\mathfrak{Z}\nu_M$ are isomorphisms by the adjunction identities for \mathfrak{Z} and \mathfrak{K} .

Remark 4. The above (ii) appeared in [3].

For the case of \Re^* , some further entities will be used besides the present counterpart \Re^* **Frm** of the earlier \Re **Frm**:

the category \mathbf{K}_{σ} of compact completely regular σ -frames;

the compact coreflection in **CRFrm**; given by $\beta_L : \beta L \to L$ where $\beta L = CR\mathfrak{J}L$, the largest completely regular subframe of the ideal frame $\mathfrak{J}L$ of L, with $\beta_L(J) = \bigvee J$ (in L); and

the obvious natural isomorphism $\varrho_L : \Re\beta L \to \Re^* L$ provided by the image factorization of $\Re\beta_L : \Re\beta L \to \Re L$ which determines the composite

$$\tau_L: \mathfrak{KR}^*L \xrightarrow{(\mathfrak{K}\varrho_L)^{-1}} \mathfrak{KR}\beta L \xrightarrow{\mu_{\beta L}} \beta L,$$

an isomorphism by the nature of ρ_L and the compactness of βL .

Now, the present analogue of Proposition 1 is

Proposition 5. $Coz\mathfrak{K} : \mathfrak{R}^*\mathbf{Frm} \to \mathbf{K}_{\sigma}$ is a category equivalence with inverse $\mathfrak{R}^*\mathfrak{H}$.

Proof. Of course \mathfrak{KR}^*L is compact, as shown by the above τ_L , so that $\operatorname{Coz} \mathfrak{K}$ indeed maps $\mathfrak{R}^*\mathbf{Frm}$ into \mathbf{K}_{σ} . Further, $\operatorname{Coz} \mathfrak{KR}^*\mathfrak{H} \cong \operatorname{Coz} \mathfrak{H}$ because the map $\mathfrak{KR}^*\mathfrak{H} \to \mathfrak{H}S$ provided by the adjunction maps of \mathfrak{R} and \mathfrak{K} is an isomorphism for any $S \in \mathbf{K}_{\sigma}$ because $\mathfrak{H}S$ is compact by the compactness of S, and since $\operatorname{Coz} \mathfrak{H}S \cong S$ as in the case involving \mathfrak{R} it follows that $\operatorname{Coz} \mathfrak{KR}^*\mathfrak{H} \cong \operatorname{Id}$. Similarly, $\mathfrak{R}^*\mathfrak{H} \operatorname{Coz} \mathfrak{K} \cong \mathfrak{R}^*\mathfrak{K}$ because $\mathfrak{H} \operatorname{Coz} \mathfrak{K} \cong \mathfrak{K}$, and since $\mathfrak{R}^*\mathfrak{K} \cong \operatorname{Id}$ by the definition of $\mathfrak{R}^*\mathbf{Frm}$ it follows that $\mathfrak{R}^*\mathfrak{H} \operatorname{Coz} \mathfrak{K} \cong \operatorname{Id}$ as well. \Box **Remark 5.** As in the previous two cases, the present result can also be obtained by a natural two-step argument: for the category **K** of compact completely regular frames, one has the two equivalences $\mathbf{K} \cong \mathfrak{R}^* \mathbf{Frm}$ and $\mathbf{K} \cong \mathbf{K}_{\sigma}$ produced by the pairs of adjoint functors $(\mathfrak{R}^*, \mathfrak{K})$ and $\operatorname{Coz}, \mathfrak{H}$, respectively.

Next, regarding the present analogue of Proposition 2, the above isomorphism $\tau_L : \mathfrak{KR}^*L \to \beta L$ immediately implies

Proposition 6. For any $L \in \mathbf{CRFrm}$, the natural homomorphism $Coz \tau_L$: $Coz \mathfrak{RR}^*L \to Coz \beta L$ is an isomorphism.

Remark 6. (i) By way of comparison with Proposition 2, it may be worth noting that $\operatorname{Coz} \beta L$ is the compact coreflection of $\operatorname{Coz} L$ in $\operatorname{CR}\sigma\operatorname{Frm}$ with coreflection map $\operatorname{Coz} \beta_L$: $\operatorname{Coz} \beta L \to \operatorname{Coz} L$: clearly, for arbitrary $S \in \operatorname{CR}\sigma\operatorname{Frm}$, that map is

$$\operatorname{Coz} \beta \mathfrak{H}S \xrightarrow[\operatorname{Coz} \beta_{\mathfrak{H}S}]{} \operatorname{Coz} \mathfrak{H}S \xrightarrow[(\pi_S)^{-1}]{} S;$$

on the other hand, in **CRFrm**,

$$\beta\mathfrak{H}\operatorname{Coz} L \xrightarrow[\beta\mathfrak{H}\operatorname{Coz} L]{} \mathcal{H} \xrightarrow{} \mathfrak{H}\operatorname{Coz} L \xrightarrow{} \eta_L L$$

is readily seen to be the compact coreflection map, providing a natural isomorphism $\beta \mathfrak{H} \operatorname{Coz} L \to \beta L$ which then implies the claim.

(ii) Concerning τ_L , it should be noted that $\beta_L \tau_L = \mu_L \Re i_L$ for the identical embedding $i_L : \Re^*L \to \Re L$, and that the existence of an isomorphism $\Re \Re^*L \to \beta L$ which satisfies this is a familiar fact, but this simple way of presenting it seems to be new.

Corollary 3. (i) For any $L, M \in \mathbf{CRFrm}$, $\mathfrak{R}^*L \cong \mathfrak{R}^*M$ if and only if $Coz \beta L \cong Coz \beta M$.

(ii) For any $h: L \to M$ in **CRFrm**, \mathfrak{R}^*h is an isomorphism if and only if $\operatorname{Coz}\beta h$ is an isomorphism.

Proof. (i) For any isomorphism $\varphi : \mathfrak{R}^*L \to \mathfrak{R}^*M$, the isomorphism $\tau_M(\mathfrak{K}\varphi)(\tau_L)^{-1} : \beta L \to \beta M$ induces an isomorphism $\operatorname{Coz} \beta L \to \operatorname{Coz} \beta M$. Conversely, given any isomorphism $\sigma : \operatorname{Coz} \beta L \to \operatorname{Coz} \beta M$, the corresponding isomorphism $\mathfrak{H}\sigma : \mathfrak{H}\operatorname{Coz} \beta L \to \mathfrak{H}\operatorname{Coz} \beta M$ shows $\beta L \cong \beta M$, given the isomorphisms $\eta_{\beta L}$ and $\eta_{\beta M}$ by (III), and this in turn implies $\mathfrak{R}^*L \cong \mathfrak{R}^*M$ by the natural isomorphism $\varrho_L : \mathfrak{R}\beta L \to \mathfrak{R}^*L$.

(ii) Any $h: L \to M$ as given determines the commuting square

$$\begin{array}{c|c} \operatorname{Coz} \mathfrak{K}\mathfrak{R}^*L & \xrightarrow{\operatorname{Coz} \mathfrak{K}\mathfrak{R}^*h} \operatorname{Coz} \mathfrak{K}\mathfrak{R}^*M \\ & & & & & \downarrow \operatorname{Coz} \tau_L \\ & & & & & \downarrow \operatorname{Coz} \tau_M \\ & & & & & \operatorname{Coz} \beta L & \xrightarrow{} & \operatorname{Coz} \beta M \end{array}$$

where the downward maps are isomorphisms by the proposition, and if \Re^*h is an isomorphism this trivially implies the same for $\operatorname{Coz} \beta h$. On the other hand, given the latter, each of the following is also an isomorphism

$$\operatorname{Coz}\mathfrak{KR}^*h$$
, \mathfrak{KR}^*h , \mathfrak{KRR}^*h , $\mathfrak{R}\beta h$, \mathfrak{R}^*h

the first by the above square, the second by acting \mathfrak{H} on the first and using the isomorphisms $\eta_{\mathfrak{KR}^*L}$ and $\eta_{\mathfrak{KR}^*M}$ (note (III)), the third trivially now, the fourth by the natural isomorphism $\tau_L : \mathfrak{KR}^*L \to \beta L$, and the last by the natural isomorphism $\varrho_L : \mathfrak{K\beta}L \to \mathfrak{R}^*L$ and its version for M.

Remark 7. The above (ii) corresponds to a result in [1].

Finally, the situation regarding \mathfrak{Z}^* can certainly be treated by modifying the arguments used above for \mathfrak{R}^* , now involving the compact 0dimensional σ -frames, the compact coreflection map $\zeta_L : \zeta L \to L$ in the category **ODFrm**, and the natural isomorphism $\mathfrak{Z} \to \mathfrak{Z}^* L$ determined by the image factorization of $\mathfrak{Z} : \mathfrak{Z} \to \mathfrak{Z}$. This will produce the exact counterparts for \mathfrak{Z}^* of the above result for \mathfrak{R}^* , to be left as an exercise. Instead, we shall use an interesting alternative approach based on the familiar functor **B** from **ODFrm** to the category **BAlg** of Boolean algebras, taking each $L \in \mathbf{ODFrm}$ to the Boolean algebra **B**L of its complemented elements, and its familiar left adjoint $\mathfrak{J}: \mathbf{BAlg} \to \mathbf{ODFrm}, A \mapsto \mathfrak{J}A$, the ideal frame of A, with the adjunction maps

$$\zeta_L : \mathfrak{J}\mathbf{B}L \to L, \ J \mapsto \bigvee J \ (\text{in } L)$$

and

$$\delta_A : A \to \mathbf{B}\mathfrak{J}A, \ a \mapsto \downarrow a = \{s \in A \mid s \le a\}.$$

Note that ζ_L is in fact the compact coreflection map in **ODFrm** and \mathfrak{JBL} is often denoted ζL . Further. $\varrho_L^0 : \mathfrak{Z} \zeta L \to \mathfrak{Z}^* L$ and

$$\tau_L^0 = \nu_{\zeta L} (\mathfrak{K} \varrho_L^0)^{-1} : \mathfrak{K} \mathfrak{Z}^* L \to \zeta L$$

will be the present analogues of the earlier isomorphisms ϱ_L and τ_L .

Now, the relevant results are as follows.

Proposition 7. B \mathfrak{K} : \mathfrak{Z}^* **Frm** \to **BAlg** is a category equivalence with inverse $\mathfrak{Z}\mathfrak{J}$.

Proof. Concerning $B\mathfrak{RJJ}$, there is the composite homomorphism

$$\mathbf{B}\mathfrak{K}\mathfrak{J}\mathfrak{J}A \xrightarrow{\mathbf{B}}_{\mathcal{J}A} \mathbf{B}\mathfrak{J}A \xrightarrow{(\delta_A)^{-1}} A$$

for any $A \in \mathbf{BAlg}$, where the adjunction map $\nu_{\mathfrak{J}A} : \mathfrak{K}\mathfrak{Z}\mathfrak{J}A \to \mathfrak{J}A$ is an isomorphism by the compactness of $\mathfrak{J}A$, and since $\delta_A : A \to \mathbf{B}\mathfrak{J}A$ is obviously an isomorphism this provides the isomorphism $(\delta_A)^{-1}$, showing in all that $\mathbf{B}\mathfrak{K}\mathfrak{Z}\mathfrak{J}\cong \mathrm{Id}$. Similarly, $\mathfrak{Z}\mathfrak{J}\mathfrak{B}\mathfrak{K}\cong \mathrm{Id}$ because each map in the sequence

$$\Im \Im \mathbf{B} \mathfrak{K} \mathfrak{Z}^* L \xrightarrow{}_{\mathfrak{I} \mathfrak{G} \mathfrak{Z}^* L} \Im \mathfrak{K} \mathfrak{Z}^* L \xrightarrow{}_{\mathfrak{I} \mathfrak{C}} \Im \zeta L \xrightarrow{}_{\varrho_L^0} \mathfrak{Z}^* L$$

is an isomorphism for any L: the first by the compactness of \mathfrak{KJ}^*L and the other two obviously.

Remark 8. Again, there is a natural two-step version of this proof, showing in this case that the category of compact 0-dimensional frames is equivalent to \mathfrak{Z}^* **Frm** as well as to **BAlg**, using the pairs of adjoint functors $(\mathfrak{Z}, \mathfrak{K})$ and $(\mathbf{B}, \mathfrak{J})$. It might be added here that the latter equivalence is, of course, the pointfree version of the classical Stone Duality.

In the following, $\nu_L^* = \nu_L \Re j_L : \ \Re \Im^* L \to L$ for any $L \in \mathbf{ODFrm}$, where $j_L : \Im^* L \to \Im L$ is the identical embedding.

Proposition 8. For any $L \in \mathbf{ODFrm}$, the natural homomorphism $\mathbf{B}\nu_L^*$: $\mathbf{B}\mathfrak{K}\mathfrak{Z}^*L \to \mathbf{B}L$ is an isomorphism.

Proof. For any $a \in \mathbf{B}L$ and its characteristic function $\chi_a \in \mathfrak{Z}^*L$, $\nu_L^*(\langle \chi_a \rangle) = \cos(\chi_a) = a$ where $\langle \cdot \rangle$ indicates the archimedian kernel in \mathfrak{Z}^*L generated by \cdot , and since $\langle \chi_a \rangle \in \mathbf{B}\mathfrak{K}\mathfrak{Z}^*L$ (as noted earlier) it follows that $\mathbf{B}\nu_L^*$ is onto. On the other hand, since ν_L^* is obviously dense, $\mathbf{B}\nu_L^*$ is also one-one and therefore an isomorphism.

Corollary 4. (i) For any $L, M \in \mathbf{ODFrm}$, $\mathfrak{Z}^*L \cong \mathfrak{Z}^*M$ if and only if $\mathbf{B}L \cong \mathbf{B}M$.

(ii) For any $h: L \to M$ in **ODFrm**, \mathfrak{Z}^*h is an isomorphism if and only if **B**h is an isomorphism.

Proof. (i) By the proposition, any isomorphism $\varphi : \mathfrak{Z}^*L \to \mathfrak{Z}^*M$ determines the isomorphism $(\mathbf{B}\nu_M^*)(\mathbf{B}\mathfrak{K}\varphi)(\mathbf{B}\nu_L^*)^{-1} : \mathbf{B}L \to \mathbf{B}M$. Conversely, any isomorphism $\sigma : \mathbf{B}L \to \mathbf{B}M$ determines the isomorphism $\varrho_M^0(\mathfrak{Z}\mathfrak{F}\sigma)(\varrho_L^0)^{-1} : \mathfrak{F}L \to \mathfrak{F}M$.

(ii) Any $h: L \to M$ as given determines the commuting square

where the downward maps are isomorphisms by the proposition so that $\mathbf{B}h$ is trivially an isomorphism whenever \mathfrak{Z}^*h is. Conversely, if $\mathbf{B}h$ is an isomorphism then each of the following is an isomorphism as well

B
$$\mathfrak{K}\mathfrak{Z}^*h$$
, $\mathfrak{K}\mathfrak{Z}^*h$, $\mathfrak{Z}\mathfrak{K}\mathfrak{Z}^*h$, \mathfrak{Z}^*h

the first by the above square, the second by acting \mathfrak{J} on the first and using the isomorphisms $\zeta_{\mathfrak{K}\mathfrak{Z}^*L}$ and $\zeta_{\mathfrak{K}\mathfrak{Z}^*M}$, the third then trivially, and the last by the isomorphism $\varrho_L^0\mathfrak{Z}\tau_L^0:\mathfrak{Z}\mathfrak{K}\mathfrak{Z}^*L\to\mathfrak{Z}^*L$ and its version for M.

Remark 9. The above (ii) was originally proved in [3].

References

- Ball, R.N. and Walters-Wayland, J.L., "C- and C*-Quotients in Pointfree Topology", Diss. Math. 412, 2002.
- Banaschewski, B., On the function ring functor in pointfree topology, Appl. Categ. Structures 13 (2005), 305-328.
- [3] Banaschewski, B., On the maps of pointfree topology which preserve the rings of integervalued continuous functions, Appl. Categ. Structures 26 (2018), 477-489.

[4] Picado, J. and Pultr, A., "Frames and Locales", Birkhäuser, Springer Basel AG, 2012.

Bernhard Banaschewski, Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada.

Email: iscoe@math.mcmaster.ca