Categories and

General Algebraic Structures +
win Applications

Volume 10, Number 1, January 2019, 117-156.

WWW.CGASA.ir

Applications of the Kleisli and
Eilenberg-Moore 2-adjunctions

J.L. Lopez Hernandez, L.J. Turcio Cuevas, and A. Vazquez-Marquez

Abstract. In 2010, J. Climent Vidal and J. Soliveres Tur developed, among
other things, a pair of 2-adjunctions between the 2-category of adjunctions
and the 2-category of monads. One is related to the Kleisli adjunction and
the other to the Eilenberg-Moore adjunction for a given monad.

Since any 2-adjunction induces certain natural isomorphisms of cate-
gories, these can be used to classify bijections and isomorphisms for certain
structures in monad theory. In particular, one important example of a struc-
ture, lying in the 2-category of adjunctions, where this procedure can be
applied to is that of a lifting. Therefore, a lifting can be characterized by the
associated monad structure, lying in the 2-category of monads, through the
respective 2-adjunction. The same can be said for Kleisli extensions.

Several authors have been discovered this type of bijections and isomor-
phisms but these pair of 2-adjunctions can collect them all at once with an
extra property, that of naturality.
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1 Introduction and preliminaries

Motivated by [2] and [3]|, the authors apply 2-adjunctions of Kleisli and
Eilenberg-Moore in order to get some classical isomorphisms of categories
and bijections of structures related to monads.

Among the examples given in this article, there is one of high importance.
In [7], I. Moerdijk gave an equivalence between the lifting of a monoidal
structure, over a category C, to a monoidal structure on the category of
Eilenberg-Moore algebras C*', for a monad with endofunctor F' on the cate-
gory C, and the colax monad structures on F' for the monoidal category C.
This equivalence of structures lacks of naturality but using the 2-adjunction
of Eilenberg-Moore it can be incorporated.

Analogously, the following case is analysed. The equivalence between
extensions of monoidal structure over a category C to a monoidal structure
on the Kleisli category Cy, for a monad with endofunctor F' on the category
C, and the lax monad structures on F' for the monoidal category C, cf. [7]
and [10].

The 2-adjunctions of Kleisli and Eilenberg-Moore are generalized to the
context of 2-categories that accept the constructions of algebras.

We give the structure of the article.

In Section 2, we give the formal 2-adjunction corresponding to the Kleisli
situation.

In Section 3, we give the formal 2-adjunction corresponding to the Eilenberg-
Moore case.

In Section 4, we apply the 2-adjunction of EM to the case where the
2-category is 2Cat.

In Section 5, we prove the theorem of I. Moerdijk on the equivalence of
lifted monoidal structures and colax monads.

In Section 6, we use the Kleisli 2-adjunction for the oCat case.

In Section 7, we apply this 2-adjunction to extensions of a monoidal
structure on the Kleisli category and relate it with lax monads.

In Section 8, we apply the 2-adjunction of Eilenberg-Moore to the well
known case of liftings of functors and commutative diagrams for the forgetful
functor, check [1] and [9].

In Section 9, we relate actions of the category C over its Kleisli category
Cr with strong monads.
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In Section 10, we finalize with left and right functor algebras for a monad
and relate this to certain liftings and extensions, respectively, for the under-
lying functors, cf. [4].

We give some remarks on notation. Suppose that we had an adjunction
of the form £ - R, then the unit and counit for this adjunction will be
denoted as n™** and €%, respectively. This notation is complicated but
it is clear and prevents the proliferation of several greek letters to denote
new units and counits. As the article develops, the reader might see the
advantage in the usage of this notation.

We will be working with monoidal categories denoted as (C,®, I, a,l,r)
and also as (C,®,I), as a contraction, that leaves understood the natural
constraint transformations. We will be working with the constant functor
d0r : 1 — C, at I, where 1 is the category with only one object 0 and only
one arrow 1p. That is to say, d;(0) = 1.

On the other hand, it is known that a category with binary products
and a terminal object has a canonical (cartesian) monoidal structure. This
is the case for the category Cat, of small categories. The natural constraint
transformations, taken on components, are functors, for example, for C, D, £,
acpe 1 (CxD)xE — Cx (D xE) is the obvious functor. In order to
compact the notation, we will agree that in the case that the component be
the object C,C,C, the asociativity functor will be denoted simply as a.. In
turn, the respective constraint functors will be denoted as I, and r¢.

Finally, the horizontal composition in a general 2-category A will be
denoted as - or by juxtaposition, this notation will be used indistinctively.
The vertical composition on 2-cells will be given the symbol o.

2 Formal Kleisli 2-adjunction

In order to construct the Kleisli 2-adjunction, the involved 2-category A%
has to admit the construction of algebras, [8|.

Definition 2.1. Consider a 2-category A and its corresponding 2-functor
Incgq : A — Mnd(A) which maps a 0-cell A in A to the trivial monad
(A,14). It is said that the 2-category A admits the construction of algebras
iff the 2-functor Inc4 admits a right adjoint.

If the 2-category A°P admits the construction of algebras then an addi-



120  J.L. Lopez Hernandez, L.J. Turcio Cuevas, and A. Vazquez-Marquez

tional 2-adjunction of the form

(3%

Mnd(A%) Adj, (AP) (2.1)

5%

can be defined.

If we describe the 2-adjunction over A rather than on the opposite one
then the 2-category Mnd(A°) will be isomorphic to Mnd*(A) and the 2-
category Adj,(A°) will be isomorphic to Adj,(A). Note that in [8] the
category AP is denoted as A*.

The description of the 2-category Mnd*(A) is given as follows:

1. The 0-cells are monads in A, that is, (A, f, u/,n'). The short notation
(A, f) will be used for such a monad.

2. The 1-cells, which we call indistinctively as morphisms of monads, are
pairs of the form (m, ) : (A, f) — (B,h); where m : A — B is a
1-cell in A and 7 : mf — hm is a 2-cell in A such that the following
diagrams commute:

mff — o hmf—" o hhm
m
mut phm Wy w
mf hm , mf — hm.

3. The 2-cells, which we call indistinctively as transformations of monads,
have the form ¢ : (m,7) — (n,7) : (A, f) — (B, h), such that
9 :m —n:A— Bisa 2cell in A and the following diagram
comimutes:

mf—"— hm
of o

nf———hn.
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This 2-cell is displayed as follows

(m, )

T T
@ | o B
~_ 7

(n,7)

The structure of the 2-category Adj, (A) is given as follows:

1. The 0-cells are made of adjunctions

r

A B.

l

2. The 1-cells are of the form (7, k, p) such that the second diagram is the
2-cell mate of the first one that commutes

A J — A J I
l 1 r K T
B———B , B——B.

The mate p is described, since the left one commutes, by
p =Tke onjr. (2.2)

This morphism can be represented as

<.

Sy
B
Sy

and denoted as (j,k,p) : I 47 — [ 4 7. Since the diagram corre-
sponding to the left adjoints commutes, the 2-category of adjunctions
has the subindex L.
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3. The 2-cells are made of a pair of 2-cells in A, («, ) as in

such that they fulfill one of the following equivalent conditions:
(i) la = AL,
(i) p oar =TB o p.

Remark 2.2. Note that the previous conditions can be seen as commutative
surface diagrams.

This 2-cell can be displayed as
(4, %, p)

I iw) 7.
\/

(4", K 0")

The cell structure described arrange itself to form a 2-category, that is to
say, inherits the 2-category structure of A.

Before going into the details on the construction of the 2-functor ¥y, we
develop some calculations. These calculations are dual to those made in [§].
Note that we are going to be switching between the 2-categories AP and
Mnd(A%) to A and Mnd*(A), respectively.

Since the 2-category A admits the construction of algebras, the functor
Incgop : AP’ — Mnd(A%) admits a right adjoint, denoted as Alg 4op :
Mnd(A%®) — A°. These 2-functors are going to be short denoted as I*
and A°, respectively.
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The corresponding counit, on the component (A, f), is /4% (A, foP) :
Inc gor Alg gon (A, fP) —> (A, fP). If we define Alg 4op(A, fP) = Ay, the
Kleisli object, then /4% (A, fP) = (g;,1;) : (A, f) — (A, 1a,). This last
1-cell belongs to Mnd*(A), where g; : A — A, and ¢; : g;f — g;.

Following [8], for any monad (A, f°P) in Mnd(.A°), there exists an ad-
junction in A,

vr

A A,

9f

such that it generates the monad (A, f), with unit n/ and counit 9% . It can
be checked that ¢; = €9 g;. This adjunction is called the Kleisli adjunction.

Suppose that there is a morphism of monads (m°,w) : (B,h?) —
(A, f°P) in Mnd(A), i.e. (m,7) : (A, f) — (B,h)in Mnd*(A). Take the
following composition of morphisms of monads (gy, ¢s) - (m,7) = (gam, t,mo
anm) (A, f) — (B, 1B,).

Since the counit is universal from Inc4op to (A, fP), there exists a 1-cell
my : Ay — B, in A, such that the following diagram commute:

y Whmogm)

(AfalAf BhalBh

(mﬂ’ 1m7r

In particular, g,m = mrg; and ¢,m o g,m = mxt;. Note that the associated
mate to the first equality is pr = v,mre9% o n"muv; and that prg, = 7.

Consider a 2-cell of monads ¥ : (m,7) — (n,7) : (A, f) — (B,h) in
Mnd*(A). Due to the construction of algebras for A%, the 2-adjunction
Alg qop 1 Incger provides an isomorphism of categories, for (A4, f°) in
Mnd(A°) and B in A, of the form

HomMnd(Aop)((A, 1), IncAop(B)) >~ Hom _gop (Alngp(A, 1P, B),

which translates, in the non-opposite case, into the following assignment:

" (agy,air)
/\ /\
A, la B — (A f) iagf (B,1p). (2.3)
~ 7 ~L 7

b (bgr,by)
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On the other hand, we have an equality of 2-cells

(gnm,tpmogp ) (Mmrgp, matf)
/_\ /\

(Af) o0 (Buls) = (Af) |m0 (Buls).
\/ \_/
(ghmn,tpmogpT) (nrgf,nrip)

Therefore, to the 2-cell g,9 there corresponds, through the asignment
(2.3), a 2-cell By = Alg gor(g29) - 774" (B,), such that g, = Byg;, where
By : myz — ny. We change, at this point, the notation as By = 9.

Without any further ado, we provide the description of the 2-functor W .

1. For the monad (A, f,u/,n’) in Mnd*(A), Y« (A, f) = g; 1 v, that
is, the Kleisli adjunction.

2. For the morphism (m,m) : (A, f) — (B, h), Yx(m, ) = (m,mx, px).

3. For the transformation ¥ : (m,7) — (n,7) : (A, f) — (B,9),
Ui () = (9,9), where ¥ is given as above.

The description of the 2-functor ® is given as follows.
1. For the adjunction | 47, ®x (I 4r) = (A,rl).

2. For the morphism of adjunctions (j, k,p) : (I 4 r) — (I 4 7),
q)K(j7k7p) = (]a Trp)' Where 7Tp = pl

3. For the transformation of adjunctions (a, 8) : (4, k,p) — (3, k', p') :
IHr — 147, &x(a, B) = V(a,8) = Q.

Yet again, following [8], it can be shown that for the adjunction I - r,
there exists a dual comparison 1-cell k. : A,y —> B, such that | = kg4,
vy = rky and € = ke

The unit of the 2-adjunction in (2.1), n®¥x : IMnds () — PV is
defined, in the component (A, f), as

n*YE(A f) = (1a,15) 1 (A f) — (A, f) in Mnd*(A).
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In turn, the counit eY®« : ¥, &, —> 1adj,(4) s defined, in the component
[r, as

5\I@K(Z Ar) =14, k,1y,) g Ao — L4r in Adj, (A).
Theorem 2.3. There exists a 2-adjunction Uy - O .

Proof. We prove only one of the triangular identities, that is, ®,eY®% o
nPVEd, =1
K <I>K7

(D™ on® KD N(1Ar) = P (I Hr) n*VED (1)
- q)K(lA)ka 1'Url) : U‘P‘I’K (A,?"l)

(14, Lo, 9r1) - (14, 1) = (1a, 1) = L)
= log@r) =lo ().

O

Since the left 2-adjoint W, assigns the Kleisli adjunction to a monad,
the 2-adjunction is called Kleisli 2-adjunction.

3 Formal Eilenberg-Moore 2-adjunction

Consider a 2-category A which admits the construction of algebras. With
this property of A, we will construct a 2-adjunction of the form

Vg

Adj,(A) Mnd(A).

dp
The 2-category Adj,(A) is described as follows.

1. The 0O-cells are made of adjunctions

T

A B.

l

2. The 1-cells are pairs, of 1-cells in A, (4, k) such that the first diagram
is the 2-cell mate to the second commutative one
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A A A A
l )\[ i T T
B——B , B—(/—&
The mate is described by
A\ =gkl o Ijn. (3.1)

This morphism can be represented as

and denoted as (j,k,\) : [ 47 — [ 7.

3. The 2-cells are made of a pair of 2-cells in A, («, ) as in

such that they fulfill one of the following equivalent conditions:
(i) Nola = pBlo,
(ii) ar =7p.
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Remark 3.1. Note that the previous conditions can be seen as commutative
surface diagrams.

This 2-cell can be displayed as follows
(5,52

I4r i (a,8) 147,

~

(7', K'\N)

The described cell structure arrange itself to form a 2-category.
The 2-category Mnd(A) is formed as follows.

1. The 0-cells are monads in A, (A, f,u’,n’). The short notation (A, f)
will be used for such a monad.

2. The 1-cells are morphisms of monads (p, ) : (A, f) — (B, h), which
consist of a 1-cell p: A — B and a 2-cell ¢ : hp — pf, both in A,
such that the following diagrams commutes:

hhp —"5—— hpf — prf
uhp put / \
hp 7 of » hp——Fp——pf.

3. The 2-cells, or transformations of monads, 0 : (p,o) — (q,v) :
(A, f) — (B,h) consist of a 2-cell # : p — ¢ in A and fulfills

the commutativity of the diagram

hp ——pf

hé of

hq — qf.
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This 2-cell is displayed as

(P, »)

RN
Af) | o (B
\(w)/’

The description of the 2-functor ®; is given as follows.

1. On O-cells, ®5(I 4 r) = (A,rl,rel,n), that is, the induced monad by
an adjunction.

2. On 1-cells, (j,k,A) : (A, 7l) — (A7), ®p(j, k, ) = (§,TA) : (A,7]) —
(A,7).

3. On 2—C6HS, (avﬁ) : (]7ka)‘) — (j/7k/7>\/)ﬂ q)E(aaB) = (]7?)‘) —
(4, 7N).

Before the description of the 2-functor Wy, we realize some calculations.

Since the 2-category A admits the construction of algebras, the 2-functor
Inc4 : A — Mnd(A) admits a right adjoint, denoted as Alg 4 : Mnd(A) —
A.

The corresponding counit, on the component (A, f), is
e (A, f) - TncaAlg4(A, f) — (A, f).

If we define Alg4(A, f) = A/, the FEilenberg-Moore object for (A, f), then
A f) == (W, xf) : (AT, 14) — (A, f), where u/ : A7 — A and
x! rufdful — uf.

In Theorem 2, at [8], the author proved that if .4 admits the construction
of algebras then for any monad (A, f) in Mnd(.A), there exists an adjunction
in A

uf

A A,

dar

such that it generates the monad (A, f), with unit n/ and counit edu’ Tt can
be checked that x/ = u’ edu’ | This adjunction is called the The FEilenberg-
Moore adjunction.
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Suppose there is a morphism of monads (p, ¢) : (A, f) — (B, h). Take
the composition of morphisms of monads (p, ¢) - (u/, x*) = (pu’, px’ o pu’) :
Incq(A7) = (A7, 147) — (B, h).

The previous counit, e/, is universal from the functor Inc 4, in particular,
for the 1-cell (pu’, px’ o pu’) : Inc4 (A7) — (A, f) exists a unique 1-cell in
A of the form p¥ : A¥ — Alg 4(B, h) = B" such that the following diagram

cominutes:

I ‘P
Inc4 (A7) neA (%) Inc4(B")

(puf,px! O‘Pk* (uh x™)

In particular, puf = u"p® and px’o gouf = x"p?. Observe that the associated
mate, to the first equality, is A = &"p¥d’ o d"pn’ and that u"\ = .
Consider a 2-cell of monads, 6 : (p,p) — (¢,¥) : (A, f) — (B, h).
Because of the construction of algebras for A, the 2-adjunction provides an
isomorphism of categories, for A in A and (X, f) in Mnd(A),

HomA(Av Alg.A(Xa f)) = HomMnd(.A) (IHCA(A)7 (X’ f))

given by the following assignment

a (ufa,xfa)
/\ /\
AT le x0T @A) | W (X (32
\_/ \/
b (u/b,x/b)

cf. [8]. On the other hand, we have an equality of 2-cells

(puf,pxFopuf) (uhp?,xhp?)

/\ /\
(AfalAf) \L out (B7h) - (Af,lAf) l/ oul (Bah)

\_/ \_/

(quf ,qx oypuf) (uhq¥,x"q%)

Therefore, to the 2-cell u’ there corresponds, through the assignment
(3.2), a 2-cell Alg 4(Ou’)nT (A7) := 9, where 8% : p? — q¥ and such that
u"B% = Gu’. We change the notation as follows 8¢ = 0.
With these calculations at hand, we define the 2-functor V.
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1. On O-cells, (A, f) , Yu(A, f) = d’ 4u/, that is, the Eilenberg-Moore
adjunction.

2. On l-cells, (p, ) : (A, f) — (B,h), ¥u(p,p) = (p,p¥) : d' 4uf —
dh 4 uh.

3. On 2-cells, 0 : (p,¢) — (¢,9) : (A, f) — (B,h), ¥s(0) = (6,0) :
(p,p?) — (q,q%) : d* 4uf — d" Hu.

The unit and the counit for this 2-adjunction are given as follows. The
component of the unit, at I 4 r, is nY®e(l 4 7) : I 41 — Updg(l H 7),
where U051 47) =d" 4 u".

In [8], Theorem 3, the author proved the existence of a comparison 1-cell
k"t : B — A" such that ™'k = r and d"' = k"'1. Therefore, we can make
the definition %2 (1 47) = (14, k™, 14n) : 147 — d™ 4 u"™.

In turn, the component of the counit, at (A, f), is

ePVE(A, f): ®,U4(A, f) — (A, f),

Where <I>E\IIE(A f) (A, f). In this case, the counit is defined as e®¥= (A, f) =

Theorem 3.2. There exists a 2-adjunction @y 4 V.

Proof. We prove only one of the triangular identities and the other one is
left to the reader. Using the definition of the unit and counit for this 2-
adjunction, the triangular identity e®¥YE®, o ®onV® = 14 » is proved as

(YD, 0 Oun?PE)(1H7r) = e®ERL (1) Dy E(1HAY)
S(D\I]E(A ) - ®p(1a, k™ 1gm)

= (1a,1p) - (1a,u™1gn)

= (Lay1m) = Yamy = Loy

= lo,(Ir).

O

Since the right 2-adjoint assigns the Eilenberg-Moore adjunction to a
monad (A4, f), this 2-adjunction is called the FEilenberg-Moore 2-adjunction.
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4 Eilenberg-Moore 2-adjunction

In this section, we apply the results of Section 3 to the 2-category 2Cat,
the 2-category of small categories and functors, due to the fact that this
2-category admits the construction of algebras. Therefore, we have a 2-
adjunction

Adj,(2Cat) Mnd(2Cat).

(20

Since the complete description, for a general A, has been given above,
we only give some remarks on the derived properties for this particular 2-
category.

The description of the 2-functor ¥y, for this particular 2-category, is
given by the entries

1. On O-cells, ¥ (C, F) = D" 4U", that is, the Eilenberg-Moore adjunc-
tion.

2. On 1-cells, (P,¢) : (C,F) — (D,H), Yg(P,p) = (P,P?,\?). The
action of the functor P¥ : C¥ — D¥ is the following
(i) On objects, (M, x) in C*, PP(M,xn) = (PM,Pxux - ).
(ii) On morphisms, p, P¥(p) = Pp.
(iii) The natural transformation \? is the mate of the identity U” P¥ =
PU". Using (3.1), we get the component of A\ at A, in C,
NA = (™" P?D" o D"PpU?")(A)
= Pu"A.-oFA-HPn"A
= @A.

3. On 2-cells, 0 : (P,p) — (Q, ), we have

UL(0) = (a?, 8%) = (0, 0).

The induced natural tranformation 6 : P¥ — Q¥ : CF — D¥ is
defined through its components, using the condition §U* = U0, as

A~
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Since we have a 2-adjunction, the following isomorphism of categories
takes place, natural for L 4 R in Adj,(2Cat) and (X, H) in Mnd(2Cat):

Hompgj,(;cat) (L A R, V(X H)) = Homyind(,cat) (Ps(L 1 R), (X, H)).
(4.1

5 Monoidal liftings (Eilenberg-Moore type)

In this section, we relate monoidal liftings to colax monad structures. In
order to do so, we give the definition for this last concept.

Definition 5.1. A colax monad ((F,&,7), ", n") over the monoidal cate-
gory (C,®,I) consists of the following

1. (F,p",n") is a monad on C.

2. (F,&,7): (C,®,I) — (C,®,I) is a colax monoidal functor. That is
to say, the natural transformations { : F'- ® — ® - (F x F) and
~v: F - 0; — 65 fulfills the commutativity of the following diagrams:

FC
F((A® B)® C) 2% p(Ae B) o FC 222 (A e FB) @ FC

Faa B,c AQFA,FB,FC

F(A® (B®C)) ———=FA® F(B® C) ;o> FA® (FB® FC)

(5.1)
FU®A) " proFra?® 2 1o Fa (5.2)
FA®I<FAﬂFA®FI<5A—IFA®I (5.3)

\/
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3. :U’F : (F7£77) ’ (F,f,")/) — (F,f,"y) and 77F : (1071@)7161) — (Fa&’Y)
are colax natural transformations, that is, apart from the fact that
they are natural transformations, they have to fulfill the following
commutative diagrams:

Fe E(FxF)

FF® F®(F x F) ®(FF x FF) (5.4)
uF® ®(puF xpu)
F : ®(F x F)
Fry v
FFS; Fé; o (5.5)
ufor
“
Fé;
1

& e X 1s

51—1>51

F F>< F
n"'e® ®(m™ xn") nFé[i
5

F® ®(F x F) ; Fér.

(5.6)

Since the natural transformation v has only one component, at 0 in 1,
then this natural transformation and its component will be denoted indis-
tinctly as ~.

Using the isomorphism (4.1), the following bijection can be obtained,
cf. [7]

Theorem 5.2. There is a bijective correspondance between the following
structures

(1) Colaz monads ((F,&,v),u",n"), for the monoidal structure
C,®,1,a,l,r).
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(2) Morphisms and natural transformations of monads of the form

(®,€) (CxC,FxF)— (C,F),
(6r,7) + (1,11) — (C,F)
@i (@ (®x0),8(Ex F)ok(®x C) —
(®@-(Cx®) ac,d(F x &)aco&(C x ®)ae) :

(CxC)xC,(FxF)xF)— (C, F),
I 2 (@ (6 xC)- Iz @y x F)igt o &(6r x C)Ig") — (1¢, 1p)
C,F)—(CF),
ror (®@-(Cx8p) gt ®@(F xy)rgt 0 €(C x 8)rgt) — (1, 1F) :
(C,F) — (C,F).

(3) Monoidal structures for the Eilenberg-Moore category, (C*,®, I,a,l, 7)
such that the following diagram of arrows and surfaces commutes:

(a) (b)
cxc—2—c 1—2 ¢
(5.7)
UFxu¥ UF Uyl UF
Cf x CF ———(CF 11— ¢F
o
®-(®xC) ®@-(6rxC)-15" ®-(Cxdp)rg*
®-(Cx®)-ac e e
wr)? vl ur UF  UF UF
& (@xcP) B8 xCP) B(CF X7 12
(cr?3 J{ @ cr cr l T cr cr i v Ccr.
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Proof. (1)=+(2) Consider a colax monad ((F,&,7), u",n"), for the monoidal
structure (C,®,I). In particular, the multiplication and the unit of the
monad are colax natural transformations then (5.4) and the first diagram in
(5.6) commute. Therefore, we have a monad morphism (®,&) : (C x C, F' x
F)— (C,F).

Likewise, the commutativity of (5.5) and the second diagram in (5.6)
implies that (d7,7) : (1,11 ) — (C, F') is a morphism of monads. Note that
the requirement (d7,7) is a monad morphism is equivalent to the statement
(I,~) is an Eilenberg-Moore algebra.

Since (®, &) is a morphism of monads, the following are also morphisms
of monads (® +(® x C),®(¢{ x F)o&(® x C)) and (® - (C x ®) - ac, d(F x
&ac o &(C x ®)ace) from ((C xC) xC,(F x F) x F) to (C, F'). Furthermore,
due to the commutativity of the diagram (5.1), the following is a 2-cell in
Mnd(gCat)

(R(®XC), REXF)oE(®x%C))
(CxC)xC,(FxF)xF) ia (C,F).

\_/

(®-(Cx®)-ac, ®(Fx&)acos(Cx®)ac)

Likewise, because (®,&) and (d7,7) are monad morphisms, (® - (67 X
C) It @(y x F)izt o €(6; x C)1z") is also a monad morphism. Using the
commutativity of the diagram (5.2), we can consider the monad 2-cell

(®(BrxC) Iz, @ (yxF)iz o8, xC)iz")

T

(CaF) l (C,F)

\_/

(1¢,1F)

In a similar way, the following is a monad transformation, r : (® - (C x
1) -1zt @(F x y)rgt o &(C x o1)rz) — (le, 1p) : (C, F) — (C, F).

(2)=-(1) Note that the aforementioned claims can be reverted.

(2)=-(3) Take the monad morphism (®,&) : (CxC,FxF) — (C,F). In
order to use the isomorphism (4.1), we make L 4 R = D" x DF 4U" x U*
and (X, H,p",n") = (C,F,u",n"). Therefore, to this monad morphism
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corresponds a morphism of adjunctions of the form (®,®%) : DF x DF A
U xU*" — DF 4 U" such that a diagram like (5.7a) commutes. According
to the definition of ¥¥, the functor ®¢ acts, on objects, as

®§((M7XM)’(N7XN)) = (®(Ma N)7®(XM7XN)'£IM,N)-

The previous action is defined at the beginning of the proof of Theorem
7.1, |7]. On morphisms, we have

®*(p,q) = ®(p,q).

We change the notation from ®¢ to ®.

If in the isomorphism (4.1), we make L 4 R = 17 - 17 and (X, H, u*,n")
= (C, F,u",n"), the monad morphism (d7,7) has an associated morphism
of adjunctions of the form (67,d;,7) : (13 4 11) — D" 4 U” such that a
diagram like (5.7b) commutes. According to the definition of ¥#, the functor
;7 acts as

0;7(0,10) = (61(0),0r(10) - ) = (I,)-

On morphisms,

517(10) = (5[(10) =17 = 1(177).

If we make the definition I = (I,7), then 6,7 := 0;. The algebra (I,7) is
the unit of the monoidal structure on C*¥.

Suppose that we have a natural transformation of the form a : (® - (® x
0),®(ExF)og(®xC)) — (@ (Cx®)- ac,d(F x {ac o {(C x ®)ac) :
((CxC)xC,(FxF)xF)— (C,F) then we can make L 4 R = (D" x
DFYx DF 4 (U xU")xU" and (X, H,u",n") = (C, F, u*,n"). Therefore,
to the previous 2-cell of monads, we can associate a 2-cell of adjunctions of
the form
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®-(®xC)
T T
i
\/
®(Cx®)-ac
(DF)3 | [ (UF)? DFf||UF
[®-(®xC)] €
T T~
(CFy3 iﬁ“ cr.

[®-(Cx®)-ac] €

In order to reduce expressions, we used and will be using the notation

€ = ®(ExXF)og(®x0)
£ = @(F x &ac o &(C x ®)ac,
(F = (x)x-

Since ¥y is a 2-functor, we have

@ (®@xC)]E = U@ (®xC),0(Ex F)o&(® xC))
= Uy((®¢8 (®xC,EXF))
= Uy(®,8) Yp(®@xC,EXF)
= @ (@x0O)¥F =8 (®xC).

In the same way, we can check that [®-(C x ®)-ac]€” = ®-(C* X ®)-acr.
We change the notation 8¢ for @ and we get a natural transformation

a:R(®xCT) — B(C" x®)-aer: (C" xCT) xC" —C .

Using the definition of the functor ¥ on the 2-cell a, we get the com-
ponents as

a(((Mv XM)v (N7 XN)), (M/’XM’)) = CL(M, N, M/)
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Suppose we have a 2-cell in Mind(>Cat) of the form [ : (®-(d;xC)-lg", ®(vx
Pl o &6 xC)ig") — (l¢, 1) : (C, F) — (C, F). If in the isomorphism
(4.1), we make L 4 R = D¥ 4 U" and (X, H,u",n") = (C, F,u",n"), it
can be obtained a 2-cell in the 2-category Adj,(:Cat) of the form (I, ') :
(®-(6rxC)-1z " 1e) — ([®-(8rxC)-15 %8, [1e]*F) : DF AU — DF 4 U*,
where we used the notation yo & = ® (v x F)I;' 0 &(6r x C)I;'. We change
the notation from S to L.

In the same way as before, it can be proved that [ - (J; x C) - I ]7°¢ =
®(6f X CF)ZC]} and [1¢]'* = 1,r. Therefore, we obtain a natural transfor-
mation [ : @(% X CF)ZE; — ler : C¥ — C¥. Using the definition of the
2-functor ¥ on the 2-cell [, the component of the natural transformation [
on (M, xy) is R

(M, xn) = lu-
Similarly to the 2-cell 7 : (@ (C x &7) 15", @ (F xy)rgto&(C x6)rgt) —
(1¢,1z) = (C,F) — (C,F) there corresponds a natural transformation
P ®(CF x 5f)rg} — ler : C — C". The component of this natural
transformation, at (M, x,), is

(M, X)) = T (5.8)

Since the natural transformations a,! and r fulfill the coherence conditions
for a monoidal struture and U” is faithful then @, and # fulfill the pen-
tagon and the triangle coherence conditions. Therefore, (C*,®, I,a, i, 7) is
a monoidal structure over C*.

(3)=-(2) Note that the aforementioned statements can be reverted. For
example, take the morphism of adjunctions (a,a) : (® - (® x C),® - (® x
C")) — (®-(Cx®)-ac,® - (CF x ®) -agr) : (UF x UF) x UF 4 (DF x
D¥) x D¥ — U* -4 D*. The image of this 2-cell, under ®5, is a : (®, pg) -
(® XC,pg X F) — (®7 90®) ’ (C X ®, F x 90@) ’ (aC7 1F><(F><F)-ac) : ((C x C) x
C,(FxF)xF)— (C,F), that is,

(®(®%C),®(pe xF)opg (®xC))

T

(C3, F3) a (C,F)

\_/

(®:(Cx®)-ac,®d(Fxpe)-acopg-(Cx®)-ac)
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is a 2-cell in Mnd(2Cat).

Everytime we used the isomorphism (4.1), the monad (C, F, u”,n") was
always taken fixed, therefore the implication (2 = 3) is natural in the monad
(C, F,pu",n"). O

6 Kleisli 2-adjunction

Based on either [2] or [3], the following 2-adjunction takes place

Mnd* (2Cat) Adj, (2Cat)

Vg

which can also be deduced from the general 2-adjunction given by (2.1). In
this sense, we provide only a few remarks on the structure for the several
objects that build this 2-adjunction.

The description of 2-functor, W, is given completely in order to provide
the necessary notation. The structure of such 2-functor goes as

1. On O-cells, ¥ (C, F) = Gy 1 Vg, that is, the Kleisli adjunction.

2. On l-cells, (P,m) : (C,F) — (D,H), Y (P,7) = (P, Pr,pr). In the
definition of the functor Py : Cp — Dy, we use the notation (-)# given
for a morphism in Cp and (-)” for a morphism in Dy. This notation is
used in [5] and [9].

(i) On objects, X in Cp, PrX = PX.
(ii) On morphisms, zf : X — Y in Cp, Praf = (7C,: - Px)°, where

C,: is the notation for the codomain of the morphism x* as in

Cr, which in this case is Y.

(iii) In order to define p, we have to prove that the following equality
of functors takes place, Gy P = PrGr. On objects and morphisms
f:A— BinC,

GHPA == PA:PWA:Pﬂ—GFA,
GuPf = (HPf-n"PA =(HPf- -wA-PnFA)
= (7B-PFf-Pn"A) = Po(Ff -n"A)' = PG, f,
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where the second equality takes place because of the unitality
condition on 7 and the third one is due to the naturality on 7.
Using (2.2), we get the mate for this identity

Pr = VHPWSDUFO UHPVF,

whose component, at X in Cp, is p, X = p" PX-Hn X -n" PFX =
X.

3. On 2-cells, ¥ : (P,7) — (Q, T), we have

\IJK(ﬁ) = (Oél% 619)

where ay := ¢ and we rename Sy as Y. The induced natural tranfor-
mation ¥ : Pr — @ : Cp — Dy is defined through its component
on X, using the condition G519 = 9Gp, as

X = (n"QX -9X)°. (6.1)

Since we have a 2-adjunction, the following isomorphism of categories
takes place, natural in (X, H) and L 41 R

Homninas (;cat) (X, H), @5 (L 4 R)) = Hompgj, (;cat) (Y (X, H),L4R).
(6.2)

7 Monoidal extensions (Kleisli type)

In this section, we give the dual version of the monoidal liftings, therefore
the definition of a lax monad is provided.

Theorem 7.1. A laz monad ((F,(,w),u",n") over a monoidal category
(C,®,1,a,l,r) consists of

(1) (F,u",n") is a monad on C.

(2) (F,¢,w) : (C,®,I) — (C,®,1) is a lax monoidal functor. This
means that the natural transformations ( : @ - (FF x F) — F - ® and
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w: 0y — F - 67, fulfills the commutativity on the diagrams

QFC
(FA® FB)© FC' p(A e B) o FC 2225 F((A® B) @ C)
QFA,FB,FC Fap o
FA® (FB® FC) YTy FA® F(B®C) Tanas F(A® (B®())
(7.1)
[0 FA“STA pro FA— "4 F(I o A) (7.2)
lra Fly
FA
FA® D) <2 FAo FILA% paAgT (7.3)
Fra TFA
FA.

MF : (F,C,W)'(F,C,W) — <F7<7w) and 77F : (1C71®7151) — (F,C,W)
are lax natural transformations, the adjective lax adds, to the naturality, the
commutative diagrams

C(F'xF) F¢

®(FF x FF) F®(FxF) FF® (7.4)
®(,UF></J'F) ;,LF(X)
Q(F x F) : F®
5 —2 > Fs; — Y > FFS; (7.5)
uor
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le
& & 15,

0 —0;

®(nF xn) e \ lnF‘SI (76)

®(F x F) F® Féy.

Note 7.2. Necessarily w(0) = n*1I.

The natural transformation w has only one component at 0 in 1, then
both are going to be denoted by w, that is, w = w(0) = n*I.

We are going to make use of the isomorphism (6.2). The result we want
to obtain using this isomorphism is the following.

Theorem 7.3. There is a bijective correspondence between the following
structures:

(1) Lax monads ((F,(,w), u*,n"), for the monoidal structure (C,®,1,a,l, ).

(2) Morphims and transformations of monads of the form

(®,0) (CxC,FxF)— (C,F),
(6r,w) (1,1,)— (C,F)
a @ (@ (®xC),((®xC)ox(CxF)) —
(®-(Cx®)-ac,C(Cx®)aco®(F x)ac) :

(CxC)xC,(FxF)xF)— (C,F),
I : (@ (0rxC)- 1z ¢(6r x O)lgt o®(w x F)IZ') — (le, 1p) :
(C,F)— (C,F),
o (@ (Cx6p)-rphC(Cx )t o®(F xw)rgt) — (1, 1p)
(C,F)— (C,F).

Monoidal structures for the Kleisli category (Cp, ®, I~) such that the following
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diagrams of arrows and surfaces commute:

CxC % C 1 L>C
(7.7)
GFXGF GF Gll GF
CFXCFﬁCF 111 TCF
T
®-(®xC) ®-(8rxC)-15" ®-(Cxdp)rg?
o /J\ ; /F ; ; /i\ ;
a T
®-(Cx®)-ac 1c 1c
(Gr)? Gp Gp Gr GFr Gr
&-(BxCr) ®~(5fch).lgF1 &-(Crxd;7) rc—Fl
(Cp)? l i Cp Cr l [ G Cr i P oC
®(Crx®)-ac lep lep

Proof. (1)=(2) Consider a lax monad ((F,(,w),u",n") for the monoidal
category (C,®,I). In particular, u” and n” are natural lax monoidal trans-
formations. Therefore, the commutativity of (7.4) and the first diagram in
(7.6) is equivalent to the condition that (®,¢) : (C xC,F x F) — (C, F)
be a monad morphism.

The commutativity conditions in (7.5) and the second on (7.6) is equiv-
alent to the condition for the following to be a monad morphism (d7,w) :
(1,11) — (C,F).

Since (®,(¢) is a morphism of monads so are (® - (® x C), ((® xC) o
®(Cx F))and (® - (C x ®)-ac, ((C x ®)aco@(F x ()ac). Yet again, since
((F,¢),u",n") is a lax monad over the monoidal category (C,®,I,a,l, ),
then a commutative diagram like (7.1) takes place. Therefore the following
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is a 2-cell in Mnd*(2Cat).

(®(®x%C), ((®XC)o@(CX F))
(CxC)xC,(FxF)xF) la (C,F).

\/

(®-(Cx®)-ac, ((Cx@)aco®(Fx()ac)

Since (®, ¢) and (07, w) are monad morphisms so is (®-(3; xC)-I5 ", ¢ (57 x
C)lz' o ®(w x F)iz") and taking into account the commutativity of the
diagram (7.2a), we can state that the following is a 2-cell in Mnd*(2Cat)

(@ (8rxC)-lg ", C(61xC) Iz o® (wx F)IG ")
/\
©F | (€. F).
\_/

(lc,1r)

In the very same way, r: (2 (C x d7) 15", C(Cx 61)rgt o @(F x w)ryt)
is a 2-cell of monads.

(2)=-(1) The previous assertions can be reverted.

(2)=(3) Suppose we have a monad morphism (®, (). Use the isomor-
phism (6.2), with (D, H,u",n") = (C x C, F x F,u" x p*,n" x n") and
L 4R = Gr 4V to get an associated morphism of adjunctions (®,®;) :
Gr X Gp 4 Ve x Ve — Gp - Vg, such that a diagram like (7.7a) com-
mutes. According to the definition of Wy, the functor ®; acts as follows.
On objects,

R¢(X,Y)=0(X,Y)=X®Y,

and on morphisms,
®C(xﬁ7 yﬁ) = (chn,cyﬁ : (.Z' ® y))ﬁv

where C,; is codomain of the morphism z* for example. We rename ®¢ as
&.

For the monad morphism, (é7,w) : (1,11) — (C,F), use the men-
tioned isomorphism with (D, H, u,n") = (1,14, 11,, 11, ), that is, the triv-
ial monad on the category 1, and L 4 R = G 4 V. Therefore, there exists
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an adjunction morphism (07, [07]w) : G1, Vi, — Gp 4 V. According to
the 2-functor Uy, the functor [d7], : 1 — Cp, acts as

[67]w(0) = 07(0) = 1,

[67)(10) = (w(0) - 67(10))* = (n" 1)
That is to say [07], = 07 : 11, — Cp, where I=1.
Suppose that we have the following 2-cell in Mnd®(3Cat),

(®-(®x%C), C(®XC)o@(¢X F))
(CxC)xC,(FxF)xF) ia (C,F).

\_/

(®-(Cx®)-ac, ((Cx®)aco@(Fx()ac)

In order to continue with the calculations, we use the following notation,
for the sake of simplification

¢ = ((®xC)oa(¢ x F),
(% = ((C x ®)ac o ®(F x ()ac,
() = (x)x-

According to the isomorphism of categories given by (6.2), to the previous
2-cell in Mnd*(2Cat) corresponds a 2-cell, (aq, 8,) in Adj,(2Cat), where
o, = a and we rename 3, = @ and such that

[©-(Cx®)-ac] 2
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It can be show that

[@-(®@xC)]e = & (®xCr)
[@ - (Cx®)-aclez = @ (CrX®)-ac,.
Therefore, we have a natural transformation @ : ® - (® x Cp) — ® - (Cp X

®) - ac, that will be part of a monoidal structure on Cr. According to the
2-functor W, the component of @ at ((X,Y),7) is

axyz=0"(X® (Y ®2) axyz)

Suppose that we have a 2-cell in Mind*(2Cat) of the form [ : (®-(d; xC)-
1, ¢00rxC) gt o (wx F)lg') — (l¢,1x) : (C,F) — (C, F). Therefore,
we obtain a natural transformation [ : & - (07 x Cp) - lgFl — 1l¢,. Using
the definition of the functor W, on the 2-cell [, the component of [, on the
object X in Cp, is

IX =(n"X-1X)% (7.8)
Similarly, for the monad morphism 7 : (®-(C x d7) 75", {(Cx dr)rg o ®(F x
w)rgt) — (l¢, 1) : (C, F) — (C, F), we obtain a natural transformation
7 @¢ - (Crx 8f) gt — lep : Cr — Cp.

The proof of the coherence conditions are left to the reader.

In summary, (Cp, ®, I, a,l,7) has a monoidal structure on Cg.

(3)=(2) Using the isomorphism, given by (6.2), we get the return of
the proof. For example, the image, under @, for the 2-cell of adjunctions
(a,a): (®- (®%xC),®-(Cx®)-ac) — (& (& xCrp),®- (Cr x D) -ac,) :
(Gp X Gg) x Gp A (Ve x V) X Vi is

P ((a,a))
= a:(®,7g)(® % C,mgxc) — (®,7)(C X ®77rC><®)(a(377Tac)
:(C3,F3) — (C, F)
a:(®,712)(®@xC,rg X F) —
(®,7T®)(C X @, F x 7T®)(GC7 1F><(F><F)'ac)
:(C3,F3) — (C,F)
= a:(®(®xC),m5(®xC)ox(rg X F)) —
(®-(CxC)-ac,me(C x ®)ac o (F x mg)ac)
S (C3,F3) — (C, F).
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We used the fact that a¢ is a morphism of adjunctions. O

8 Liftings to the Eilenberg-Moore algebras & Extensions to
the Kleisli categories

This is probably the most explored section in this article, a few examples of
the detailed proofs for the following statements are found in [1] and [9]. In
this section, we treated these statements only as direct consequences of the
isomorphisms of the categories given by (4.1) and (6.2).

Theorem 8.1. There is a bijective correspondence, natural in (C, F, u*,n™)
and (D, H, u* ;n™), between the structures

(1) Liftings to the FEilenberg-Moore algebras, for the functor P : C — D.
That is to say, the following diagram commutes:

or —2

DH

UF UH

C

- D.

(2) Morphisms of monads (P, ) : (C,F) — (D, H). That is to say, a
natural transformation ¢ : HP — PF', such that the following diagrams
commute:

Hp ©F
HHP HPF PFF
P
HHP P,U,F 77HP PUF
HP - PF HP - PF.

Theorem 8.2. There exists a bijective correspondence, natural in (C, F, u*,n")
and (D, H, u"™,n"), between the structures
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(1) Eatensions to the Kleisli categories, for the functor P : C — D.
That is to say, the following diagram commutes

P

C D
GF CT'H
Cr G Dy.

(2) Morphisms of monads (P,y) : (C,F) — (D,H). That is to say,
a natural transformation ¢ : PF — HP such that the following diagrams
commute

pF He

PFF HPF HHP
P
P,LLF /,LHP PnF‘ nHP
PF - HP PF - HP.

9 Actions on the Kleisli category

In this section, we relate actions on the Kleisli category and strong monads
through the isomorphism given by the corresponding 2-adjunction. In order
to do so, the following definitions have to be stated.

Definition 9.1. Let (C, ®, I) be a monoidal category. A left C-action on the
category B is a functor K : CxB — B together with natural transformations
v:R(@xB) — R(CXx®), ay: (CxC)xB— Band j:R(6; x B)lgt —
15 : B — B such that they fulfill the following commutative diagrams, for
objects C,C’,C" in C and B in B,
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(CoC)eCRB— 2" (CeC)R(C" K B)

ac o o XB

[C®(C'®C"|XB Vc,c! ,C!"RB

Vo.o'ec!,B

CR[(C'®C") K B CR[C'R(C" R B)]
CIZ’VC’,C”,B
and
(CeI)KX (IKB) (I®C)B————IKX(CKXB)
rc& /&]B lc& AB
CX B CKX B.

Definition 9.2. A right strong monad ((F,o"),u",n"), on the monoidal
category (C,®,I), is a usual monad (F, u”,n"), on C, with a natural trans-

formation ¢" : A® FB — F(A ® B) such that the following diagrams
commute:

(@) A®FFB—2"" F(A% FB)— " FF(A® B)
A®urB u¥(A®B)
A® FB - F(A® B) (9.1)
(b) A® B
AsnF'B n*(A®B)
A®FB F(A® B)

O.T‘
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and
(@) (A®B)® FC Thsp.C F((A® B)® C)
aA B,FC FaA,B,C
A® (B® FQC) oo AR F(B®C)——: F(A® (B®())
®op ¢ TA,BoC
(9.2)
b) I®FA F(I® A)

\/

Definition 9.3. A left strong monad ((F7 a'), ", n™) on a monoidal cate-
gory (C,®,1), is a usual monad (F,u”,n") on C, together with a natural
transformation o ap: FA® B — F(A® B) such that fulfills the commu-
tativity of dual diagrams like (9.1) and (9.2).

The following theorem can be stated, note that the proof is just an
adaptation for the corresponding lax monoidal case.

Theorem 9.4. There exists a bijection between the following structures

(1) Right strong monads ((F,o"),u",n") on the monoidal category
C,®,1,a,m1).
(2) Morphisms and transformations of monads of the form

(®,0") : (CxC,CxF)— (C,F)
a : (® (®xC),d"(®xC)) —
(®-(CXx®)-aec,0"(Cx®)aco®(C x o")ac)
((CxC)xC,(CxC)xF)— (C,F)
Lo (®@-(0rxC)-Igt, a"(6r x C)lg') — (1e, 1p) < (C, F) — (C, F).
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(3) Left actions on the Kleisli category, Cp, X : C X Cp — Cp such that
the following diagrams of morphisms and surfaces commute:

cxc—2 -¢

CxGp Gp
C xCp TCF (9.3)
(a) (b)
®-(®xC) ®-(3rxC)-1g"
C2 ] Q_a/1 C C \l_l/1 C
e t 0.0
C2><GF Gp Gr Gr
X-(®@xCr) |Z-(5]XCF)-l51
/\ /_\
C? x Cp l a Cr Cr i 7 Cp.
\/ \_/
®-(CxB)-ac, o

We state the dual theorem as follows.

Theorem 9.5. There exists a bijection between the following structures
(1) Left strong monads ((F,c'), u™,n™) on the monoidal category
C,®,1,a,r1).
(2) Morphisms and transformations of monads of the form

(®,0): (CxC,FxC)— (C,F)
a:(® (®xC),p(®xC)ox(pxC)) —
(®-(Cx®)-ac,p(C x @)ac)
((CxC)xC,(FxC)xC)— (C,F)
7’:(®'(CX(S[)'TEl,QO(CX(sj)T51) — (1¢,15) : (C, F) — (C, F).



152 J.L. Lopez Hernandez, L.J. Turcio Cuevas, and A. Vazquez-Marquez

Right actions on the Kleisli category, Cp, X : Cp X C — Cp such that the
following diagrams of morphisms and surfaces commute:

CxC—2—>¢

GFXC GF

Cr xC—5>Cr

(a) (b)

®-(®xC) ®-(Cxd1)rg "
®-(Cx®)-ac 1e
(GrpxC)xC Gr GFr Gr
5. (KxC) &-(cha,)-rg;

/\
(CrxC)xC i a Cr Cr l 7 Cp.
\_/ \/

K- (Crx®)-ac, lep

We left to the reader the writing of dual statements, that is, the ones
that corresponds to the Eilenberg-Moore category, where the direction of
the natural transformations are inverted, for example 0 p : F(A® B) —
A® FB.

10 Functor algebras

Check Proposition I1.1.1 in [4] and [6] for this section. We define the category
of H-left functor algebras for a given monad (D, H, u,n').

Definition 10.1. The category of left H-functor algebras, for the pair
(C,D), denoted as yF or yM, is defined as follows. The objects are given
by (J,\;), where J : C — D is a functor and A\, : HJ — J is a natural
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transformation such that the following diagrams commute:

HHJ HI J HJ
HA, As : Ay (10.1)
J
HI———=J J.

A morphism of functor algebras, 0 : (J,\;) — (K, k), is a natural
transformation 6 : J — K such that the following diagram commute:

Hl—1 - gk
)\J )‘K
J —— K. (10.2)

We realize that the diagrams given by (10.1), for a left H-functor algebra,
account for a monad morphism of the form (J, ;) : (C,1¢) — (D, H). In
the same way, the commutative diagram for a morphism of left H-functor
algebras, as in (10.2), account for a monad transformation 0 : (J,\;) —
(K, g):(C,1¢) — (D, H).

Using the isomorphism for the Eilenberg-Moore 2-adjunction, given by
(4.1), the category pJF is isomorphic to the following category, named pos-
sibly as category of liftings to D", for the pair (C,D). The objects of such
category are functor pairs (J, J ) such that they complete to an adjunction
morphism, in Adj,(sCat), of the form (J,J) : 1¢ 4 1¢ — D¥ 4 U". That
is to say, the following diagram commutes:

C D
1le vH
Clc DH
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that is,

D
UH

D,
The morphisms of su(A:h category are the usual morphisms of adjunctions
(,8) : (J,J) — (K,K) : 1¢ 4 1¢ — D” 4 U”. We then proved the

following theorem.

Theorem 10.2. There exists an isomorphism, natural on C and (D, H),
between the categories

(1) The category of left H-functor algebras yJF.

(2) The category of liftings to D¥, for the pair (C,D).

Dually, we have the category of right H-functor algebras, for the monad
(D, H, u",n™), denoted as Fg or My. The objects are pairs (J, p,), where
the natural transformation p; : JH — J is such that it fulfills diagrams
dual to those in (10.1). In the same (dual) way as before, this category is
the same as the category Homying®(,car)((D, H), (C,1¢)). Therefore, using
the isomorphism (6.2), the previous category is isomorphic to the category
named as extensions from Dy, for the pair (D,C). The objects of this
category are pairs of functors (J, J ) such that they complete to an adjunction
morphism (J,.J) : Gy 4 Viy — 1¢ 4 1¢ in Adj, (2Cat). In particular, the
following diagram commutes:

D

Gy

DH.
We also proved the following theorem

Theorem 10.3. There exists an isomorphism, natural on (D,H) and C,
between the categories

(1) The category of right H-functor algebras Fy.

(2) The category of extensions from Dy, for the pair (D,C).
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11 Conclusions and future work

This survey has the objective to show how several situations for the theory
of monads are connected in a very simple way, through a 2-adjunction. Any
person who has taught a course on monads would agree that this structure,
of a 2-adjunction, can be used as an educational purpose in the sense that a
simple structure can account for several situations and which can spare the,
otherwise cumbersome, details of the proofs.

For future work, we have a few recommendations. The reader may
find interesting to extent the part of strong monads and actions over the
Kleisli categories to strong symmetrical monads and use the actions for the
Eilenberg-Moore case. It would be interesting also to contextualize the case
of the monoidal liftings and monoidal extensions according to the formal
theory of monoidal monads, and the standard objects, given in [10].

The reader may want to find more situations in the monad theory that
can use the isomorphism provided by this pair of 2-adjunctions, the authors
will certainly pursue this issue.
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