Categories and General Algebraic Structures with Applications Volume 12, Number 1, January 2020, 25-42.

On GPW-flat acts

H. Rashidi, A. Golchin, and H. Mohammadzadeh Saany

Abstract. In this article, we present *GPW*-flatness property of acts over monoids, which is a generalization of principal weak flatness. We say that a right *S*-act A_S is *GPW*-flat if for every $s \in S$, there exists a natural number $n = n_{(s,A_S)} \in \mathbb{N}$ such that the functor $A_S \otimes_{S^-}$ preserves the embedding of the principal left ideal $_S(Ss^n)$ into $_SS$. We show that a right *S*-act A_S is *GPW*-flat if and only if for every $s \in S$ there exists a natural number $n = n_{(s,A_S)} \in \mathbb{N}$ such that the corresponding φ is surjective for the pullback diagram $P(Ss^n, Ss^n, \iota, \iota, S)$, where $\iota : _S(Ss^n) \to _SS$ is a monomorphism of left *S*-acts. Also we give some general properties and a characterization of monoids for which this condition of their acts implies some other properties and vice versa.

1 Introduction

In 1970, Kilp [7] initiated a study of flatness of acts. In 1983, further investigation of (principal) weak version of flatness was done by Kilp [8]. In 2001, Laan [10] gave equivalents of different flatness properties according to surjectivity of φ corresponding to some pullback diagram.

In this article, in Section 2, we introduce a generalization of principal weak flatness, called GPW-flatness and will give some general properties.

Keywords: GPW-flat, eventually regular monoid, eventually left almost regular monoid. *Mathematics Subject Classification* [2010]: 20M30.

Received: 24 April 2018, Accepted: 7 August 2018.

ISSN: Print 2345-5853, Online 2345-5861.

[©] Shahid Beheshti University

In Section 3, we give conditions for a (Rees factor) cyclic act to be GPWflat. In Section 4, we give a characterization of monoids over which all right S-acts are GPW-flat and also a characterization of monoids S for which this condition of their right S-acts implies some other properties and vice versa.

In this paper S will stand for a monoid and \mathbb{N} the set of natural numbers. A nonempty set A is called a *right S-act*, denoted A_S , if there exists a mapping $A \times S \to A, (a, s) \mapsto as$, such that (as)t = a(st) and a1 = a, for all $a \in A$ and all $s, t \in S$. An act A_S is called *weakly flat* if the functor $A_S \otimes S_S$ preserves all embeddings of left ideals into S. An act A_S is called principally weakly flat if the functor $A_S \otimes S^-$ preserves all embeddings of principal left ideals into S. A right S-act A_S is called *torsion free* if ac = a'cfor any $a, a' \in A_S$ and right cancellable element $c \in S$ implies a = a'. A right S-act A_S satisfies Condition (P) if for every $a, a' \in A_S, s, t \in S, as = a't$ implies that a = a''u, a' = a''v and us = vt for some $a'' \in A_S$, $u, v \in S$. A right S-act A_S satisfies Condition (E) if for every $a \in A_S$, $s, t \in S$, as = atimplies that a = a'u and us = ut for some $a' \in A_S, u \in S$. A right S-act A_S satisfies Condition (PWP) if for every $a, a' \in A_S, s \in S, as = a's$ implies that a = a''u, a' = a''v and us = vs for some $a'' \in A_S, u, v \in S$. A right S-act A_S satisfies Condition (P') if for every $a, a' \in A_S, s, t, z \in S, as = a't$ and sz = tz imply that a = a''u, a' = a''v and us = vt for some $a'' \in A_S$, $u, v \in S$.

Let K be a proper right ideal of S. If x, y, and z denote elements not belonging to S, define $A(K) = (\{x, y\} \times (S \setminus K)) \bigcup (\{z\} \times K)$, and define a right S-action on A(K) by

$$(x,v)s = \begin{cases} (x,vs) & vs \notin K\\ (z,vs) & vs \in K \end{cases}$$
$$(y,v)s = \begin{cases} (y,vs) & vs \notin K\\ (z,vs) & vs \in K \end{cases}$$
$$(z,v)s = (z,vs).$$

Then clearly A(K) is a right S-act.

2 General properties

In this section, we introduce GPW-flatness property of acts and will give some general properties.

Definition 2.1. A right S-act A_S is called *GPW-flat* if for every $s \in S$, there exists $n = n_{(s,A_S)} \in \mathbb{N}$, such that the functor $A_S \otimes_S -$ preserves the embedding of the principal left ideal $_S(Ss^n)$ into $_SS$.

Clearly every principally weakly flat right S-act is GPW-flat, but, by the following example, we see that the converse is not true.

Example 2.2. Suppose $S = \{1, x, 0\}$ with $x^2 = 0$, and let $K_S = \{x, 0\}$. Clearly the right Rees factor S-act S/K is GPW-flat, but it is not principally weakly flat.

Proposition 2.3. For any right S-act A_S , the following statements are equivalent:

(1) A_S is GPW-flat.

(2) For every $s \in S$ there exists $n \in \mathbb{N}$ such that for any $a, a' \in A_S$, $a \otimes s^n = a' \otimes s^n$ in $A_S \otimes {}_SS$ implies $a \otimes s^n = a' \otimes s^n$ in $A_S \otimes {}_S(Ss^n)$.

(3) For every $s \in S$ there exists $n \in \mathbb{N}$ such that for any $a, a' \in A_S$, $as^n = a's^n$ implies $a \otimes s^n = a' \otimes s^n$ in $A_S \otimes {}_S(Ss^n)$.

(4) For every $s \in S$ there exists $n \in \mathbb{N}$ such that for any $a, a' \in A_S$, $as^n = a's^n$ implies that

$$a = a_1 s_1$$

$$a_1 t_1 = a_2 s_2$$

$$s_1 s^n = t_1 s^n$$

$$a_2 t_2 = a_3 s_3$$

$$s_2 s^n = t_2 s^n$$

$$\vdots$$

$$a_k t_k = a'$$

$$s_k s^n = t_k s^n$$

for some $k \in \mathbb{N}$ and elements $a_1, \ldots, a_k \in A_S, s_1, t_1, \ldots, s_k, t_k \in S$.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ are obvious by Definition 2.1. (2) \Leftrightarrow (4) This is obvious by [9, II, Lemma 5.5].

Corollary 2.4. Suppose that S is an idempotent or right cancellative monoid. Then for a right S-act A_S the following statements are equivalent:

- (i) A_S is principally weakly flat.
- (ii) A_S is GPW-flat.

Proof. This is obvious by Proposition 2.3.

Proposition 2.5. Every GPW-flat right S-act is torsion free.

Proof. This is obvious by Proposition 2.3.

Example 2.6. Let $S = \mathbb{N} \cup G$, where \mathbb{N} is the set of natural numbers and G is a nontrivial group with unit element e and define the multiplication on S as gn = ng = n for every $g \in G$ and $n \in \mathbb{N}$. Clearly all right S-acts are torsion free by [9, IV, Theorem 6.1], but not all right S-acts are GPW-flat, see Theorem 4.5.

The following strict implications exist for different flatness properties of acts:

Weakly flat \Rightarrow Principally weakly flat \Rightarrow GPW-flat \Rightarrow Torsion free.

In 2001, Laan [10] gave equivalents of different flatness properties according to surjectivity of φ corresponding to some pullback diagram P(M, N, f, g, Q) where $f : {}_{S}M \to {}_{S}Q$ and $g : {}_{S}N \to {}_{S}Q$ are homomorphisms of left S-acts.

Similar to [10, Proposition 2], we have the following proposition.

Proposition 2.7. A right S-act A_S is GPW-flat if and only if for every $s \in S$ there exists $n = n_{(s,A_S)} \in \mathbb{N}$ such that the corresponding φ is surjective for the pullback diagram $P(Ss^n, Ss^n, \iota, \iota, S)$, where $\iota : {}_S(Ss^n) \to {}_SS$ is a monomorphism of left S-acts.

Proposition 2.8. The following statements hold:

- (1) Any retract of a GPW-flat right S-act is GPW-flat.
- (2) If $A = \prod_{i \in I} A_i$ is GPW-flat, then A_i is GPW-flat for every $i \in I$.
- (3) S_S is GPW-flat.
- (4) Θ_S is GPW-flat.

Proof. (3) and (4) are obvious.

(1) Suppose that B_S is a GPW-flat right S-act and A_S is a retract of B_S . Then there exist homomorphisms $f: B_S \to A_S$ and $f': A_S \to B_S$, such that $ff' = id_{A_S}$. Let $s \in S$. Since B_S is GPW-flat, there exists $n \in \mathbb{N}$ such that the equality $b \otimes s^n = b' \otimes s^n$ in $B_S \otimes S$ implies that $b \otimes s^n = b' \otimes s^n$ in $B_S \otimes S(Ss^n)$, for any $b, b' \in B_S$ by (2) of Proposition 2.3. Let $as^n = a's^n$ for $a, a' \in A_S$. Then $f'(as^n) = f'(a's^n)$ and so $f'(a)s^n = f'(a')s^n$. Since $f'(a), f'(a') \in B_S, B_S$ is GPW-flat and $f'(a) \otimes s^n = f'(a') \otimes s^n$ in $B_S \otimes SS$, we have

$$\begin{array}{ll}
f'(a) = b_1 s_1 \\
b_1 t_1 = b_2 s_2 \\
b_2 t_2 = b_3 s_3 \\
\vdots \\
b_k t_k = f'(a')
\end{array}$$

$$\begin{array}{ll}
s_1 s^n = t_1 s^n \\
s_2 s^n = t_2 s^n \\
\vdots \\
s_k s^n = t_k s^n,
\end{array}$$

where $b_1, \ldots, b_k \in B_S$, $s_1, t_1, \ldots, s_k, t_k \in S$, by (4) of Proposition 2.3. Thus $f(f'(a)) = f(b_1s_1)$ and so $a = f(b_1)s_1$. Similarly, $f(b_{i-1})t_{i-1} = f(b_i)s_i$, $2 \le i \le k$, and $a' = f(b_k)t_k$. Hence

$$a \otimes s^n = f(b_1)s_1 \otimes s^n = f(b_1) \otimes s_1 s^n = f(b_1) \otimes t_1 s^n = f(b_1)t_1 \otimes s^n$$
$$= f(b_2)s_2 \otimes s^n = f(b_2) \otimes s_2 s^n = \dots = f(b_k)t_k \otimes s^n = a' \otimes s^n$$

in $A_S \otimes {}_S(Ss^n)$.

(2) Suppose that $A = \coprod_{i \in I} A_i$ is *GPW*-flat right *S*-act and let $s \in S$. Let $j \in I$. By assumption, there exists $n \in \mathbb{N}$ such that $as^n = a's^n$ for $a, a' \in A_S$ implies $a \otimes s^n = a' \otimes s^n$ in $A_S \otimes S(Ss^n)$. Let $as^n = a's^n$ for $a, a' \in A_j$. Thus $a \otimes s^n = a' \otimes s^n$ in $A_S \otimes S(Ss^n)$, by assumption. Hence $a \otimes s^n = a' \otimes s^n$ in $A_j \otimes S(Ss^n)$, by [2, Corollary 2.3].

A monoid S is called *left almost regular* if for every $s \in S$

$$s_1c_1 = sr_1$$

$$s_2c_2 = s_1r_2$$

$$\vdots$$

$$s_mc_m = s_{m-1}r_m$$

$$s = s_mrs,$$

for some $r, r_1, \ldots, r_m, s_1, s_2, \ldots, s_m \in S$ and right cancellable elements $c_1, c_2, \ldots, c_m \in S$. Clearly every regular and right cancellative monoid is left almost regular.

As, by [9, IV, Theorem 6.5], over a left almost regular monoid every torsion free right S-act is principally weakly flat, the following proposition is easily checked.

Proposition 2.9. Let S be a left almost regular monoid, and A_S be a right S-act. Then the following statements are equivalent:

- (1) A_S is principally weakly flat.
- (2) A_S is GPW-flat.
- (3) A_S is torsion free.

Theorem 2.10. For a proper right ideal K of monoid S the following statements are equivalent:

- (1) $(\forall s \in S, \exists n \in \mathbb{N}) (\forall l \in S \setminus K) (ls^n \in K \Rightarrow (\exists k \in K, ls^n = ks^n)).$
- (2) A(K) is GPW-flat.

Proof. (1) \Rightarrow (2) Let $s \in S$. Then, by assumption, there exists $n \in \mathbb{N}$ such that (1) is established. Let $as^n = a's^n$ for $a, a' \in A(K)$. Since $(x, 1)S \cong S_S \cong (y, 1)S$ (every free right S-act is GPW-flat), without loss of generality, we can take $a = (x, r_1), a' = (y, r_2)$, where $r_1, r_2 \in S \setminus K$. Since $(x, r_1)s^n = (y, r_2)s^n$, we have $r_1s^n = r_2s^n \in K$, and so there exists $k \in K$ such that $r_1s^n = ks^n = r_2s^n$. Hence

$$(x,r_1)\otimes s^n = (x,1)\otimes r_1s^n = (x,1)\otimes ks^n = (y,1)\otimes ks^n = (y,r_2)\otimes s^n$$

in $A(K) \otimes {}_S(Ss^n)$.

 $(2) \Rightarrow (1)$ Let A(K) be GPW-flat and suppose $s \in S$. Then there exists $n \in \mathbb{N}$ such that $A(K) \otimes S^{-}$ preserves the embedding $\iota : S(Ss^{n}) \to SS$. Now let $l \in S \setminus K$ such that $ls^{n} \in K$. Then clearly $(x, l)s^{n} = (y, l)s^{n}$. By Proposition 2.3, we have

$$\begin{aligned} (x,l) &= (w_1,u_1)s_1 \\ (w_1,u_1)t_1 &= (w_2,u_2)s_2 \\ &\vdots \\ (w_{m-1},u_{m-1})t_{m-1} &= (w_m,u_m)s_m \\ (w_m,u_m)t_m &= (y,l) \end{aligned} \qquad \begin{array}{l} s_1s^n &= t_1s^n \\ \vdots \\ s_{m-1}s^n &= t_{m-1}s^n \\ s_ms^n &= t_ms^n, \end{array}$$

for some $m \in \mathbb{N}$, $u_1, \ldots, u_m \in S$, $s_1, t_1, \ldots, s_m, t_m \in S$, and $w_1, \ldots, w_m \in \{x, y, z\}$. By definition of A(K), there exists $i \in \{1, \ldots, m-1\}$ such that $w_i \neq w_{i+1}$, and so there exists $k \in K$ such that $u_i t_i = u_{i+1} s_{i+1} = k$. Hence we have

$$ls^{n} = u_{1}s_{1}s^{n} = u_{1}t_{1}s^{n} = u_{2}s_{2}s^{n} = \dots = u_{i}t_{i}s^{n} = ks^{n},$$

as required.

Recall from [9, III, Definition 10.14] that an element s of a monoid S is called *right e-cancellable* for an idempotent $e \in S$ if s = es and $\ker \rho_s \leq \ker \rho_e$. A monoid S is called *left PP* if every element $s \in S$ is right *e*-cancellable for some idempotent $e \in S$. It is obvious that every regular and every right cancellative monoid is left *PP*. An element $s \in S$ is *right semi-cancellable* if the equality xs = ys for any $x, y \in S$ implies that there exists $r \in S$ such that rs = s and xr = yr. A monoid S is called *left PP* monoid is left *PPF*.

Proposition 2.11. Suppose that S is a left PP monoid. An act A_S is GPW-flat if and only if for every $s \in S$ there exists $n \in \mathbb{N}$ such that for any $a, a' \in A_S$, $as^n = a's^n$ implies $es^n = s^n$ and ae = a'e for some $e^2 = e \in S$.

Proof. This is obvious by [9, III, Theorem 10.16].

For a left PSF monoid, similar to argument used in [11, Proposition 2.5], we can show the following proposition.

Proposition 2.12. Suppose that S is a left PSF monoid. An act A_S is GPW-flat if and only if for every $s \in S$ there exists $n \in \mathbb{N}$ such that for any $a, a' \in A_S$, $as^n = a's^n$ implies $rs^n = s^n$ and ar = a'r for some $r \in S$.

Corollary 2.13. For a left PSF monoid S, the following statements are equivalent:

(1) $\prod_{i=1}^{k} A_i$ is GPW-flat.

(2) For every $s \in S$ there exists $n \in \mathbb{N}$ such that for any $\alpha_i, \alpha'_i \in A_i, 1 \leq i \leq k$, if $(\alpha_1, \alpha_2, \ldots, \alpha_k)s^n = (\alpha'_1, \alpha'_2, \ldots, \alpha'_k)s^n$, then $us^n = s^n$ and $(\alpha_1, \alpha_2, \ldots, \alpha_k)u = (\alpha'_1, \alpha'_2, \ldots, \alpha'_k)u$ for some $u \in S$.

Proof. This is obvious by Proposition 2.12.

Proposition 2.14. For any family $\{A_i\}_{i \in I}$ of right S-acts, if $\prod_{i \in I} A_i$ is GPW-flat, then A_i is GPW-flat, for every $i \in I$.

Proof. Let $\prod_{i \in I} A_i$ be *GPW*-flat and let $s \in S$ and $i \in I$. By assumption there exists $n \in \mathbb{N}$ such that the functor $\prod_{i \in I} A_i \otimes s^{-}$ preserves the embedding $\iota : {}_{S}(Ss^n) \to {}_{S}S$. Let $a_is^n = a'_is^n$ for any $a_i, a'_i \in A_i$ and suppose $a_j \in (A_j)_S$ for $j \neq i$. If

$$a_{k} = \begin{cases} a_{i} & \text{if } k = i \\ a_{j} & \text{if } k \neq i \end{cases}$$
$$a'_{k} = \begin{cases} a'_{i} & \text{if } k = i \\ a_{j} & \text{if } k \neq i \end{cases}$$

Then $(a_k)_I s^n = (a'_k)_I s^n$ and so $(a_k)_I \otimes s^n = (a'_k)_I \otimes s^n$ in $\prod_{i \in I} A_i \otimes_S (Ss^n)$, by Proposition 2.3. Now we have $a_i \otimes s^n = a'_i \otimes s^n$ in $A_i \otimes_S (Ss^n)$, by [14, Remrak 3.1], and so A_i is *GPW*-flat.

Golchin in [3] showed that if $S = G \dot{\cup} I$ where G is a group and I is an ideal of S and A is a right S-act that is ((principally) weakly) flat, torsion free, satisfies Condition (P) or (P_E) as a right I^1 -act, then it has these properties as a right S-act. Similarly, we can show the following theorem for GPW-flatness.

Theorem 2.15. Let $S = G \cup I$ and let A be a right S -act. If A is GPW-flat as a right I^1 -act, then it is GPW-flat as a right S -act.

Proof. This is obvious by Proposition 2.3.

3 GPW-flatness of (Rees factor) cyclic acts

In this section, we give conditions for a (Rees factor) cyclic act to be GPW-flat.

Proposition 3.1. Suppose that ρ is a right congruence on a monoid S. Then the following statements are equivalent:

- (i) S/ρ is GPW-flat.
- (ii) $(\forall s \in S) (\exists n \in \mathbb{N}) (\forall u, v \in S) ((us^n)\rho(vs^n) \Rightarrow u(\rho \lor \ker \rho_{s^n})v).$

Proof. (i) \Rightarrow (ii) Let $s \in S$. Since the right S-act S/ρ is GPW-flat, there exists $n \in \mathbb{N}$ such that the functor $(S/\rho)_S \otimes_{S^-}$ preserves the embedding $\iota : {}_S(Ss^n) \to {}_SS$. Now suppose that $(us^n)\rho(vs^n)$ for $u, v \in S$. Thus $[v]_{\rho} \otimes s^n = [v]_{\rho} \otimes s^n$ in $(S/\rho)_S \otimes_S S$ and so $[v]_{\rho} \otimes s^n = [v]_{\rho} \otimes s^n$ in $(S/\rho)_S \otimes_S (Ss^n)$. Hence $u(\rho \lor \ker \rho_{s^n})v$, by [9, III, Lemma 10.6].

(ii) \Rightarrow (i) Let $s \in S$. By assumption, there exists $n \in \mathbb{N}$ such that $(us^n)\rho(vs^n)$, for every $u, v \in S$, implies that $u(\rho \lor \ker \rho_{s^n})v$. Suppose $[v]_{\rho} \otimes s^n = [v]_{\rho} \otimes s^n$ in $(S/\rho)_S \otimes {}_SS$, thus $(us^n)\rho(vs^n)$. Now, by assumption, $u(\rho \lor \ker \rho_{s^n})v$ and so, by [9, III, Lemma 10.6], $[v]_{\rho} \otimes s^n = [v]_{\rho} \otimes s^n$ in $(S/\rho)_S \otimes {}_S(Ss^n)$. Hence S/ρ is *GPW*-flat, by Proposition 2.3.

Corollary 3.2. The principal right ideal zS is GPW-flat if and only if for every $s \in S$, there exists $n \in \mathbb{N}$ such that for any $x, y \in S$, $zxs^n = zys^n$ implies that $x(\ker \lambda_z \lor \ker \rho_{s^n})y$.

Proof. Since $zS \cong S/\ker \lambda_z$, by Proposition 3.1, it suffices to take $\rho = \ker \lambda_z$.

Theorem 3.3. Suppose that K is a right ideal of S. Then S/K is GPWflat if and only if for every $s \in S$ there exists a natural number $n \in \mathbb{N}$ such that $ls^n \in K$, for $l \in S \setminus K$ implies that $ls^n = ks^n$, for some $k \in K$.

Proof. If K = S, then $S/K \cong \Theta_S$ is *GPW*-flat by (3) of Proposition 2.8. Thus suppose that K is a proper right ideal of S.

Necessity. Suppose that S/K is GPW-flat for the proper right ideal K of S and let $s \in S$. Then there exists $n \in \mathbb{N}$ such that the functor $A_S \otimes_{S^-}$ preserves the embedding $\iota : {}_S(Ss^n) \to {}_SS$. Now suppose $ls^n \in K$ for $l \in S \setminus K$. Then $[l] \otimes s^n = [j] \otimes s^n$ in $S/K \otimes {}_SS$, for any $j \in K$ and so, by Proposition 2.3, there exist $m \in \mathbb{N}, p_1, \ldots, p_m, s_1, t_1, \ldots, s_m, t_m \in S$ such that

$$[l] = [p_1]s_1$$

$$[p_1]t_1 = [p_2]s_2 \qquad s_1s^n = t_1s^n$$

$$[p_2]t_2 = [p_3]s_3 \qquad s_2s^n = t_2s^n$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$[p_m]t_m = [j] \qquad s_ms^n = t_ms^n.$$

Since $j \in K$, we have $p_m t_m \in K$. Let q be the least number such that $q \in \{1, \ldots, m\}$ and $p_q t_q \in K$. Let $k = p_q t_q$, then $p_{q-1} t_{q-1} = p_q s_q$, and so

$$ls^{n} = p_{1}s_{1}s^{n} = p_{1}t_{1}s^{n} = p_{2}s_{2}s^{n} = \dots = p_{q-1}t_{q-1}s^{n} = p_{q}s_{q}s^{n} = p_{q}t_{q}s^{n} = ks^{n}.$$

Sufficiency. Let K be a right ideal of S and let $s \in S$. Thus there exists $n \in \mathbb{N}$ such that $ls^n \in K$, for $l \in S \setminus K$ implies that $ls^n = ks^n$ for some $k \in K$, by assumption. Let for any $u, v \in S$, $[u] \otimes s^n = [v] \otimes s^n$ in $S/K \otimes S$. Thus there are four cases as follows:

Case 1. $u, v \in K$. Then it is clear that [u] = [v] in S/K and so $[u] \otimes s^n = [v] \otimes s^n$ in $S/K \otimes S(Ss^n)$.

Case 2. $u \in K, v \in S \setminus K$. Then there exists $k \in K$ such that $vs^n = ks^n$, by assumption. Then

$$[u] \otimes s^n = [k] \otimes s^n = [1] \otimes ks^n = [1] \otimes vs^n = [v] \otimes s^n$$

in $S/K \otimes S(Ss^n)$.

Case 3. $u \in S \setminus K, v \in K$. It is similar to the Case 2.

Case 4. $u, v \in S \setminus K$. Then from $[u] \otimes s^n = [v] \otimes s^n$ in $S/K \otimes S_S$, we have either $us^n = vs^n$ or $us^n, vs^n \in K$. If $us^n = vs^n$, the result follows. Otherwise, $us^n = ks^n$ and $vs^n = ls^n$ for some $k, l \in K$, by assumption. So

$$\begin{split} [u]\otimes s^n &= [1]\otimes us^n = [1]\otimes ks^n = [k]\otimes s^n = \\ [l]\otimes s^n &= [1]\otimes ls^n = [1]\otimes vs^n = [v]\otimes s^n \end{split}$$

in $S/K \otimes S(Ss^n)$.

4 Characterization of monoids by *GPW*-flatness of acts

Now we classify monoids over which all right S-acts are GPW-flat and also monoids over which some other properties imply GPW-flatness and vice versa.

A monoid S is called *regular* if for every $s \in S$ there exists $x \in S$ such that s = sxs.

Definition 4.1. An element $s \in S$ is called *eventually regular* if s^n is regular for some $n \in \mathbb{N}$. That is, $s^n = s^n x s^n$ for some $n \in \mathbb{N}$ and $x \in S$. A monoid S is called *eventually regular* if every $s \in S$ is eventually regular.

Obviously every regular monoid is eventually regular.

Definition 4.2. An element $s \in S$ is called *eventually left almost regular* if

$$s_1c_1 = s^n r_1$$

$$s_2c_2 = s_1r_2$$

$$\vdots$$

$$s_mc_m = s_{m-1}r_m$$

$$s^n = s_m rs^n,$$

for some $n \in \mathbb{N}$, elements $s_1, s_2, \ldots, s_m, r, r_1, \ldots, r_m \in S$ and right cancellable elements $c_1, c_2, \ldots, c_m \in S$. In other words $s \in S$ is called *eventually left almost regular* if s^n is left almost regular for some $n \in \mathbb{N}$.

If every element of a monoid S is eventually left almost regular, then S is called *eventually left almost regular*.

It is clear that every left almost regular monoid is eventually left almost regular, and also every eventually regular monoid is eventually left almost regular.

Example 4.3. Let $S = \{1, 0, e, f, a\}$ be the monoid with the following table

	1	0	e	f	a
1	1	0	e	f	a
0	0	0	0	0	0
e	e	0	e	a	a
f	f	0	0	f	0
a	a	0	0	a	0

Clearly S is eventually regular and so it is eventually left almost regular. But S is not regular, because $a \in S$ is not regular. Also S is not left almost regular, since $a \in S$ is not left almost regular.

Theorem 4.4. The following statements are equivalent:

- (1) S is an eventually left almost regular monoid.
- (2) All torsion free right Rees factor acts over S are GPW-flat.
- (3) All torsion free cyclic right S-acts are GPW-flat.
- (4) All torsion free finitely generated right S-acts are GPW-flat.
- (5) All torsion free right S-acts are GPW-flat.

Proof. $(5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2)$ are clear.

 $(2) \Rightarrow (1)$ Suppose that all torsion free right Rees factor S-acts are GPW-flat and let $s \in S$. Let K(s) be the subset of S consisting of all elements $t \in S$ such that

$$s_{1}c_{1} = s^{n}r_{1}$$

$$s_{2}c_{2} = s_{1}r_{2}$$

$$\vdots$$

$$s_{m-1}c_{m-1} = s_{m-2}r_{m-1}$$

$$tc_{m} = s_{m-1}r_{m},$$

for some $n \in \mathbb{N}$, the elements $s_1, s_2, \ldots, s_m, r, r_1, \ldots, r_m \in S$ and the right cancellable elements $c_1, c_2, \ldots, c_m \in S$. We see that $s^n \in K(s)$ for some $n \in \mathbb{N}$, and so K(s) is non-empty, because, if m = 1 and $c_1 = r_1 = 1$, then $t = s^n$ has the required property mentioned. Now let $J = \bigcup_{t \in K(s)} tS$. Let $s'c \in J$, for $s' \in S$ and c right cancellable. Then $s'c \in tS$ for some $t \in K(s)$, and so we have

$$s_1c_1 = s^n r_1$$

$$s_2c_2 = s_1r_2$$

$$\vdots$$

$$s_{m-1}c_{m-1} = s_{m-2}r_{m-1}$$

$$tc_m = s_{m-1}r_m$$

$$s'c = tr_{m+1},$$

for some $n \in \mathbb{N}$, the elements $s_1, s_2, \ldots, s_m, r, r_1, \ldots, r_m, r_{m+1} \in S$ and the right cancellable elements $c_1, c_2, \ldots, c_m \in S$. Thus $s' \in J$, and so S/Jis torsion free by [9, III, Proposition 8.10]. Hence S/J is GPW-flat by assumption and so by Theorem 3.3, for $s^n \in J$, there exists $tr \in J$ such that $s^n = trs^n$, where $t \in K(s)$, and $r \in S$. Now $s^n = trs^n$ and $t \in K(s)$ implies that s is eventually left almost regular.

 $(1) \Rightarrow (5)$ Let S be an eventually left almost regular monoid and suppose A_S is a torsion free right S-act and let $s \in S$. Since s is eventually left almost

regular, we have

$$s_1c_1 = s^n r_1$$

$$s_2c_2 = s_1r_2$$

$$\vdots$$

$$s_mc_m = s_{m-1}r_m$$

$$s^n = s_m rs^n,$$

for some $n \in \mathbb{N}$, the elements $s_1, s_2, \ldots, s_m, r, r_1, \ldots, r_m \in S$ and the right cancellable elements $c_1, c_2, \ldots, c_m \in S$. Let $as^n = a's^n$ for $a, a' \in A_S$. Using torsion freeness, it can easily be seen that $as_m r = a's_m r$. Hence we have

$$a \otimes s^n = a \otimes s_m r s^n = a s_m r \otimes s^n = a' s_m r \otimes s^n = a' \otimes s_m r s^n = a' \otimes s^n$$

in $A_S \otimes S(Ss^n)$ and so A_S is *GPW*-flat, as required.

A right S-act A_S is a generator if for any distinct homomorphisms α, β : $X_S \to Y_S$, there exists a homomorphism $f: A_S \to X_S$ such that $\alpha f \neq \beta f$. Equivalently, a right S-act A_S is a generator if and only if there exists an epimorphism $\pi: A_S \to S_S$ ([9, II, Theorem 3.16]).

As we know, $S \times A_S$ is a generator for each right S-act A_S .

Theorem 4.5. The following statements are equivalent:

- (1) S is an eventually regular monoid.
- (2) A right S-act A_S is GPW-flat if $Hom(A_S, S_S) \neq \emptyset$.
- (3) $S \times A_S$ is GPW-flat for every generator right S-act A_S .
- (4) $S \times A_S$ is GPW-flat for every right S-act A_S .
- (5) All generator right S-acts are GPW-flat.
- (6) All right Rees factor S-acts are GPW-flat.
- (7) All cyclic right S-acts are GPW-flat.
- (8) All right S-acts are GPW-flat.

Proof. $(8) \Rightarrow (7) \Rightarrow (6), (8) \Rightarrow (5), (8) \Rightarrow (4) \Rightarrow (3), (2) \Rightarrow (4), (5) \Rightarrow (4)$ and $(8) \Rightarrow (2)$ are obvious.

 $(4) \Rightarrow (8)$ This is valid by Proposition 2.14.

 $(6) \Rightarrow (1)$ If all right Rees factor acts over S are GPW-flat, then all right Rees factor acts over S are torsion free. So every right cancellable element

of S is right invertible, by [9, IV, Theorem 6.1], but by Theorem 4.4, S is eventually left almost regular. Now let $s \in S$. Then

$$s_1c_1 = s^n r_1$$

$$s_2c_2 = s_1r_2$$

$$\vdots$$

$$s_mc_m = s_{m-1}r_m$$

$$s^n = s_m rs^n,$$

Multiplying both sides of the equalities in the above scheme by c_i^{-1} for $i \in \{1, \ldots, m\}$, respectively, we get

$$s_1 = s^n r_1 c_1^{-1}$$

$$s_2 = s_1 r_2 c_i^{-1}$$

$$\vdots$$

$$s_m = s_{m-1} r_m c_m^{-1}$$

Thus

$$s^{n} = s_{m}rs^{n} = s_{m-1}r_{m}c_{m}^{-1}rs^{n} = s_{m-2}r_{m-1}c_{m-1}^{-1}r_{m}c_{m}^{-1}rs^{n} = \dots$$
$$= s^{n}r_{1}c_{1}^{-1}\dots r_{m-1}c_{m-1}^{-1}r_{m}c_{m}^{-1}rs^{n},$$

and so s is eventually regular, as required.

(1) \Rightarrow (8) Suppose that A_S is a right S-act and let $s \in S$. By Proposition 2.3, we have to show that there exists $m \in \mathbb{N}$ such that for any $a, a' \in A_S$, if $a \otimes s^m = a' \otimes s^m$ in $A_S \otimes {}_SS$, then $a \otimes s^m = a' \otimes s^m$ in $A_S \otimes {}_S(Ss^m)$. Since s is eventually regular, there exist $n \in \mathbb{N}$ and $t \in S$, such that $s^n = s^n t s^n$. If m = n. Let $a \otimes s^n = a' \otimes s^n$ in $A_S \otimes {}_SS$ for any $a, a' \in A_S$, then

$$a \otimes s^n = a \otimes s^n t s^n = a s^n \otimes t s^n = a' s^n \otimes t s^n = a' \otimes s^n t s^n = a' \otimes s^n$$

in $A_S \otimes {}_S(Ss^n)$ and so A_S is *GPW*-flat.

 $(3) \Rightarrow (4)$ Suppose that A_S is a right act over S. As we show in the proof of $(5) \Rightarrow (4)$, $S \times A_S$ is a generator and so, by assumption, $S \times (S \times A_S)$ is *GPW*-flat, which means that $S \times A_S$ is *GPW*-flat, by Proposition 2.14. \Box It is obvious that Condition (P) implies GPW-flatness, but the following example shows that this is not the case for Condition (E).

Example 4.6. Let $S = (\mathbb{N}, .)$ be the monoid of natural numbers with multiplication and let $A_{\mathbb{N}} = \mathbb{N} \coprod^{2\mathbb{N}} \mathbb{N}$. Then $A_{\mathbb{N}}$ satisfies Condition (*E*), but it is not *GPW*-flat.

Now, the question is that: What is the structure of monoids over which Condition (E) of their acts implies GPW-flatness?

Theorem 4.7. For a right cancellative monoid S the following statements are equivalent:

(1) $\prod_{i \in I} A_i$ is principally weakly flat, for any family $\{A_i\}_{i \in I}$ of right S-acts.

(2) $\prod_{i \in I} A_i$ is GPW-flat, for any family $\{A_i\}_{i \in I}$ of right S-acts.

(3) $\prod_{i \in I} A_i$ is torsion free, for any family $\{A_i\}_{i \in I}$ of right S-acts.

(4) S is a group.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (1)$ are obvious.

(3) \Rightarrow (4) This is obvious, by [14, Remark 3.1] and [9, IV. Theorem 6.1].

An element $a \in A_S$ is called divisible by $s \in S$ if there exists $b \in A_S$, such that bs = a. An act A_S is said to be divisible if Ac = A, for any left cancellable element $c \in S$. It is clear that A_S is divisible if and only if every element of A_S is divisible by any left cancellable element of S.

Theorem 4.8. The following statements are equivalent:

- (1) All right S-acts are divisible.
- (2) All GPW-flat right S-acts are divisible.
- (3) All GPW-flat finitely generated right S-acts are divisible.
- (4) All GPW-flat cyclic right S-acts are divisible.
- (5) All GPW-flat monocyclic right S-acts are divisible.
- (6) All left cancellable elements of S are left invertible.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are obvious.

 $(5) \Rightarrow (6)$ For every $s \in S$ we have $S/\rho(s,s) = S_S/\Delta_S \cong S_S$, by (3) of Proposition 2.8, S_S is *GPW*-flat, and so it is divisible by assumption. Thus Sc = S, for any left cancellable element $c \in S$. Thus, there exists $s \in S$ such that sc = 1, and so c is left invertible, as required.

 $(6) \Rightarrow (1)$ It is clear from [9, III, Proposition 2.2].

Recall, from [15], that a right S-act A_S is called *strongly torsion free* if the equality as = a's, for $a, a' \in A_S$ and $s \in S$ implies a = a'. It is clear that every strongly torsion free right S-act is GPW-flat, but not the converse.

Theorem 4.9. The following statements are equivalent:

- (1) All GPW-flat right S-acts are strongly torsion free.
- (2) All GPW-flat finitely generated right S-acts are strongly torsion free.
- (3) All GPW-flat cyclic right S-acts are strongly torsion free.
- (4) S is right cancellative monoid.

Proof. This follows from [15, Theorem 3.1].

Recall from [6] that a right S-act A_S is E-torsion free if for any $a, a' \in A_S$ and $e \in E(S)$, ae = a'e implies a = a'.

Theorem 4.10. The following statements are equivalent:

- (1) All GPW-flat right S-acts are E-torsion free.
- (2) All GPW-flat finitely generated right S-acts are E-torsion free.
- (3) All GPW-flat cyclic right S-acts are E-torsion free.
- (4) $E(S) = \{1\}.$

Proof. This is obvious by [6, Theorem 3.1].

Recall from [1, Definition 1] that a right S-act A_S is called *principally* weakly kernel flat (PWKF) if the corresponding φ is bijective for the pullback diagram P(Ss, Ss, f, f, S) ($s \in S$), and A_S is translation kernel flat (TKF) if the corresponding φ is bijective for the pullback diagram P(S, S, f, f, S).

Theorem 4.11. The following statements on a monoid S are equivalent:

- (1) All GPW-flat right S-acts are PWKF and S is left PSF.
- (2) All GPW-flat right S-acts are TKF and S is left PSF.

(3) All GPW-flat right S-acts satisfy Condition (PWP) and S is left PSF.

(4) All GPW-flat right S-acts satisfy Condition (P') and S is left PSF.

(5) S is right cancellative.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (3)$ are clear.

 $(5) \Rightarrow (1)$ By [13, Theorem 2.12] and Corollary 2.4, it is clear.

 $(3) \Rightarrow (5)$ This is obvious, by [12, Theorem 2.8].

 $(5) \Rightarrow (4)$ Since S is right cancellative, S is left PSF. By [4, Theorem 2.8] and Corollary 2.4, it is clear.

Theorem 4.12. The following statements on a monoid S are equivalent:

(1) All GPW-flat right S-acts are PWKF and there exists a regular left S-act.

(2) All GPW-flat right S-acts are TKF and there exists a regular left S-act.

(3) All GPW-flat right S-acts satisfy Condition (PWP) and there exists a regular left S-act.

(4) All GPW-flat right S-acts satisfy Condition (P') and there exists a regular left S-act.

(5) |E(S)| = 1 and there exists a regular left S-act.

(6) S is right cancellative.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (3)$ are clear.

 $(6) \Rightarrow (4)$ This is clear by [4, Theorem 2.9] and Corollary 2.4.

 $(5) \Leftrightarrow (6)$ This is clear by [12, Theorem 2.9].

 $(3) \Rightarrow (6)$ This is clear by [12, Theorem 2.9].

 $(6) \Rightarrow (1)$ This is clear by [13, Theorem 2.18] and Corollary 2.4.

Acknowledgments

The authors are thankful to the anonymous reviewers for their careful reading and constructive comments. They are also thankful to Professor M.M. Ebrahimi for providing the communications.

References

- Bulman-Fleming, S., Kilp, M., and Laan, V., Pullbacks and flatness properties of acts II, Comm. Algebra 29(2) (2001), 851-878.
- [2] Golchin, A., Flatness and coproducts, Semigroup Forum 72(3) (2006), 433-440.
- [3] Golchin, A., On flatness of acts, Semigroup Forum 67(2) (2003), 262-270.
- [4] Golchin, A. and Mohammadzadeh, H., On Condition (P'), Semigroup Forum 86(2) (2013), 413-430.
- [5] Golchin, A. and Mohammadzadeh, H., On regularity of Acts, J. Sci. Islam. Repub. Iran 19(4) (2008), 339-345.
- [6] Golchin, A., Zare, A., and Mohammadzadeh, H., E-torsion free acts over monoids, Thai J. Math. 14(1) (2015), 93-114.

- [7] Kilp, M., On flat acts (Russian), Tatru UL. Toimetisted, 253 (1970), 66-72.
- [8] Kilp, M., Characterization of monoids by properties of their left Rees factors, Tatru UL. Toimetisted, 640 (1983), 29-37.
- [9] Kilp, M., Knauer, U., and Mikhalev, A., "Monoids, Acts and Categories", De Gruyter, 2000.
- [10] Laan, V., Pullbacks and flatness properties of acts I., Comm. Algebra 29(2) (2001), 829-850.
- [11] Nouri, L., Golchin, A., and Mohammadzadeh, H., On properties of product acts over monoids, Comm. Algebra 43(5) (2015), 1854-1876.
- [12] Qiao, H., Some new characterizations of right cancellative monoids by Condition (PWP), Semigroup Forum 71(1) (2005), 134-139.
- [13] Qiao, H., Limin, W., and Zhongkui, L., On some new characterizations of right cancellative monoids by flatness properties, Arab. J. Sci. Eng. 32(1) (2007), 75-82.
- [14] Sedaghatjoo, M., Khosravi, R., and Ershad, M., Principally weakly and weakly coherent monoids, Comm. Algebra 37(12) (2009), 4281-4295.
- [15] Zare, A., Golchin, A., and Mohammadzadeh, H., Strongly torsion free acts over monoids, Asian-Eur. J. Math. 6(3) (2013), 1350049.

Hamideh Rashidi, Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

Email: hrashidi@pgs.usb.ac.ir

Akbar Golchin, Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

 $Email: \ agdm@math.usb.ac.ir$

Hossein Mohammadzadeh Saany, Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

 $Email:\ hmsdm@math.usb.ac.ir$