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Injectivity in a category: an overview on
smallness conditions

M.M. Ebrahimi, M. Haddadi, M. Mahmoudi

Abstract. Some of the so called smallness conditions in algebra as well
as in category theory, are important and interesting for their own and also
tightly related to injectivity, are essential boundedness, cogenerating set, and
residual smallness.

In this overview paper, we first try to refresh these smallness condition
by giving the detailed proofs of the results mainly by Bernhard Banaschewski
and Walter Tholen, who studied these notions in a much more categorical
setting. Then, we study these notions as well as the well behavior of injec-
tivity, in the class mod(Σ, E) of models of a set Σ of equations in a suitable
category, say a Grothendieck topos E , given by M.Mehdi Ebrahimi. We close
the paper by some examples to support the results.

1 Introduction

The notions of essential boundedness, cogenerating set, and residual small-
ness are important notions in Algebra and Category Theory and, as given
in [10], they are as well tightly related to the Well Behaviour of injectivity.

In this overview, we discuss the relation between these notions and some
others related to them and to injectivity with respect to an arbitrary sub-
class M of morphisms, not necessarily monomorphisms, in an arbitrary
category A, mainly referring to Bernhard Banaschewski [3] and Walter
Tholen [30].
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We then describe the relationship between the class modΣ of models
of a set Σ of equations in the category Set and the corresponding class
mod(Σ, E) of models of Σ in a suitable category E regarding the notions
mentioned above, given by M.Mehdi Ebrahimi [11]. The basic nature of
these results is that, for any given Σ, whatever a property holds in modΣ,
the corresponding property holds in mod(Σ, E), provided E satisfies some
special properties, in particular when E is a Grothendieck topos. The last
section contains some examples to support the results.

We hope this paper and [10] will help and encourage, in particular, young
mathematicians working in many different fields of mathematics to further
study injectivity and related notions with respect to many different classes
M of morphisms, not necessarily monomorphisms, which they encounter in
their study.

In the rest of this section we recall some definitions needed in the sequel.
For more information, see [1, 8, 11–13, 21, 23, 24, 28, 30, 31].

Definition 1.1. One says thatM has good properties with respect to com-
position if it is:

(1) Isomorphism closed; that is, contains all isomorphisms and is closed
under composition with isomorphisms.

(2) Left regular; that is, for f ∈ M with fg = f we have g is an
isomorphism.

(3) Composition closed; that is, for f : A→ B and g : B → C in M, gf
is also in M.

(4) Left cancellable; that is, gf ∈M implies f ∈M.

(5) Right cancellable; that is, gf ∈M implies g ∈M.

(6) Cancellable; that is, left and right cancellable.

Now let us recall what we mean by a subobject and an extension with
respect to an arbitrary class M of morphisms, not necessarily monomor-
phisms.

Definition 1.2. We say that A is an M-subobject of B, or B is an M-
extension of A, whenever there exists an M-morphism (although not nec-
essarily a monomorphism) m : A → B. Sometimes, we use m : A ↪→ B
to emphasize this convention and also we say that (A,m) (or (m,B)) is an
M-subobject of B (or an M-extension of A).
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Remark 1.3. One can define the following pre-order relation on the class
of all M-subobjects of an object A: For M-subojects m : A1 ↪→ A and
n : A2 ↪→ A of A,

m ≤ n⇔ ∃f : A1 → A2 such that nf = m

Now one can see that if M is left regular then the relation

m ∼ n⇔ m ≤ n & n ≤ m

is an equivalence relation and m ∼ n if and only if A1 ' A2 (as two objects
in the category). Also the above pre-order gives a partial order on the
class of all M-subojects of A (modulo isomorphism). So, from now on,
M-subobjects refer to this partially ordered class.

In a similar way, we can make the class ofM-extensions of an object A,
modulo isomorphism, into a partially ordered class.

Recall that in classical Universal Algebra a subdirectly irreducible object
is defined as follows:

Definition 1.4. We say that A is subdirectly irreducible if for any monomor-
phism f : A →

∏
i∈I Ai with all πif epimorphisms, there exists an index

i0 ∈ I for which πi0f is an isomorphism.

The following definition generalizes the above and will be seen in Theo-
rem 3.7 to be equivalent to the above for the classical case:

Definition 1.5. An object S in a category is called M-subdirectly irre-
ducible if there are an object X and two different morphisms f, g : X → S
such that any morphism h with domain S and hf 6= hg belongs to M.

When the class of M-subdirectly irreducible objects in a category A
form just only a set we say that A is M-residually small.

Similar to what we have with respect to monomorphisms, we can define
M-well poweredness and M-cowell poweredness as follows:

Definition 1.6. Let M be a class of morphisms of a category A. We
say that A is M-well powered (M-cowell powered) if the class of all M-
subobjects (M-extensions) of A (modulo isomorphism) forms a set, for any
A ∈ A.
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Definition 1.7. We say that the category A fulfills theM-chain condition
if for every (so called small well-ordered chain) directed system (fαβ : Xα →
Xβ)0≤α≤β≤λ whose index set is a well-ordered chain with the least element
0, and for all α, f0α ∈M (and of course, fαα = id and fβγfαβ = fαγ), there
is a (so called upper bound) family (hα : Xα → X)0≤α≤λ with h0 ∈ M and
hβfαβ = hα.

Note that every chain of the above form is actually a chain in the par-
tially ordered class of M-extensions of X0.

2 Essential Boundedness and Residual Smallness

In this section we study essential boundedness and residual smallness and
their relation with injective hulls.

Definition 2.1. An M-morphism f : A ↪→ B is called an M-essential
extension of A if any morphism g : B → C is inM whenever gf ∈M. The
class of all M-essential extensions (of A) is denoted by M∗ (M∗A).

The following is about the size of the class of M-essential extensions of
an object A.

Definition 2.2. A is said to be M-essentially bounded if for every A ∈ A
there is a set {mi : A ↪→ Bi : i ∈ I} ⊆ M such that for any M-essential
extension n : A ↪→ B there exists i0 ∈ I and h : B → Bi0 with mi0 = hn.

In fact A is M-essentially bounded whenever for every A ∈ A there
exists a subset of the class of allM-extensions of A, elements of which form
“collectively” an upper bound for the partially ordered class M∗A.

The following theorem shows the relation betweenM-essentially bound-
edness and another important notion related toM-injectivity, namely,M∗-
cowell poweredness.

Theorem 2.3. [30] M∗-cowell poweredness implies M-essential bound-
edness. Conversely, if M consists of monomorphisms only, A is M-well
powered and M-essentially bounded, then A is M∗-cowell powered.

Proof. If A is M∗-cowell powered then it is enough to consider M∗A itself
as the upper bound set of M-essential extensions of A, for every A.
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Conversely, we show that for every A ∈ A, M∗A is a set. Since A is
M-essentially bounded, for every A ∈ A there exists a set {mi : A ↪→
Xi : i ∈ I} of M-morphisms such that for every M-essential extension
n : A ↪→ B there exist i0 ∈ I and a morphism hn : B → Xi0 with mi0 = hnn.
Thus, hn ∈ M and hence B is an M-subobject of Xi0 . But, since Xi,s
form a set and A is M-well powered, the union of the classes M−SubXi,
of all M-subobjects of Xi, s, i ∈ I is a set. Now we define α : M∗A →⋃
i∈I(M−SubXi) which maps every M-essential extension n of A to hn.

Since M⊆Mono, we can easily see that α is one-one and so M∗A is a set,
for every A ∈ A.

The next result shows thatM-essential boundedness is a necessary con-
dition to having enough M-injectives, which later, in 2.7, helps us to show
that residual smallness is also necessary to having enough injectives.

Recall that it is said that a category A has enough M-injectives if any
A ∈ A is an M-subobject of an M-injective object.

Theorem 2.4. If A has enough M-injectives then A is M-essentially
bounded.

Proof. Let m : A ↪→ I be an M-injective extension of A. One can easily
see that any M-essential extension of A is in I, and hence the result.

The next notion helps us to provide the relation between residual small-
ness and M∗-cowell poweredness.

Definition 2.5. Let E and M be classes of morphisms in a category A.
The pair (E ,M) is called a factorization structure for morphisms in A if:

(1) Both E and M are isomorphism closed.
(2) A has (E ,M)-factorization of morphism (that is, each morphism f

in A has a factorization of the form f = me with e ∈ E and m ∈M).
Also, A is said to have (E ,M)-factorization diagonalization if, in addi-

tion to the above, the following condition also holds:
(3) A has a unique (E ,M)-diagonalization property; that is for each

commutative square

A
e→ B

f ↓ ↓ g
C

m
↪→ D
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with e ∈ E and m ∈M, there exists a unique diagonal morphism d : B → C
making the resulting triangles commutative.

Theorem 2.6. [30] Let M =Mono and E be another class of morphisms
of A such that A has (E ,M)-factorization. Also, let A be E-cowell powered
and have a generating set G such that for all G ∈ G, G t G ∈ A. Then
M∗-cowell poweredness implies M-residual smallness.

Proof. Suppose S is M-subdirectly irreducible, and so there exist an ob-
ject X and morphisms x, y : X → S such that x 6= y and any morphism
f : S → D with fx 6= fy is in M. But, since A has a generating set G,
there are an object G ∈ G and a morphism f : G→ X such that xf 6= yf .
Now, we take g := xf, h := yf . On the other hand, since G tG exists, the
universal property of coproducts gives a unique morphism t : G t G → S
making the following diagram commutative:

S
g

↗ ↑
h
↖

G | G
i
↘ |

j

↙
G tG

Now, by hypothesis, we can factor t as t = me. We claim that m ∈ M∗.
To show this, assume that l : S → P is such that lm ∈ M. Note that
lx 6= ly. For if lx = ly, then lxf = lyf , so lmei = lmej and hence,
by left cancellability of monomorphisms, we have ei = ej and therefore
mei = mej, that is, h = xf = yf = g, which is a contradiction. Now,
M-subdirect irreducibility of S implies that l ∈M. That is, m ∈M∗, and
so S is an M∗-extension of an object X depending on G ∈ G. Since G is a
set and A is M∗-cowell powered, these S,s form a set.

Now, using Theorems 2.4, 2.3 and 2.6, respectively, we can see that resid-
ual smallness is also a necessary condition to having enough M-injectives,
when M =Mono and the hypotheses of these results are present:

Corollary 2.7. Under the hypotheses of Theorems 2.4, 2.3 and 2.6, residual
smallness is a necessary condition for having enough M-injectives when
M =Mono.
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The next notions to be considered in this section are defined as follows:

Definition 2.8. A has M-transferability property if for every pair f, u of
morphisms with f ∈M one has a commutative square

A
f
↪→ B A

f
↪→ B

u ↓ =⇒ u ↓ ↓ v
C C

g
↪→ D

with g ∈M.

Note 2.9. Note that if pushouts exist in A andM is left cancellable, then
it is easily seen that pushouts transfer (or preserve) M-morphisms if and
only if A has the M-transferability property.

The next result shows the relation between having enough injectives and
the M-transferability condition.

Lemma 2.10. If A has enoughM-injectivs then, A fulfillsM-transferability
property.

Proof. Cosider the following diagram:

A
f
↪→ B

u ↓
C

Having enoughM-injectives gives anM-injective extension g : C ↪→ D, and
hence a morphism v : B → D with vf = gu, which proves the lemma.

Definition 2.11. We say that A has M-bounds if for any small family
(hα : A ↪→ Bα)α∈I of M-morphisms there exists an M-morphism h : A ↪→
B which factors over all hα,s.

Note that for A having M-bounds means that every subset of the class
ofM-extensions of an object A has an upper bound in the partially ordered
class of M-extensions of A.

The following lemma shows that, up to the existence of colimits in A,
the condition of having M-bounds is equivalent to being closed under M-
multiple pushouts, provided M is left cancellable.
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Lemma 2.12. Up to the existence of colimits, having M-bounds for A is
equivalent to being closed under M-multiple pushouts, provided M is closed
under composition and is left cancellable.

Proof. (⇐) This implication is trivial.
(⇒) Suppose {mi : X0 ↪→ Xi}i∈I is a small family ofM-morphisms. We

show that this family has an M-multiple pushout. Since A has colimits,
there exists a multiple pushout of {mi}i∈I , say ({ni}i∈I , P ), where ni :
Xi → P , for every i ∈ I. On the other hand, {mi}i∈I has an M-bound,
say m : X0 ↪→ Y , such that for every i ∈ I there exists hi : Xi → Y
with himi = m. Now, the universal property of pushouts gives a unique
morphism t : P → Y such that tni = hi, for every i ∈ I. But we have
himi = m, and so tnimi = m belongs toM. Therefore, by left cancellability
of M we have nimi ∈M.

Theorem 2.13. [30] Let A satisfy the M-transferability and the M-chain
condition, and let M be closed under composition. Then, A has M-bounds.

Proof. Consider a nonempty small family (mα : X → Xα)α∈I . We should
find an M-morphism n : X ↪→ Y over which each mα factors. Using
the Well-Ordering Theorem, we take I as an initial segment of the ordinal
numbers, and proceed to construct n by ordinal induction. Put n0 = m0

as the initial step. Now suppose that for every j ≤ i, the family (mα)α≤j≤i
has an M-bound nj : X ↪→ Yj . Now consider the following two cases for i.

(1) i is the immediate successor of i′, that is i = i′ + 1. In this case we
apply M-transferability to get the commutative diagram

X
ni′−→ Yi′

mi = mi′+1 ↓ ↓ fi′

Xi′+1

gi′+1−→ Yi′+1

Now taking ni(= ni′+1) = fi′+1ni′ = gi′+1mi′+1, we see that ni factors
through all mj , j ≤ i.

(2) i is a limit ordinal, and so it is not an immediate successor. In
this case we apply the M-chain condition to nj ,s (j < i) already created,
to obtain h : X → Z which factors through all ni, and then apply the
M-transferability property to mi and h, and define ni as in the successor
step.
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3 Cogenerating Set and Residual Smallness

In this section we see the relation between M-residual smallness and hav-
ing a cogenerating set in a category, and among other things we give the
generalized Birkhoff’s Subdirect Representation Theorem.

First recall the following definitions:

Definition 3.1. (1) A set G of objects of a category is a generating set
if for every parallel pair of different morphisms m,n : X → Y there exist
G ∈ G and a morphism h : G→ X such that mh 6= nh.

(2) A set C of objects of a category is a cogenerating set if for every
parallel different morphisms m,n : X → Y there exist an object C ∈ C and
a morphism f : Y → C such that fm 6= fn.

The following definition generalizes the notion of a cogenerating set,
which will be shown in Theorem 3.13 to be equivalent to the above when
M is the class of all monomorphisms.

Definition 3.2. A set C of objects in a category is called anM-cogenerating
set if it is closed under products (including the empty one which is the
terminal object), and any object A admits someM-morphism A ↪→

∏
i∈I Ci

with Ci ∈ C.

Now we see the relation between M-residual smallness and having a
cogenerating set in a category.

Theorem 3.3. [30] Let A have a cogenerating set C and A be M-well
powered. Then A is M-residually small.

Proof. Suppose S is an M-subdirectly irreducible object of A. Thus, there
exist an object X and morphisms x, y : X → S such that any morphism f
with fx 6= fy is in M. Since C is a cogenerating set, there are C ∈ C and
f : S → C with fx 6= fy, and so f ∈ M. That is, S is an M-subobject of
an element of C. But, since C is a set and A is M-well powered, the class
of M-subobjects of elements of C forms a set, and every M-subdirectly
irreducible object belongs to this set. Hence we are done.

The following important theorem helps us to prove that the two defi-
nitions of a subdirectly irreducible object in the category of algebras of a
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type τ are equivalent, and suggests conditions under which the converse of
Theorem 3.3 is true. In fact it is the generalization of Birkhoff’s Subdirectly
Representation Theorem.

Definition 3.4. A generating set G is called chain faithful if for any G ∈ G,
any pair of different morphisms x, y : G → X0, and any well ordered chain
(fαβ : Xα → Xβ)0≤α≤β<λ with f0αx 6= f0αy for all α, there is an upper
bound (hα : Xα → Y )α<λ with h0x 6= h0y.

Theorem 3.5. [30] (Birkhoff’s Subdirect Representation Theorem) Let
E be a class of morphisms in A such that A has (E ,M)-factorization di-
agonalization, and A possess a chain faithful generating set G. Then, for
every A ∈ A there is a set indexed A-monocone (fi : A → Si)i∈I (that is,
for any u 6= v there exists i0 ∈ I such that fi0u 6= fi0) with all Si being
M-subdirectly irreducible and fi ∈ E.

Proof. For every A ∈ A, G ∈ G, and two different morphisms x, y : G→ A,
let BG := {f : A→ X : f ∈ E , fx 6= fy}. Since A is E-well powered, BG is
actually a set. The set BG is a partially ordered set as in Remark 1.7, and
we know that every well-ordered chain CG = (fαβ : Xα → Xβ)0≤α≤β≤γ in
BG has an upper bound (hα : Xα → Y ) with h0x 6= h0y, h0 = h1m1 where
mα := f0α. On the other hand, we know that h1 = n1e1 with n1 ∈ M
and e1 ∈ E , and so h0 = h1m1 = n1e1m1. But h0x 6= h0y and hence
n1e1m1x 6= n1e1m1y, and so e1m1x 6= e1m1y. We also know that for every
α ≤ γ we have hαf1α = h1 and, by diagonalizaton property, there exists a
family (dα : Xα → Z) such that dαf1α = e1, n1dα = hα, that is e1 ≥ f1α.
But e1m1 = dαf1αm1 and so e1m1 ≥ m1, e1m1x 6= e1m1y. So e1m1 is an
upper bound for the chain CG in BG. Therefore, BG has a maximal element,
say exy : A → Sxy. We claim that the family (exy : A → Sxy)x,y is an A-
monocone of subdirectly irreducible objects. Note that (exy : A → Sxy)x,y
is a set, since G is a set and x, y depends on G. Now, to show that (exy)x,y
is an A-monocone, suppose u, v : C → A and u 6= v. Since G is a generating
set, there exist G ∈ G and w : G → C such that uw 6= vw. Now take x :=
uw, y := vw. We have exyu 6= exyv because otherwise we have exyx = exyy
which is a contradiction. Thus (exy : A → Sxy) is a monocone. Now we
show that the objects Sxy,s are M-subdirectly irreducible. We know that
for every Sxy there are exyx, exyy : G → Sxy such that exyx 6= exyy. Now
suppose fexyx 6= fexyy. By (E ,M)-factorization diagonalization, we have
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f = me, and so meexyx 6= meexyy, hence eexyx 6= eexyy. But eexy ∈ E
implies eexy ∈ BG. Also e ≤ eexy. Thus, maximality of e makes e to be
an isomorphism and therefore e belongs to M, and so f = me belongs to
M.

The following is a characterization ofM-subdirectly irreducible objects
for M being the class of all monomorphisms.

Theorem 3.6. [30] Assume that A has a generating set and (E ,M)-
factorization diagonalizastion for M =Mono and E = Epic. Then S ∈ A
is M-subdirectly irreducible if and only if every S-monocone has an M-
morphism (monomorphism).

Proof. (⇒) Suppose S is an M-subdirectly irreducible object and (mi :
S → Ai)i∈I is an S-monocone. Because S is subdirectly irreducible, there
exist an object X and different morphisms x, y : X → S such that any f
with fx 6= fy is in M. But, since (mi : S → Ai)i∈I is a monocone, there is
i0 ∈ I such that mi0x 6= mi0y, and hence mi0 ∈M.

(⇐) Let every S-monocone contain an M-morphism. Since A satisfies
the conditions of the above theorem, S has a monocone (fi : S → Si)i∈I
such that Si,s are M-subdirectly irreducible. Thus, using the hypothesis,
we can find an object G ∈ G and two different morphisms x, y : G → X
such that fxy is a monomorphism. Now, assume that there is a morphism
g : S → X such that gx 6= gy. We claim that g is a monomorphism.
By (E ,M)-factorization we have g = me, so mex 6= mey, and since m
is a monomorphism, ex 6= ey. On the other hand, by the definition of a
monocone, fxyx 6= fxyy and e ≤ fxy. Thus, there exists h : Y → Sxy such
that he = fxy ∈ M, and hence e ∈ M. So, g = me ∈ M, that is S is
M-subdirectly irreducible.

Now, the following theorem shows that the two Definitions 1.4 and 1.5
of subdirectly irreducible objects are equivalent in a category of algebras.

Theorem 3.7. Let A be the category of algebras of type τ . Then S is a
subdirectly irreducible object of A if and only if every S-monocone contains
an isomorphism.
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Proof. (⇒) Suppose that every S-monocone contains an isomorphism and
S has the subdirect product representation

S
f
↪→

∏
i∈I Ai

fi ↘ ↓ πi
Ai

with f monic and fi epic for all i ∈ I. Since f is a monomorphism and
(πi)i∈I are collectively mono, (fi : S → Ai)i∈I is an S-monocone, and so
there is i0 ∈ I such that fi0 is an isomorphism.

(⇐) Let S be subdirectly irreducible and (fi : S → Ai)i∈I be an S-
monocone. Then, by the universal property of products, we have the com-
mutative diagram

S
∃ !f−→

∏
i∈I Ai

fi ↘ ↓ πi
Ai

The morphism f is a monomorphism, because if there are morphisms x, y :
X → S such that fx = fy, then for every i ∈ I we have πifx = πify.
Therefore, for every i ∈ I we have fix = fiy. But, since (fi)i∈I is an
S-monocone, x = y. That is, f is a monomorphism. Now, by subdirect
irreducibility of S, there exists i0 ∈ I such that fi0 is an isomorphism. This
proves the assertion.

Considering the hypotheses of Theorem 3.5, we get the converse of The-
orem 3.3 as follows.

Lemma 3.8. [30] Let A satisfy the conditions of Theorem 3.5. Then M-
residual smallness implies A has a cogenerating set.

Proof. We claim that the set C of M-subdirectly irreducible objects forms
a cogenerating set. To prove this, consider different parallel morphisms
x, y : X → Y . Now, by Theorem 3.5, there exists a set index Y -monocone
(f : Y → Si)i∈I with Si ∈ C, and so there exists i0 ∈ I such that fi0x 6=
fi0y.

Banaschewski in [3] says that the notion ofM- injectivity in a category
A Well Behaves if and only if the following three propositions hold.
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Proposition 3.9. For any A ∈ A the following conditions are equivalent.
(I1)A is M- injective
(I2) A is an M- absolute retract
(I3) A has no proper M- essential extensions.

Proposition 3.10. Every A ∈ A has an injective hull.

Proposition 3.11. For any M- morphism f : A→ B the following condi-
tions are equivalent.

(H1) B is an M- injective hull of A
(H2) B is a maximal M- essential extension of A
(H3) B is a minimal M- injective M- extension of A.

The following is a collection of sufficient conditions for the Well Be-
haviour of injectivity, given in the above mentioned papers:

• M is closed under composition, isomorphism closed, left regular, A
fulfills Banaschewski’s M-condition (for any f ∈ M there exists a
morphism g ∈ A such that fg ∈ M∗), satisfies the M-transferability
condition, has M-direct limits of well-ordered directed systems, and
is M∗-cowell powered.

The next result gives the relationship between the behavior ofM-injectivity
and subdirect irreducible objects in an equational class of algebras, when
M =Mono.

Proposition 3.12. [3] For an equational class A, the following conditions
are equivalent: (1) Injectivity is well-behaved.

(2) A has enough injectives.
(3) Every subdirectly irreducible algebra in A has an injective extension.
(4) A satisfies M-transferability and M∗-cowell poweredness.

Proof. (1)⇒(2) ⇒(3) are trivial.
(3)⇒(4) To show transferability, consider the diagram:

A
m
↪→ B

g ↓
C
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Now, Birkhoff’s Representation Theorem gives a monomorphism n : C →∏
i∈I Si with subdirectly irreducible Si, s and (3) gives an injective extension

p :
∏
i∈I Si → I; note that the product of injective objects is an injective

object. Now we have the following complete diagram with pn a monomor-
phism:

A
m
↪→ B

g ↓ ↓ png
C

pn
↪→ I

Now we prove M∗-cowell poweredness. By (3) and Birhkoff’s Repre-
sentation Theorem, every A ∈ A has an injective extension I. Since every
essential extension of A is in I, there exists a set of essential extensions for
A.

(4)⇒(1) With (4), A satisfies all the sufficient conditions for the Well-
Behaviour Theorems.

Now we prove the claim we made earlier that having a cogenerating set
is equivalent to having an M-cogenerating set.

Lemma 3.13. Let M = Mono and A have products. Then, A has an
M-cogenerating set if and only if A has a cogenerating set.

Proof. (⇐) Suppose A has a cogenerating set C. Then, for every A ∈ A we
consider the following two cases:

(1) Let there be different morphisms x, y : X → A. Then, there exist
Cxy ∈ C and a morphism mxy : A → Cxy such that mxyx 6= mxyy. Now,
consider B = {mxy : A → Cxy : x, y : X → A;X ∈ A, x 6= y}. So, by the
universal property of products, we have the following commutative diagram:

A
mxy−→ Cxy

∃!m ↘ ↑ πx,y∏
x,y Cxy

We claim that m is a monomorphism. To prove this, let α, β : Y → A
be such that α 6= β and mα = mβ. Then, we have mα = πxymxyα =
πxymxyβ = mβ for every x, y. Since {πxy}xy is a monocone, we havemxyα =
mxyβ for every mxy ∈ B. In particular we have mαβα = mαββ, which is a
contradiction.
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(2) Suppose that there dose not exist two different parallel morphisms
with codomain A. In this case A is a preterminal object. On the other
hand, we know that

∏
i∈øCi exists and is the terminal object T . So there

exists a unique morphism m : A→ T . But, since A is a preterminal object,
m is a monomorphism.

(⇐) Suppose A has an M-cogenerating set C and x, y : X → A are
two different morphisms. Then, there exists an M-morphism m : A →∏
i∈I Ci where {Ci}i∈I ⊆ C. Now consider πi :

∏
i∈I Ci → Ci. Since m is

a monomorphism, mx 6= my and so there exists an index i0 ∈ I such that
πi0mx 6= πi0my. Now, consider πi0m : A→ Ci0 .

Theorem 3.14. Let M =Mono and A be well powered with products and
a generating set G. Then, having anM-cogenerating set impliesM∗−cowell
poweredness.

Proof. Suppose A has an M-cogenerating set C. Consider an essential ex-
tension f : A ↪→ B of A for any A ∈ A. We know that there exists a
monomorphism m : B →

∏
α∈I Cα with Cα ∈ C. Then, for any G ∈ G and

a pair of different morphisms x, y : G→ A we have mfx 6= mfy, and hence
παmfx 6= παmfy for some projection morphism πα :

∏
α∈I Cα → Cα. Pick

αxy as one such for each pair x 6= y. Then A →
∏
β∈J Cβ is a monomor-

phism, where J = {αxy : x 6= y : G→ A} and CardJ ≤ Card
⋃
G∈G(G,A)2.

Essentialness of f implies that B →
∏
β∈J Cβ is a monomorphism, and since

there exists only a set of the products
∏
β∈J Cβ, we are done.

Theorem 3.15. [30] Let M = Mono and A be well powered and have
direct products and a faithful generating set G which G t G ∈ A. In ad-
dition, suppose A has (E ,M)-factorization diagonalization for a class E of
morphisms for which A is E-well powered. Then, the following statements
are equivalent:

(i) A is M-essentially bounded.

(ii) A is M∗-cowell powered.

(iii) A is residually small.

(iv) A has a cogenerating set.

Proof. By Theorem 2.3, (i) and (ii) are equivalent. Also M∗-cowell pow-
eredness implies residual smallness by Theorem 2.6. Moreover Lemma 3.8
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and Theorem 3.3 ensure that residual smallness implies having an M-
cogenerating set and Theorem 3.3 ensures the converses. M∗-cowell pow-
eredness is implied by Theorem 3.14. Thus, M∗-cowell poweredness, resid-
ual smallness, and having a cogenerating set are equivalent.

4 Injectivity of Algebras in a Grothendieck
Topos

The main purpose of this section is to describe the relationship between the
class modΣ of models of a set Σ of equations in the category Set and the
corresponding class mod(Σ, E) of models of Σ in a suitable category E with
respect to the notions mentioned in the previous sections.

The basic nature of our results is that, for any given Σ, whatever a prop-
erty holds in modΣ, the corresponding property holds in mod(Σ, E), pro-
vided E satisfies some special properties, in particular when E is a Grothendieck
topos. For more information, see the references in particular [7, 11–13, 29]

A Grothendieck topos E is a reflective subcatgory of a functor category
SetC

op
= Ĉ (i : E −→← Ĉ : R, R a i), for some small category C, whose

reflection functor R preserves finite limits.

For example, for a topological spaceX, the category PreshX, of presheaves
onX, and the category ShX, of sheaves onX, are Grothendieck topoi. Also,
the category Set of all sets with functions between them is a Grothendieck
topos.

Definition 4.1. Let A be a finitely complete category. An algebra in A is
an entity (A, (λA)λ∈Λ), where A is an object of E , Λ is a set and for each
λ ∈ Λ, the λth operation λA : Anλ → A is a morphism in A where each
nλ is a finite cardinal number and Anλ is the nλth power of A. The family
τ = (nλ)λ∈Λ is called the type of this algebra. The algebra (A, (λA)λ∈Λ) is
simply denoted by A.

A homomorphism h : A→ B from an algebra (A, (λA)λ∈Λ) to an algebra
(B, (λB)λ∈Λ), both in A, of type τ is a morphism in A such that for each
λ ∈ Λ, λBh

nλ = hλA.

The collection of all algebras (of type τ) in A and homomorphisms be-
tween them form a category denoted by Alg(τ)A (or by Alg(τ) if A = Set).



Injectivity in a category: smallness conditions 99

Definition 4.2. Given anyA ∈ Alg(τ)A and any finite setX = {x1, ..., xn},
an equation (or identity) p = q in X is any pair (p, q) ∈ FX × FX, where
FX is the free (set based) algebra of type τ on X. It is said that A sat-
isfies an equation p = q if pA = qA, where pA = φ(p), qA = φ(q) and
φ : FX → HomA(An, A) is the homomorphism which freely extends the
map h : X → HomA(An, A) given by xi 7→ πi (the ith projection). Notice
that HomA(An, A) is a set based algebra of type τ with the λth operation
given by (f1, ..., fnλ) 7→ λA

∏nλ
i=1fi.

The full subcategory of Alg(τ)A whose objects are all algebras in A
satisfying a set Σ of equations is denoted by mod(Σ,A) (or by modΣ, if
A = Set, which is called an equational category of algebras).

Remark 4.3. Let K : A → B be a functor, preserving finite limits. Then
(1) K induces another functor

K : Alg(τ)A → Alg(τ)B

defined on objects by KA = (KA, (KλA)λ∈Λ) and on homomorphisms f :
A→ B, by K(f) = K(f).

(2) K can be lifted to a functor

K : mod(Σ,A)→ mod(Σ,B)

for any given set Σ of equations. This is because if σ = (p, q) is an equation,
then A |= (p = q) implies that pA = qA, and hence KpA = KqA which
implies that pKA = qKA. To show that this implies KA |= (p = q), let h
be given as in Definition 4.2 and h′ be the corresponding map related to
KA: h′ : X → Hom((KA)n,KA). Then, since K preserves finite limits,
and so finite products, there is an isomorphism β : (KA)n → KAn, we get
a map α : Hom(An, A)→ Hom((KA)n,KA) given by α(f) = Kfβ. Thus,
α(πi) = π′i and so α(h) = h′. This means αφA|X = φKA|X , where φA and
φKA are the homomorphisms existing by the freeness of FX (see Definition
4.2). Therefore, αφA = φKA, and hence

φKA(p) = αφA(p) = α(pA) = α(qA) = αφA(q) = φKA(q)

as required.

As a corollary of the above remark, we have:
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Lemma 4.4. If Σ is a set of equations and A ∈ mod(Σ,A) then hU (A) ∈
modΣ, for all U ∈ A, where hU = HomA(U,−) : A → Set is the hom-
functor.

For the converse of the above lemma, we need the following:

Theorem 4.5. Let the finitely complete category A have a generating set
G. Then, for any A ∈ Alg(τ)A and a set Σ of equations, A ∈ mod(Σ,A) if
and only if hG(A) ∈ modΣ for each G ∈ G, where hG = HomA(G,−).

Proof. (⇒) follows from the above lemma. For the converse, let A ∈
Alg(τ)A and hG(A) ∈ modΣ for each G ∈ G. Let σ = (p, q) be an equa-
tion in Σ. By hypothesis, for all G ∈ G, hG(A) |= σ, that is, phG(A) =

qhG(A). So, similar to Remark 4.3(2), we have φhGA(p) = φhGA(q) and so

αφA(p) = αφA(q) which means α(pA) = α(qA), and hence by the definition
of α, hG(pA) = hG(qA) for all G ∈ G. Then, since G is a set of genera-
tors, the preceding equalities yield that pA = qA. Thus A |= σ, and hence
A ∈ mod(Σ,A).

Corollary 4.6. For a Grothendieck topos E ↪→ Ĉ and a set Σ of equations,
A ∈ mod(Σ, E) if and only if AU ∈ modΣ for all U ∈ C.

Proof. Let E be a Grothendieck topos, with the reflection functor R :
SetC

op
= Ĉ → E . Then, the set {R(hU ) : U ∈ C} is a generating set

for E . So, by Theorem 4.5, A ∈ mod(Σ, E) if and only if hR(hU )(A) ∈ modΣ
for each U ∈ C. But, since R is a left adjoint to the inclusion functor
i : E → Ĉ, using Yoneda Lemma we have hR(hU )(A) = Hom(R(hU ), A) ∼=
Hom(hU , i(A) = Hom(hU , A) ∼= A(U), and so get the result.

Now a natural question to ask would be, what is the relationship be-
tween the behaviour of a certain classical algebraic notion in modΣ and
in mod(Σ, E). In the following, we consider the notions mentioned in the
previous sections, and show that the properties of modΣ, regarding these
notions, survive the passage to mod(Σ, E), for a set Σ of equations and an
arbitrary Grothendieck topos E (fixed from now on). First, we state an
adjoint pair between mod(Σ, E) and mod(Σ).
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Adjoint situations

(1) Free objects.

First recall that the free functor F1 : Ĉ → mod(Σ, Ĉ) is given by P 7→ F1P
where (F1P )U is the free algebra on PU in modΣ, for each U ∈ C, and for
f : U → V , (F1P )f is obtained using the universal property of free objects.

Now the free functor F : E → mod(Σ, E) is defined to be the composition

E i→ Ĉ F1→ mod(Σ, Ĉ) R→ mod(Σ, E)

where i is the inclusion functor, R is the lifted functor of the reflection
functor.

So, F is a left adjoint to the underlying functor | − | : mod(Σ, E)→ E .

(2) Adjoint relation of Ĉ and Set|C|.

Define the functor G : Ĉ → Set|C|, where |C| is a discrete category whose
set of objects is the set of objects of the category C, by GP = (PU)U∈C , for
P ∈ Ĉ, and for f : P → Q, Gf = (fU )U∈C . This functor has a left adjoint
H : Set|C| → Ĉ given by HX = PX for X = (XU )U∈C where

PXU =
∏
W∈C

X
HomC(W,U)
W

in which X
HomC(W,U)
W is the set of all functions from the set HomC(W,U)

to the set XW ; and for f : U → V , PXf : PXU → PXV is the product map∏
W∈C id

Hom(idW ,f) where Hom(idW , f) : HomC(W,U) → HomC(W,V )
maps g : W → U to fg : W → V , and

idHom(idW ,f) : X
HomC(W,V )
W → X

HomC(W,U)
W

maps HomC(W,V ) → XW to HomC(W,U)
Hom(idW ,f)−→ HomC(W,V ) →

XW . The definition of the functor H on arrows is as follows: for a given fam-
ily f = (fU )U∈C : X → Y of maps fU : XU → YU we define Hf : PX → PY

by Hf = ((Hf)U )U∈C with (Hf)U =
∏
W∈C f

id
W , where f idW : X

HomC(W,U)
W →

Y
HomC(W,U)
W maps HomC(W,U)→ XW to HomC(W,U)→ XW

fW→ YW .
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(3) Adjoint relation between mod(Σ, Ĉ) and (modΣ)|C|.
The above adjunction is lifted to the adjunction:

G : mod(Σ, Ĉ)� mod(Σ,Set|C|) : H

But, mod(Σ,Set|C|) ∼= (modΣ)|C|. So, we get an adjoint pair between
mod(Σ, Ĉ) and (modΣ)|C| which we denote them by the same notations
G, F .

(4) Adjoint relation between mod(Σ, E) and modΣ.
Define a functor Γ = HomE(T,−) : mod(Σ, E)→ modΣ byA 7→ HomE(T,A)
where T is the terminal object of E . Notice that HomE(T,A) is nat-
urally a modΣ-algebra, in fact for each operation λA : An → A on A,
the corresponding operation on HomE(T,A) is given by (HomE(T,A))n ∼=
HomE(T,A

n)
Hom(id,λA)−→ HomE(T,A). This functor has a left adjoint ∆ :

modΣ→ mod(Σ, E) which is the composite:

modΣ
∆0→ (modΣ)|C|

H→ mod(Σ, Ĉ) R→ mod(Σ, E)

where ∆0 is the constant functor which maps A ∈ modΣ to the constant
family (A)U∈C .

Now, applying the above adjunction, we get the following results:

Proposition 4.7. The category Alg(τ)Ĉ is isomorphic to the category of
all Alg(τ)-valued presheaves on C.

Proof. Consider the functor G : Ĉ → Set|C| given above. This functor
preserves finite limits, and so by Remark 4.3(1) can be lifted to a func-
tor G : Alg(τ)Ĉ → Alg(τ)Set|C|. Then, the composition of this functor
together with the isomorphism Alg(τ)Set|C| ∼= Alg(τ)|C| gives the desired
isomorphism.

Lemma 4.8. modΣ has a cogenerating set if and only if mod(Σ, Ĉ) has one
such.

Proof. If modΣ has a cogenerating set, then clearly so does (modΣ)|C| ∼=
mod(Σ,Set|C|). Now, since the functor H : mod(Σ,Set|C|) → mod(Σ, Ĉ)
transfers a cogenerating set to one such, we get that mod(Σ, Ĉ) has a co-
generating set.
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For the converse, apply the functor Γ for the case where E = Ĉ. Then
noting that Γ transfers a cogenerating set of mod(Σ, Ĉ) to one such set in
modΣ we get the result.

Proposition 4.9. mod(Σ, E) has a cogenerating set if and only if modΣ
has one such a set.

Proof. The “if part” is proved similar to the corresponding part of the above
lemma. To prove the “only if” part, first applying the above lemma we get
that mod(Σ, Ĉ) has a cogenerating set. Then, mod(Σ, Ĉ) has a set of essen-
tial extensions, by Theorem 3.14. Secondly, we see that essential monomor-
phisms in mod(Σ, E) are also essential monomorphisms in mod(Σ, Ĉ), since
the reflection functor R : mod(Σ, Ĉ) → mod(Σ, E) preserves monomor-
phisms. Therefore, mod(Σ, E) has a set of essential extensions and hence has
a cogenerating set, by Theorem 2.6 and Lemma 3.8; notice that mod(Σ, E)
has a generating set consisting of mod(Σ, E)-free algebras on the generating
set {R(hU ) : U ∈ C} of E , where R : SetC

op
= Ĉ → E is the reflection

fucntor.

Corollary 4.10. mod(Σ, E) is residually small if and only if modΣ is resid-
ually small.

Proof. This follows from the above proposition, Lemma 3.8, and Theorem
3.3.

Corollary 4.11. mod(Σ, E) is essentially bounded if and only if modΣ is
essentially bounded.

Proof. Apply the above corollary, and the fact that, by Theorems 2.6 and
3.14, essential boundedness for mod(Σ, E) is equivalent to residual smallness.

Corollary 4.12. mod(Σ, E) is M∗-cowell powered if and only if modΣ is
M∗ − cowellpowered.

Proof. The above corollary and Theorem 2.3 give the result.

Now, applying theorems given in the previous sections, we consider the
well-behaviour theorems in mod(Σ, E).
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Lemma 4.13. In mod(Σ, E), we have
(i) any composite of essential monomorphisms is an essential monomor-

phism, and
(ii) any direct limit of essential monomorphisms is an essential monomor-

phism.

Proof. (i) is clear. To prove (ii), first we note that monomorphisms in Ĉ are
exactly of the form f = (fU )U∈C where each fU is a monomorphism in Set.
Also, notice that the reflection functorR : Ĉ → E preserves monomorphisms.
These facts, gives the result.

Theorem 4.14. Banaschewski’s condition holds in mod(Σ, E).

Proof. Let h : A → B be a monomorphism in mod(Σ, E). Take all the
congruences Θ on B such that B/Θ ∈ mod(Σ, E) and A → B → B/Θ is a
monomorphism. Then, by the note given in the proof of the above lemma,
any join of a chain of such congruences on B is again such a congruence.
So, by Zorn’s Lemma, there exists a maximal such congruence, namely Θ0.
Then A→ B/Θ0 is an essential monomorphism.

Again applying an adjunction we get:

Lemma 4.15. Pushouts transfer monomorphisms in mod(Σ, E) if and only
if they do in modΣ.

Proof. Applying the adjunction ∆ a Γ, and using the fact that ∆ is faithful,
we get the implication (⇒). To get the converse, a discussion similar to the
proof of Lemma 4.13 is applied.

To prove Theorem 4.18, we should recall a theorem about the existence
of injective hulls.

Theorem 4.16. [30] For M =Mono, let A be M-well powered and fulfill
the M-chain condition. Then, A has M-injective hulls if and only if

(i) A is M∗-cowell powered.
(ii) A satisfies the M-transferability condition.
(iii) A satisfies Banaschewski’s condition.

Theorem 4.17. The category mod(Σ, E) has enough injectives if and only
if it is essentially bounded and pushouts transfer monomorphisms.
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Proof. If mod(Σ, E) is essentially bounded and pushouts transfer monomor-
phisms then, by Theorem 4.16 (applying Theorems 2.3 and 4.14), we get the
result. For the converse, by Lemma 2.10 and Note 2.9, we have pushouts
transfer monomorphisms in mod(Σ, E). To show that this category is essen-
tially bounded, applying Theorem 2.3 we show that it has a set of essential
extensions. But, having enough injectives we have that all the essential
extensions of A ∈ mod(Σ, E) can be embedded in any injective extension of
A, and so form a set.

Proposition 4.18. [11] The category mod(Σ, E)) has enough injectives if
and only if modΣ has enough injectives.

Proof. It follows from the above theorem, Lemma 4.15, and Corollary 4.11.

Finally as a corollary of the above results we have

Theorem 4.19. For mod(Σ, E), the following are equivalent:

(i) Injectivity is well-behaved.

(ii) mod(Σ, E) has enough injectives.

(iii) mod(Σ, E) is essentially bounded and pushouts transfer monomor-
phisms.

Proof. (ii) and (iii) are equivalent by the above proposition. Also, (i) clearly
implies (ii). To see (iii)⇒(i), it is enough to check the collection of the
sufficient conditions for the Well Behaviour of injectivity, mentioned after
Proposition 3.11. But Lemma 4.13 (ii), Theorem 3.15, and M = Mono,
give the result.

In particular, the above results give that:

Corollary 4.20. Injectivity is well-behaved in mod(Σ, E) if and only if it is
well-behaved in modΣ.

5 Some Examples

In this section we recall the behaviour of M-injectivity for some classes of
M of monomorphisms in some categories to support the results mentioned
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above. No proof is given in this section. For more information see, for
example, [17–20, 22, 25, 27].

Example (I)

In this set of examples,M is taken to be the class of all monomorphisms.

(1) The Baer Criterion for modules over a commutative ring R with
identity says that M-injectivity is equivalent to M1-injectivity, where M1

is the set of all monomorphisms from ideals of R to R. Also, recall that the
category of R-modules has enough injectives (hulls) and hence injectivity
well-behaves. (See also, for example, [2]).

(2) Recall that the category Set has enough injectives. In fact every
non-empty set is injective. So, if we take Σ to be the empty set, then modΣ,
as the full subcategory of all algebras of type τ = ∅, is Set and hence
has enough injectives. Using Proposition 4.18, this implies that for any
Grothendieck topos E , mod(Σ, E) = E has enough injectives. In particular,
the category MSet, of M -sets for a monoid M , has enough injectives. Thus
injectivity is well-behaved in such categories. The direct proof of this fact
is given in [6]. For more information of the case where M is the monoid
(N∞,min,∞), whose acts are called projection algebras see also [6, 15].

(3) For the category of acts over a monoid, M-injectivity is the same
as M1-injectivity, for M1 to be the class of all monomorphisms to cyclic
acts and M to be the class of all monomorphisms (see also [22]).

(4) Unlike the category of modules over commutative rings with identity
(see (1) above), Baer Criterion does not generally hold for M -sets (see [22]).
But, for some classes of monoids M it holds, and soM-injectivity is equiv-
alent to M1-injectivity, where M1 is the set of all monomorphisms from
ideals of M to M . Some classes of monoids such that the Baer Criterion
holds for acts over them are given in [19], also see [17].

(5) The category Boo of Boolean algebras has enough injectives (the
power set of every set is injective in Boo). So, the category of Boolean
algebras in any Grothendieck topos has enough injectives.

(6) The category Ab of abelian groups has enough injectives (recall
that here injectivity means divisibility). So, the category of abelian groups
in any Grothendieck topos, in particular in ShX, has enough injectives.
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Example (II)

In this example,M is taken to be the class of sequentially dense monomor-
phisms in the category Act-S of S-acts for a semigroup S. For the details
of the results, see also [20, 26, 27].

The sequential closure C = (CB)B∈Act−S on Act-S is defined as

CB(A) = {b ∈ B : bS ⊆ A}

for any subact A of an S-act B.

It is easily shown that C is a closure operator on Act-S in the sense
of [9], which means: CB(A) is a subact of B, and (i) A ≤ CB(A), (ii)
A1 ≤ A2 ≤ B implies CB(A1) ≤ CB(A2), (iii) for every S-map f : B →
D, f(CB(A)) ⊆ CD(f(A)) for each subact A of B.

Notice that the above closure operator also satisfies CB(A ∩ A′) =
CB(A) ∩ CB(A′) for A,A′ ≤ B, and for A ≤ B ≤ D, CB(A) = CD(A) ∩B.
Also, if S2 = S then C is idempotent.

We say that A is C-dense in B if CB(A) = B. An S-map f : A→ B is
said to be C-dense if f(A) is a C-dense subact of B.

Now, taking Md to be the class of all C-dense monomorphisms Act-S,
we have:

Lemma 5.1. (1) The class Md is: isomorphism closed, closed under
composition with isomorphisms, left regular, left cancellable, almost right
cancellable (in the sense that gf ∈ Md implies g ∈ Md provided g is a
monomorphism), closed under direct limits. And, the category Act-S sat-
isfies theMd-transferability property, fulfills Banaschewski’sMd-condition,
hasMd-bounds, fulfills theMd-chain condition, and isMd-essentially bounded.

(2) The class Md is closed under composition if and only if S2 = S.

Theorem 5.2. For an S-act A, the following are equivalent:

(1) A is Md-injective.

(2) For every C-dense monomorphism h : B → cS1 to a cyclic act and
every S-map f : B → A there exists an S-map g : cS1 → A such that
gh = f .

(3) Every S-map f : cS → A from a cyclic act can be extended to
f : cS1 → A.
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(4) For every C-dense monomorphism h : B → B t cS1 to a singly
generated extension of B and every S-map f : B → A there exists an S-
map g : B t cS1 → A such that gh = f .

Now we mention what is true about the Well-Behaviour Theorems. The
First Theorem is always true:

Theorem 5.3. (The First Theorem of Well-Behaviour) For a semigroup
S and every S-act A, the following are equivalent:

(i) A is Md-injective.
(ii) A is Md-absolute retract.
(iii) A has no proper Md-essential extension.

The Second and The Third Theorems are not true in general, but we
have:

Theorem 5.4. (The Second Theorem of Well-Behaviour) If S2 = S then
for each S-act A, the Md-injective hull of A exists (and it is unique up to
isomorphism).

Theorem 5.5. (The Third Theorem of Well-Behaviour) If S2 = S then
for every extension B of an S-act A, the following are equivalent:

(i) B is the Md-injective hull of A.
(ii) B is a maximal Md-essential extension of A.
(iii) B is a minimal Md-injective C-dense extension of A.

Notice that for the cases where S is the monoid (N,∞), or S is a left
zero semigroup, we have S2 = S and so Md-injectivity is well-behaved for
projection algebras (see [15] and [17]) and for acts over a left zero semigroup
(see [18]).

The following results show that S2 = S is not a necessary condition for
the well-behaviour of Md-injectivity:

Theorem 5.6. If (Idr(S),∩,∪) is a Boolean algebra or S is a null semi-
group, then S-Act has Md-injective hulls.

But, also we have:

Theorem 5.7. If S is a right cancellative semigroup and for each S-act A,
the Md-injective hull of A exists then S2 = S.
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Example (III)

In this example, M is taken to be the class of sequentially (or s)-pure
monomorphisms in the category of S-acts for a semigroup S. What we have
so far is given in the following. (see also [4, 5]).

Definition 5.8. Let A be a subact of an S-act B. Then A is said to be
sequentially pure, or s-pure, in B if every sequential system of equations
xs = as, s ∈ S over A is solvable in A whenever it is solvable in B.

A homomorphism f : A→ B is called s-pure if f(A) is s-pure in B.

Proposition 5.9. The class Mp of s-pure monomorphisms is: isomor-
phism closed, closed under composition, left regular, left cancellable, and
Act-S has Mp-transferability property, Banaschewski condition is true for
weak s-pure essentialness (see the following definition), but does not satisfy
the Mp-chain condition.

Definition 5.10. An s-pure monomorphism f : A→ B of S-acts is said to
be:

(1) essential s-pure if for every homomorphism g : B → C such that gf
is a monomorphism we have g itself is also a monomorphism.

(2) weak s-pure essential if for every homomorphism g : B → C such
that gf is an s-pure monomorphism we have g is a monomorphism.

(3) s-pure essential if for every homomorphism g : B → C such that gf
is an s-pure monomorphism we have g is also an s-pure monomorphism.

Theorem 5.11. (The First Theorem of Well-Behaviour) For a finitely
generated semigroup S and an S-act A, the following are equivalent:

(1) A is s-pure injective.

(2) A is retract of each of its s-pure extension.

(3) A has no proper weak s-pure essential extension.

Lemma 5.12. If S is a finitely generated semigroup, and B is a maximal
weak s-pure essential extension of A, then B is s-pure injective.

Theorem 5.13. If S is a finitely generated semigroup and B is a maximal
weak s-pure essential extension of A, then it is an s-pure injective hull of
A.
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Theorem 5.14. If each S-act A has a set of weak s-pure essential exten-
sions, then every S-act has a maximal weak s-pure essential extension.

Corollary 5.15. (The Second Theorem of Well-Behaviour) If S is a finitely
generated semigroup, then each S-act has an s-pure injective hull.

The converse of the former theorem is also true provided that s-pure
injective hull exists:

For The Third Theorem, we have:

Theorem 5.16. (1) If S is a finitely generated semigroup, and each S-act
A has a set of weak s-pure essential extensions, then every s-pure injective
hull is a maximal weak s-pure essential extension.

(2) The s-pure injective hull is unique up to isomorphism.
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