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State filters in state residuated lattices

Zahra Dehghani and Fereshteh Forouzesh∗

Abstract. In this paper, we introduce the notions of prime state filters,
obstinate state filters, and primary state filters in state residuated lattices
and study some properties of them. Several characterizations of these state
filters are given and the prime state filter theorem is proved. In addition, we
investigate the relations between them.

1 Introduction and Preliminaries

The algebraic counterparts of some non-classical logics satisfy residuation
and those logics can be considered in a frame of residuated lattices. In fact,
residuated lattices were introduced by M. Ward et.al. [23]. The theory of
filters and ideals plays an important role in studying these algebras. From
logical point of view, filters correspond to sets of provable formulas. Some
types of filters of a residuated lattice such as Boolean filters, implicative
filters, positive implicative filters, and obstinate filters were introduced, for
example, in [2, 12, 21, 22].

Also, F. Forouzesh and et.al. introduced obstinate ideals inMV -algebras
and investigated some properties of them in [5]. States on MV -algebras
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were introduced by Mundici [16] with the intent of measuring the average
truth-value of propositions in Łukasiewicz logic, which are a generalization
of probability measures on Boolean algebras. States on MV -algebras have
been deeply investigated [4, 11]. Consequently, the notion of states has
been extended to other logical algebras such as BL-algebras [19], MTL-
algebras [13], [15], R0-algebras [14], and residuated lattices [3], [20] and their
non-commutative cases. Different approaches to the generalization mainly
gave rise to two different notions, namely, Rieˇcan states [19] and Bosbach
states [6]. It was proved by Ciungu [3] that in any good non-commutative
residuated lattice Bosbach states and Rieˇcan states coincide, while the
converse is not always true. Thus, the notion of Rieˇcan states is more
general than that of Bosbach states. What the two have in common is that
they both have as codomain the closed unit interval [0, 1].

State residuated lattices were introduced by Pengfei He, et.al. in 2015
[10]. They introduced the notion of state operators on residuated lattices
and investigated some related properties of such operators. Also, they gave
characterizations of Rl-monoids and Heyting algebras, and discussed the
relations between state operators and states on residuated lattices.

In this paper, we introduce the concept of the prime state filters in the
state residuated lattices. We give a characterization of the prime state filters
and prove the prime state filter theorem. In addition, we define the notion
of obstinate state filters in a state residuated lattice and investigate the
relations between the obstinate state filters and some other state filters of
a residuated lattice. We obtain extension theorem of obstinate state filters
and give several characterizations of these state filters. Finally, we introduce
the notion of the primary state filters in state residuated lattices and give a
characterization of the primary state filters.

In this section, we summarize some definitions and results about residu-
ated lattices and lattices, which will be used in the following sections of the
paper.

Definition 1.1. [9, 23] An algebraic structure (L,∧,∨,�,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) is called a residuated lattice if it satisfies the following condi-
tions

(1) (L,∧,∨, 0, 1) is a bounded lattice,
(2) (L,�, 1) is a commutative monoid,
(3) x� y ≤ z if and only if x ≤ y → z,
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for all x, y, z ∈ L, where ≤ is the partial order of the lattice (L,∧,∨, 0, 1).

In what follows, by L we denote the universe of a residuated lattice
(L,∧,∨,�,→, 0, 1). For any x ∈ L and a natural number n, we define
x∗ = x→ 0, x∗∗ = (x∗)∗, x0 = 1, and xn = xn−1 � x.

Proposition 1.2. [9, 18] In a residuated lattice (L,∧,∨,�,→, 0, 1), the
following properties hold, for every x, y, z, t ∈ L:

(1) 1→ x = x, x→ 1 = 1,
(2) x ≤ y if and only if x→ y = 1,
(3) x� x∗ = 0, and x� y = 0 if and only if x ≤ y∗,
(4) if x ≤ y, then y → z ≤ x→ z, z → x ≤ z → y,
(5) x� (x→ y) ≤ y, x� y ≤ x, y, x ∨ y ≥ x, y,
(6) x� y ≤ x ∧ y, x ≤ y → x,
(7) x→ (y → z) = (x� y)→ z = y → (x→ z),
(8) 0∗ = 1, 1∗ = 0, x ≤ x∗∗, x∗∗∗ = x∗, (x ∨ y)∗ = x∗ ∧ y∗,
(9) x� (y → z) ≤ y → (x� z) ≤ (x� y)→ (x� z),
(10) x� (y ∨ z) = (x� y) ∨ (x� z),
(11) x∨(y�z) ≥ (x∨y)�(x∨z), hence x∨yn ≥ (x∨y)n and xm∨yn ≥

(x ∨ y)mn for every natural numbers m,n,
(12) x→ (x ∧ y) = x→ y,
(13) x� y = x� (x→ x� y),
(14) if x ≤ y, z ≤ t, then x� z ≤ y � t,
(15) x ≤ y if and only if x ∧ y = x, x ∨ y = y,
(16) x ∨ y = 1 implies x ∧ y = x� y,
(17) x∗ ≤ x→ y.

Let (L,∧,∨,�,→, 0, 1) be a residuated lattice. A nonempty set F of L
is called a filter if it satisfies: (1) For x, y ∈ F , x � y ∈ F ; (2) For x ∈ F ,
y ∈ L, and x ≤ y, we have y ∈ F . We denote by F [L] the set of all filters
of L. A proper filter F of L is called a maximal filter if it is not strictly
contained in any proper filter of L. Note that, a proper filter F of L is
maximal if and only if, for all x ∈ L, the following holds: x /∈ F if and only
if there exists an integer n ≥ 1 such that (xn)∗ ∈ F . If X is a nonempty
subset of L, then we denote the filter generated by X by 〈X〉. Clearly, we
have 〈X〉 = {x ∈ L : x ≥ x1 � x2 � . . .� xn, xi ∈ X}, see [18].
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Definition 1.3. [18] A deductive system of a residuated lattice L is a subset
F containing 1 such that if x→ y ∈ F and x ∈ F , then y ∈ F . Note that a
subset F of a residuated lattice L is a deductive system of L if and only if
F is a filter of L .

Definition 1.4. [17] Let (L,∧,∨,�,→, 0, 1) be a residuated lattice.
(1) L is called simple if it has exactly two filters: {1} and L.
(2) L is called local if it has exactly one maximal filter.

Definition 1.5. [7, page 13] A complete lattice L is called a frame if it
satisfies the infinite distributive law x∧∨S =

∨{x∧s : s ∈ S}, for all x ∈ L
and S ⊆ L.

We denote by L the bounded distributive lattice (L,∧,∨, 0, 1).

Definition 1.6. [1, page 174] A Heyting algebra is a lattice (L,∧,∨) with
0 such that for every x, y ∈ L there is the element x → y = sup{z ∈ L :
x ∧ z ≤ y} ∈ L. Consequently, x ∧ z ≤ y if and only if z ≤ x→ y.

Definition 1.7. [18] An element a in a residuated lattice L is called nilpo-
tent if and only if there exists a natural number n such that an = 0. The
minimum n such that an = 0 is called the nilpotenece order of a and will be
denoted by ord(a).

Definition 1.8. [8] We recall that an element a ∈ L is called complemented
if there is an element b ∈ L such that a ∨ b = 1 and a ∧ b = 0; if such an
element b exists it is called a complement of a. A complement of an element
in a distributive lattice, if exists, is unique, and is denoted by b = a′; and
the set of all complemented elements of L is denoted by B(L).

Notation 1. [18] If e ∈ B(L) and x, y ∈ L, then e ∧ (x ∨ y) = (e ∧ x) ∨
(e ∧ y).

Definition 1.9. [8] A lattice (L,∧,∨) is called Brouwerian if it satisfies
the identity a ∧ (

∨
i bi) =

∨
i(a ∧ bi) (whenever the arbitrary joins exists).

Proposition 1.10. [18, Proposition 1.33] Let L be a residuated lattice.
Then, (F [L],∩,∨, {1}, L) is a Brouwerian lattice.
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Proposition 1.11. [18] Let L be a residuated lattice.
(i) If F ∈ F [L] and a ∈ L, then

〈F, a〉 = {x ∈ L : x ≥ (f1 � an1)� . . .� (fk � ank)

with fi ∈ F , ni ∈ N, i ∈ {1, . . . , k}, k ≥ 1};
(ii) If x, y ∈ L, then 〈x ∨ y〉 = 〈x〉 ∩ 〈y〉;
(iii) If F ∈ F [L] and a ∈ L \ F , then 〈F, a〉 = F ∨ 〈a〉;
(iv) 〈F, a〉 ∩ 〈F, b〉 = 〈F, a ∨ b〉, for every a, b ∈ L.

Proposition 1.12. Let L be a residuated lattice. For P ∈ F [L] the following
assertions are equivalent:

(i) if P1, P2 ∈ F [L] and P1 ∩ P2 ⊆ P , then P1 ⊆ P or P2 ⊆ P ;
(ii) if P1, P2 ∈ F [L] and P1 ∩ P2 = P , then P1 = P or P2 = P ;
(iii) if x, y ∈ L and x ∨ y ∈ P , then x ∈ P or y ∈ P .

Proof. (i)⇒(ii) Let P1, P2 ∈ F [L] and P1 ∩ P2 = P . Then, P1 ∩ P2 ⊆ P , by
(i), we get P1 ⊆ P or P2 ⊆ P . If P1 ⊆ P , then P = P1 ∩ P2 ⊆ P1 ⊆ P .
Hence P1 = P . If P2 ⊆ P , then, by similar way, we obtain P2 = P .

(ii)⇒(i) Let P1, P2 ∈ F [L] and P1 ∩ P2 ⊆ P . Then, (P1 ∩ P2) ∨ P = P .
It follows from Proposition 1.10, that (P1 ∨ P ) ∩ (P2 ∨ P ) = P . Now, by
(ii), P1 ∨ P = P or P2 ∨ P = P . Thus P1 ⊆ P or P2 ⊆ P .

(ii)⇒(iii) Let x ∨ y ∈ P . It follows, from Proposition 1.11 (ii), that
〈x〉∩ 〈y〉 = 〈x∨ y〉 ⊆ P . Hence we have (〈x〉∩ 〈y〉)∨P = P . By Proposition
1.10, we conclude that (〈x〉 ∨ P )∩ (〈y〉 ∨ P ) = P . By hypothesis, we obtain
〈x〉 ∨ P = P or 〈y〉 ∨ P = P . So, we get 〈x〉 ⊆ P or 〈y〉 ⊆ P . This results
x ∈ P or y ∈ P .

(iii)⇒(ii) Let P1, P2 ∈ F [L] and P1∩P2 = P . If we suppose that P1 6= P
and P2 6= P , then, there are x ∈ P1 − P and y ∈ P2 − P . Since P1 and P2

are filters and x, y ≤ x ∨ y, so x ∨ y ∈ P1 ∩ P2 = P and, by hypothesis, we
get x ∈ P or y ∈ P , which is a contradiction. Thus P1 = P or P2 = P .

A filter F which satisfies one of the equivalent conditions of Proposition
1.12, is called prime. We denote the set of all prime filters of L by Spec(L).

Suppose F is a filter of a residuated lattice L. Define x ≡F y if and only
if x→ y ∈ F and y → x ∈ F . Then, ≡F is a congruence relation on L. The
set of all congruence classes is denoted by L/F , and so L/F := {[x] : x ∈ L},
where [x] = {y ∈ L : x ≡F y}. Define •,⇀,u,t on L/F by
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[x] • [y] = [x� y], [x] ⇀ [y] = [x→ y],

[x] u [y] = [x ∧ y], [x] t [y] = [x ∨ y].
Therefore (L/F,u,t, •,⇀, [1], [0]) is a residuated lattice with respect to F ,
see [9].

Definition 1.13. [10] Let (L,∧,∨,�,→, 0, 1) be a residuated lattice. A
mapping τ : L→ L is called a state operator on L if it satisfies the following
conditions:

(L1) τ(0) = 0;

(L2) x→ y = 1 implies τ(x)→ τ(y) = 1;

(L3) τ(x→ y) = τ(x)→ τ(x ∧ y);

(L4) τ(x� y) = τ(x)� τ(x→ (x� y));

(L5) τ(τ(x)� τ(y)) = τ(x)� τ(y);

(L6) τ(τ(x)→ τ(y)) = τ(x)→ τ(y);

(L7) τ(τ(x) ∨ τ(y)) = τ(x) ∨ τ(y);

(L8) τ(τ(x) ∧ τ(y)) = τ(x) ∧ τ(y),
for any x, y ∈ L.

The pair (L, τ) is said to be a state residuated lattice, or more precisely,
a residuated lattice with internal state.

Proposition 1.14. [10] Let (L, τ) be a state residuated lattice. Then, for
any x, y ∈ L, we have

(1) τ(1) = 1,

(2) x ≤ y implies τ(x) ≤ τ(y),

(3) τ(x∗) = (τ(x))∗,
(4) τ(x� y) ≥ τ(x)� τ(y) and if x� y = 0, then τ(x� y) = τ(x)� τ(y),

(5) τ(x � y∗) ≥ τ(x) � (τ(y))∗ and if x ≤ y, then τ(x � y∗) = τ(x) �
(τ(y))∗,

(6) τ(x→ y) ≤ τ(x)→ τ(y). In particular, if x, y are comparable, then
τ(x→ y) = τ(x)→ τ(y),

(7) if τ is faithful, then x < y implies τ(x) < τ(y),

(8) τ2(x) = τ(x),

(9) τ(L) = Fix(τ), where Fix(τ) = {x ∈ L : τ(x) = x},
(10) τ(L) is a subalgebra of L,
(11) Ker(τ) is a filter of L.
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Definition 1.15. [10] Let (L, τ) be a state residuated lattice. A nonempty
subset F of L is called a state filter of (L, τ) if F is a filter of L such that if
x ∈ F , then τ(x) ∈ F for all x ∈ L. A proper state filter of (L, τ) is called
maximal if it not strictly contained in any proper state filter of (L, τ).

We denote the set of all state filters of (L, τ) by SF [L], and the set of
all maximal state filters of (L, τ) by Maxτ (L).

Definition 1.16. [10] A state residuated lattice (L, τ) is called state simple
if it has exactly two state filters: {1} and L.

Let (L, τ) be a state residuated lattice. For any nonempty set X of L,
we denote by 〈X〉τ the state filter of (L, τ) generated by X, that is, 〈X〉τ is
the smallest state filter of (L, τ) containing X.

Proposition 1.17. [10] Let F , F1, F2 be state filters of (L, τ) and a /∈ F .
Then

(1) 〈a〉τ = {x ∈ L : x ≥ (a� τ(a))n, n ≥ 1}, which is called the principal
state filter of (L, τ),

(2) 〈F, a〉τ = {x ∈ L : x ≥ f � (a� τ(a))n, f ∈ F, n ≥ 1},
(3) 〈F1 ∪ F2〉τ = {x ∈ L : x ≥ f1 � f2, f1 ∈ F1, f2 ∈ F2}.

Lemma 1.18. [10] Let (L, τ) be a state residuated lattice. A proper state
filter F of (L, τ) is maximal if and only if, for any a /∈ F , there exists an
integer n ≥ 1 such that (τ(a)n)∗ ∈ F .

Definition 1.19. [10] A state residuated lattice (L, τ) is called state local
if it has exactly one maximal state filter.

Proposition 1.20. [10] Let (L, τ) be a state residuated lattice and a, b ∈ L.
Then, the following hold:

(1) if a ≤ b, then 〈b〉τ ⊆ 〈a〉τ ,
(2) 〈τ(a)〉τ ⊆ 〈a〉τ ,
(3) 〈a� τ(a)〉τ = 〈a〉τ ,
(4) 〈a〉τ ∩ 〈b〉τ = 〈(a� τ(a)) ∨ (b� τ(b))〉τ ,
(5) 〈a〉τ ∨ 〈b〉τ = 〈a ∧ b〉τ = 〈a� b〉τ .

For any F1, F2 ∈ SF [L], we put F1 ↪→ F2 = {x ∈ L : F1 ∩ 〈x〉τ ⊆ F2}.
For F ∈ SF [L], we define F ∗ = F ↪→ {1} = {x ∈ L : F ∩〈x〉τ = 1}, see [10].



24 Z. Dehghani and F. Forouzesh

Theorem 1.21. [10] In the frame (SF [L],⊆), for any F, F1, F2 ∈ SF [L],
we have:

(1) F1 ∩ F ⊆ F2 ⇒ F ⊆ F1 ↪→ F2, that is, F1 ↪→−: SF [L] → SF [L] is
the right adjoint of F1∩− : SF [L]→ SF [L].

(2) F1 ↪→ F2 = {x ∈ L : f∨(x�τ(x))n ∈ F2, for all f ∈ F1 and n ≥ 1}.

2 Prime state filters

In this section, we introduce the notion of the prime state filters in a state
residuated lattice. We prove the prime state filter theorem and investigate
some properties of them.

Proposition 2.1. Let (L, τ) be a state residuated lattice and P be a proper
state filter of (L, τ). Then, the following are equivalent:

(i) If P1, P2 ∈ SF [L] and P = P1 ∩ P2, then P = P1 or P = P2;
(ii) If P1, P2 ∈ SF [L] and P1 ∩ P2 ⊆ P , then P1 ⊆ P or P2 ⊆ P ;
(iii) If a, b ∈ L so that (a� τ(a))∨ (b� τ(b)) ∈ P , then a ∈ P or b ∈ P .

Proof. (i)⇒(ii) It is similar to the proof of Proposition 1.12.
(i)⇒(iii) Suppose that ((a � τ(a)) ∨ (b � τ(b)) ∈ P , a, b ∈ L. Let P1 =

〈P, a〉τ and P2 = 〈P, b〉τ . Obviously, P ⊆ P1 ∩ P2. Let x ∈ P1 ∩ P2.
Then, by Proposition 1.17 (2), there are l, k ∈ P and m,n ≥ 1 such that
x ≥ k� (a� τ(a))n and x ≥ l� (b� τ(b))m. Then, by the property of joins,
we have

x ≥ (k � (a� τ(a))n) ∨ (l � (b� τ(b))m)

≥ ((k � (a� τ(a))n) ∨ l)� ((k � (a� τ(a))n) ∨ (b� τ(b))m))

≥ ((k ∨ l)� ((a� τ(a))n ∨ l))� ((k ∨ (b� τ(b))m)

� ((a� τ(a))n ∨ (b� τ(b))m))

≥ (k ∨ l)� ((a� τ(a))n ∨ l)� (k ∨ (b� τ(b))m)

� ((a� τ(a)) ∨ (b� τ(b)))nm (by Proposition 1.2 (11)).

But (k∨ l), (a�τ(a))n∨ l, k∨ (b�τ(b))m, ((a�τ(a))∨ (b�τ(b)))nm ∈ P , by
the property of filters, x ∈ P . Thus P = P1 ∩ P2. Therefore by (i), P = P1

or P = P2, that is, a ∈ P or b ∈ P .
(iii)⇒(i) Let P1, P2 ∈ SF [L] such that P = P1 ∩ P2. Suppose that

P 6= P1 and P 6= P2 and let a ∈ P1 \ P and b ∈ P2 \ P . Then, a � τ(a) ∈
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P1, b� τ(b) ∈ P2. So, (a� τ(a))∨ (b� τ(b)) ∈ P1 ∩P2 = P , that is, by (iii),
a ∈ P or b ∈ P , which is a contradiction. Thus P = P1 or P = P2.

Definition 2.2. Let (L, τ) be a state residuated lattice. A proper state
filter P of (L, τ) is called prime if it satisfies one of the equivalent conditions
of Proposition 2.1.

We denote the set of all prime state filters of (L, τ) by Specτ (L).

Theorem 2.3. (Prime state filter theorem) Let (L, τ) be a state residuated
lattice, I be an ideal in the lattice L, and F be a state filter of (L, τ) such
that F ∩ I = ∅. Then, there is a prime state filter P such that F ⊆ P and
P ∩ I = ∅.

Proof. Let us consider the set

κ(F ) = {F ′ : F ′ ∈ SF [L], F ⊆ F ′ and F ′ ∩ I = ∅}.

Since F ∈ κ(F ), it follows that κ(F ) is nonvoid. One can easily prove that
the set κ(F ) is inductively ordered by inclusion and, by Zorn’s lemma, it has
a maximal element P . We will prove that P is a prime state filter. Since
P ∈ κ(F ), we deduce that P is a proper state filter and P ∩ I = ∅. Let
a, b ∈ L such that (a�τ(a))∨ (b�τ(b)) ∈ P . Suppose that a /∈ P and b /∈ P
and consider the sets 〈P, a〉τ and 〈P, b〉τ . Then, P is strictly contained in
〈P, a〉τ and 〈P, b〉τ , and the maximality of P implies that 〈P, a〉τ /∈ κ(F ) and
〈P, b〉τ /∈ κ(F ). Thus 〈P, a〉τ ∩ I 6= ∅ and 〈P, b〉τ ∩ I 6= ∅. Let x ∈ 〈P, a〉τ ∩ I
and y ∈ 〈P, b〉τ ∩ I. According to Proposition 1.17 (2), there are k, l ∈ P
and n,m ≥ 1. So that x ≥ k � (a� τ(a))n and y ≥ l � (b� τ(b))m. Then,
x ∨ y ≥ (k � (a� τ(a))n) ∨ (l � (b� τ(b))m) ≥ (k ∨ l)� ((a� τ(a))n ∨ l)�
(k ∨ (b� τ(b))m)� ((a� τ(a))∨ (b� τ(b)))nm (similar to Proposition 2.1 ).
But k ∨ l, (a� τ(a))n ∨ l, k ∨ (b� τ(b))m, ((a� τ(a))∨ (b� τ(b)))nm ∈ P , so,
by the property of filters, x ∨ y ∈ P . On the other hand, since I is an ideal
of the lattice L, we deduce that x∨ y ∈ I, and therefore P ∩ I 6= ∅, which is
a contradiction. Thus P is a prime state filter.

Proposition 2.4. Let (L, τ) be a state residuated lattice and F be a proper
state filter of (L, τ). Then, there is a maximal state filter F0 of (L, τ) such
that F ⊆ F0.
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Proof. One can easily prove that

LF = {F ′ : F ′ is a proper state filter containing F}

is nonvoid and inductively ordered by inclusion so, by Zorn’s lemma, LF
has a maximal element F0. We are going to prove that F0 is a maximal
state filter of (L, τ). Indeed, if F1 is a proper state filter of (L, τ) such that
F0 ⊆ F1, then F1 ∈ LF and the maximality of F0 implies that F1 = F0.

Proposition 2.5. Let (L, τ) be a state residuated lattice and a ∈ L, a < 1.
Then, there is a prime state filter P of (L, τ) so that a /∈ P .

Proof. Since {1} is a state filter and {1} ∩ (a] = ∅, by Theorem 2.3, there
exists a prime state filter P such that P ∩ (a] = ∅. Thus, a /∈ P .

The following example shows that not every prime state filter of (L, τ)
is a prime filter of L.

Example 2.6. Let L2 = {0, a, b, c, d, 1} be a set with Hasse diagram and
cayley tables as follows:

1

d b

c a

0

� 0 a b c d 1

0 0 0 0 0 0 0
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 1 d 1 1
b c d 1 c d 1
c b b b 1 1 1
d a b b d 1 1
1 0 a b c d 1
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Then, (L2,∧,∨,�,→, 0, 1) is a residuated lattice. Now, we define a map τ2

on L2 by

τ2(0) = τ2(a) = τ2(b) = 0, τ2(c) = τ2(d) = τ2(1) = 1.

One can easily check that (L2, τ2) is a state residuated lattice. The filters
of L2 are {1}, {b, 1}, {c, d, 1}, and L2, and the state filters of (L2, τ2) are
{1}, {c, d, 1}, and L2. The filter {1} is not a prime filter of L2, because
{1} = {b, 1} ∩ {c, d, 1} but {1} 6= {b, 1} and {1} 6= {c, d, 1} (according to
Proposition 1.12 (ii)). Still, as a state filter of (L2, τ2), {1} is a prime state
filter (according to Proposition 2.1 (ii)).

Proposition 2.7. Let (L, τ) be a state residuated lattice and a, b ∈ L. Then,
(i) (〈a〉τ )∗ = {x ∈ L : (a� τ(a)) ∨ (x� τ(x)) = 1};
(ii) (〈a〉τ )∗ ∩ (〈b〉τ )∗ = (〈a� b〉τ )∗.

Proof. (i)

(〈a〉τ )∗ = {x ∈ L : 〈a〉τ ∩ 〈x〉τ = {1}}
= {x ∈ L : 〈(a� τ(a)) ∨ (x� τ(x))〉τ = {1}}

(by Proposition 1.20 (4))
= {x ∈ L : (a� τ(a)) ∨ (x� τ(x)) = 1}.

(ii) Let x ∈ (〈a〉τ )∗ ∩ (〈b〉τ )∗. Then, by (i), it follows that

(a� τ(a)) ∨ (x� τ(x)) = (b� τ(b)) ∨ (x� τ(x)) = 1.

Also, by Proposition 1.2 (11),

((a�τ(a))�(b�τ(b))∨(x�τ(x)) ≥ ((a�τ(a))∨(x�τ(x)))�((b�τ(b)∨(x�τ(x)),

and so ((a� τ(a))� (b� τ(b))) ∨ (x� τ(x)) = 1. Then, by Proposition 1.2
(11),

((a�τ(a))�(b�τ(b)))2∨(x�τ(x)) ≥ (((a�τ(a))�(b�τ(b)))∨(x�τ(x)))2 = 1.

On the other hand, by Propositions 1.2 (5) and 1.14 (4),

((a� τ(a))� (b� τ(b)))2

= (a� τ(a))� (b� τ(b))� (a� τ(a))� (b� τ(b))
≤ a� b� τ(a)� τ(b)
≤ (a� b)� τ(a� b).
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So, ((a � b) � τ(a � b)) ∨ (x � τ(x)) = 1, that is, by (i), we have that
x ∈ (〈a � b〉τ )∗. Conversely, let x ∈ (〈a � b〉)∗, and therefore (x � τ(x)) ∨
((a� b)� τ(a� b)) = 1. Since a� τ(a) ≥ (a� b)� τ(a� b) (by Propositions
1.2 (5) and Definition 1.13 (L4)), we deduce that

(a� τ(a)) ∨ (x� τ(x)) ≥ ((a� b)� τ(a� b)) ∨ (x� τ(x)) = 1,

and so (a� τ(a))∨ (x� τ(x)) = 1. Analogously, (b� τ(b))∨ (x� τ(x)) = 1,
and therefore x ∈ (〈a〉τ )∗ ∩ (〈b〉τ )∗.

Theorem 2.8. The following are equivalent:
(i) (SF [L],∩,∨,→, {1}, L) is a Boolean algebra.
(ii) Every state filter of (L, τ) is a principal state filter and for every

a ∈ L there exists n ≥ 1 so that

(a� τ(a)) ∨ (((a� τ(a))n)∗ � τ(((a� τ(a))n)∗) = 1.

Proof. (i)⇒(ii) If F ∈ SF [L], then F ∨ F ∗ = L. Thus 0 ∈ F ∨ F ∗. But,
according to Proposition 1.17 (3),

F ∨ F ∗ = 〈F ∪ F ∗〉τ = {x ∈ L : x ≥ f � g, f ∈ F, g ∈ F ∗}.

So, there are f ∈ F, g ∈ F ∗ such that f � g = 0. According to Theorem 1.21
(2),

F ∗ = {x ∈ L : a ∨ (x� τ(x))n = 1, for every n ≥ 1 and a ∈ F}.

Thus a ∨ (g � τ(g))n = 1, for every a ∈ F and n ≥ 1, that is, a ∨ g = 1, for
every a ∈ F . Therefore f ∨ g = 1. By Proposition 1.2 (16), it follows that
f ∧ g = f � g. We will prove that F = 〈f〉τ . Since f ∈ F , we deduce that
〈f〉τ ⊆ F . Let x ∈ F . Then, x ∨ g = 1, by Notation 1, since f ∈ B(L), we
have

f = f ∧ 1

= f ∧ (x ∨ g)

= (f ∧ x) ∨ (f ∧ g)

= (f ∧ x) ∨ (f � g)

= (f ∧ x) ∨ 0

= f ∧ x.
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So, by Proposition 1.2 (15), f ≤ x and, since f ∈ 〈f〉τ , it follows that
x ∈ 〈f〉τ . Thus F = 〈f〉τ . Let now a ∈ L. Then, 〈a〉τ ∨ (〈a〉τ )∗ = L,
so, there are b ∈ 〈a〉τ , c ∈ (〈a〉τ )∗ such that b � c = 0. Since b ∈ 〈a〉τ , by
Proposition 1.17 (1), we deduce that there is n ≥ 1 such that b ≥ (a�τ(a))n.
According to Proposition 1.2 (4), we have b� c ≥ (a� τ(a))n� c. Therefore
(a � τ(a))n � c = 0. Since c ∈ (〈a〉τ )∗, by Proposition 2.7 (i), we get
(a� τ(a)) ∨ (c� τ(c)) = 1. Then,

c ∨ (a� τ(a))n ≥ (c� τ(c)) ∨ (a� τ(a))n

≥ ((c� τ(c)) ∨ (a� τ(a)))n

= 1 (by Proposition 1.2 (5,11).

So, c∨ (a�τ(a))n = 1. By Proposition 1.2 (16), it follows that (a�τ(a))n∧
c = (a�τ(a))n�c. Since c�(a�τ(a))n = 0, by Proposition 1.2 (3), we have
c ≤ ((a� τ(a))n)∗. Then, by Proposition 1.14 (2), τ(c) ≤ τ(((a� τ(a))n)∗).
It follows that

(a� τ(a)) ∨ (((a� τ(a))n)∗ � τ(((a� τ(a))n)∗))

≥ ((a� τ(a)) ∨ ((a� τ(a))n)∗)

� ((a� τ(a)) ∨ τ(((a� τ(a))n)∗))

≥ ((a� τ(a)) ∨ c)� ((a� τ(a)) ∨ τ(c)

≥ ((a� τ(a)) ∨ (c� τ(c)))2

= 1.

(ii)⇒(i) Since (SF [L], ∩, ∨, →, {1}, L) is a Heyting algebra. In order
to prove that it is a Boolean algebra it is enough to prove that for every
F ∈ SF [L], we have F ∗ = {1} if only if F = L (according to [18, Proposition
1.8]). Let F ∈ SF [L] with F ∗ = {1}. By the hypothesis, there is a ∈ L so
that F = 〈a〉τ therefore (〈a〉τ )∗ = {1}. There is n ≥ 1 such that

(a� τ(a)) ∨ (((a� τ(a))n)∗ � τ(((a� τ(a))n)∗) = 1

and, by Proposition 2.7 (i), it follows that ((a � τ(a))n)∗ ∈ (〈a〉τ )∗. So,
((a � τ(a))n)∗ = 1, that is, (a � τ(a))n = 0. Since (a � τ(a))n ∈ 〈a〉τ , we
deduce that 0 ∈ 〈a〉τ . In conclusion, F = 〈a〉τ = L.
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3 Obstinate state filters

In this section, we introduce the notion of obstinate state filters in a state
residuated lattice and give some characterizations of obstinate state filters.
Also, we introduce Boolean and primary state filters in a state residuated
lattice and investigate some properties of them.

Definition 3.1. Let (L, τ) be a state residuated lattice. A state filter F is
an obstinate state filter of (L, τ) if it satisfies 0 /∈ F (that is, F is a proper
state filter) and x, y /∈ F imply τ(x)→ τ(y) ∈ F and τ(y)→ τ(x) ∈ F .

The following proposition is an equivalent condition for obstinate state
filters.

Proposition 3.2. Let (L, τ) be a state residuated lattice. A proper state
filter F of (L, τ) is an obstinate state filter if and only if it satisfies the
following condition:

∀x ∈ L, x /∈ F ⇒ ∃n ≥ 1, ((τ(x))∗)n ∈ F.

Proof. Suppose that F is an obstinate proper state filter and 0, x /∈ F . Then,
1 = τ(0) → τ(x) ∈ F and (τ(x))∗ = τ(x) → τ(0) ∈ F . So, ((τ(x))∗)n ∈ F ,
for n = 1, and obtain the result. Conversely, let x, y /∈ F . We show that
τ(x)→ τ(y) ∈ F and τ(y)→ τ(x) ∈ F . By hypothesis, ((τ(x))∗)n ∈ F and
((τ(y))∗)m ∈ F , for some n,m ≥ 1. We know that, ((τ(x))∗)n ≤ (τ(x))∗

and ((τ(y))∗)m ≤ (τ(y))∗. By the property of filters, (τ(x))∗ ∈ F and
(τ(y))∗ ∈ F . By Proposition 1.2 (17), we have (τ(x))∗ ≤ τ(x) → τ(y) and
(τ(y))∗ ≤ τ(y) → τ(x), for all x, y ∈ L. By the property of filters, we get
τ(x)→ τ(y) ∈ F and τ(y)→ τ(x) ∈ F .

Example 3.3. In Example 2.6, we can check that F2 = {c, d, 1} is a state
filter. By Proposition 3.2, it is easy to check that F2 is an obstinate state
filter of (L2, τ2).

Example 3.4. Let L1 = {0, a, b, c, 1} be a bounded lattice as shown in the
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following diagram:
1

c

a b

0

Now, let � and → be defined as follows:

� 0 a b c 1

0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then, (L1,∧,∨,�,→, 0, 1) is a residuated lattice. Now, we define a map τ1

on L1 as follows:

τ1(0) = τ1(a) = 0, τ1(b) = τ1(c) = τ1(1) = 1.

One can easily check that (L1, τ1) is a state residuated lattice and F = {c, 1}
is a state filter of (L1, τ1). For b /∈ F and 0 /∈ F , since 0 = τ1(b)→ τ1(0) /∈ F ,
F is not obstinate state filter of (L1, τ1).

Theorem 3.5. Let F be an obstinate state filter of (L, τ). Then, F is a
maximal state filter of (L, τ).

Proof. Let us suppose that F is an obstinate state filter which is not max-
imal. So, there exists a proper state filter G strictly greater then F (with
respect to set inclusion). Let a ∈ G \ F . By Proposition 3.2, we have
((τ(a))∗)n ∈ F for some n ≥ 1. Then, by Proposition 1.2 (5), ((τ(a))∗)n ≤
(τ(a))∗. By the property of filters, (τ(a))∗ ∈ F and also (τ(a))∗ ∈ G.
Since τ(a) ∈ G, by the property of filters and Proposition 1.2 (3), we have
τ(a)� (τ(a))∗ = 0 ∈ G, which is a contradiction.
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The next example shows that the converse of the above theorem is not
true.

Example 3.6. Consider L = {0, a, b, 1} where 0 < a < b < 1. Define � and
→ as follows:

� 0 a b 1

0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then, (L,∧,∨,�,→, 0, 1) is a residuated lattice. Now we define a map τ on
L as follows:

τ(0) = 0, τ(a) = a, τ(b) = τ(1) = 1.

One can easily check that (L, τ) is a state residuated lattice and it is clear
that F = {b, 1} is a maximal state filter of (L, τ) but 0, a /∈ F and τ(a) →
τ(0) /∈ F . Thus, F is not an obstinate state filter of (L, τ).

Theorem 3.7. Let F be a proper state filter of (L, τ). Then, F is an
obstinate state filter if and only if x ∈ F or (τ(x))∗ ∈ F , for all x ∈ L.
Proof. The proof is straightforward, by Proposition 3.2.

Definition 3.8. Let F be a state filter of a state residuated lattice (L, τ).
F is called a Boolean state filter if (x � τ(x)) ∨ (x∗ � (τ(x))∗) ∈ F , for all
x ∈ L.
Theorem 3.9. Let F be a state filter of (L, τ) and F a prime state filter
and a Boolean state filter. Then, F is an obstinate state filter.

Proof. Suppose F is a Boolean state filter. Then, ∀x ∈ L, (x � τ(x)) ∨
(x∗ � (τ(x))∗) ∈ F . It follows, from F being a prime state filters, x ∈ F or
x∗ ∈ F . So, by Proposition 1.14 (3), x ∈ F or (τ(x))∗ = τ(x∗) ∈ F . Then,
by Theorem 3.7, F is an obstinate state filter.

Example 3.10. In Example 3.4, we can check that {1}, {b, c, 1}, {c, 1}, and
L are state filters of (L, τ). It is easy to check that F = {c, 1} is a prime
state filter but it is not an obstinate state filter, since a, b /∈ F and τ(b) →
τ(a) = 1→ 0 = 0 /∈ F .
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Remark 3.11. A state residuated lattice (L, τ) is state simple if and only
if, for every a ∈ L, a 6= 1⇒ ord(τ(a)) <∞.

Proof. Let (L, τ) be state simple. Then, the state filter {1} is maximal and
since a /∈ {1}, by Lemma 1.18, there exists n ∈ N such that (τ(a)n)∗ ∈ {1},
that is (τ(a)n)∗ = 1. Hence τ(a)n ≤ (τ(a)n)∗∗ = 0. Thus τ(a)n = 0.
Therefore ord(τ(a)) = n <∞.

Conversely, let for every a 6= 1, ord(τ(a)) <∞. Then, there exists n ∈ N
such that τ(a)n = 0. Hence (τ(a)n)∗ ∈ {1}. It follows from Lemma 1.18
that {1} is a maximal state ideal of (L, τ). Thus (L, τ) is state simple.

Example 3.12. Example 3.6 is a state local residuated lattice, but does
not have obstinate state filters.

Theorem 3.13. (Extension theorem of obstinate state filter) Suppose that
F and G are two proper state filters such that F ⊆ G. If F is an obstinate
state filter, then G is also an obstinate state filter.

Proof. Let F be an obstinate state filter and F ⊆ G. Then, by Theorem
3.5, F is a maximal state filter. Since G is a proper state filter, we get that
F = G. Hence G is an obstinate state filter.

Proposition 3.14. Let F be an obstinate state filter. Then, D(F ) = {x ∈
L : x∗∗ ∈ F} is also an obstinate state filter.

Proof. If F is an obstinate state filter, then by applying Theorem 3.13 and
F ⊆ D(F ), we get that D(F ) is an obstinate state filter.

Remark 3.15. • Let F and G be state filters of (L, τ). By Proposition
1.17, we have 〈F ∪G〉τ = {x ∈ L : x ≥ f � g, f ∈ F, g ∈ G}. If F or G is an
obstinate state filter, then by Theorem 3.13 and F,G ⊆ F ∪G ⊆ 〈F ∪G〉τ ,
we get that 〈F ∪G〉τ is an obstinate state filter.
• If ⋂α∈I Fα is an obstinate state filter of (L, τ) then, by Theorem 3.13

and
⋂
α∈I Fα ⊆ Fα, we get that Fα, for all α ∈ I, are obstinate state filters

of (L, τ).

Proposition 3.16. Let F,G and I be state filters of (L, τ). If I is an
obstinate state filter and F ∩G ⊆ I, then F ⊆ I or G ⊆ I.
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Proof. Let F ∩G ⊆ I, but F,G are not subsets of I. We take a ∈ F \ I and
b ∈ G \ I. Then, a ∈ F, a /∈ I and b ∈ G, b /∈ I (1).
Since F and G are state filters, we have τ(a) ∈ F, τ(b) ∈ G. By Proposition
1.2 (5), τ(a), τ(b) ≤ τ(a) ∨ τ(b), and since F and G are filters, we get that
τ(a) ∨ τ(b) ∈ F and τ(a) ∨ τ(b) ∈ G. Therefore τ(a) ∨ τ(b) ∈ F ∩ G ⊆ I.
Hence τ(a) ∨ τ(b) ∈ I (2).

Applying the hypothesis (I is an obstinate state filter) and (1), we obtain
(τ(a))∗ ∈ I and (τ(b))∗ ∈ I. Since I is a filter, we get that (τ(a))∗�(τ(b))∗ ∈
I. By Proposition 1.2 (6), we have (τ(a))∗ � (τ(b))∗ ≤ (τ(a))∗ ∧ (τ(b))∗,
hence (τ(a))∗ ∧ (τ(b))∗ ∈ I. By Proposition 1.2 (8), we know that (τ(a))∗ ∧
(τ(b))∗ = (τ(a)∨ τ(b))∗, hence (τ(a)∨ τ(b))∗ ∈ I. Therefore (τ(a)∨ τ(b))→
0 = (τ(a) ∨ τ(b))∗ ∈ I, by (2), we have τ(a) ∨ τ(b) ∈ I . Since I is a filter,
by Definition 1.3, we get that 0 ∈ I. This is a contradiction, and therefore
F ⊆ I or G ⊆ I.

Remark 3.17. Let F,G, and I be state filters of (L, τ). If I is an obstinate
state filter and I = F ∩G, then F = I or G = I.

Proof. Suppose that I = F ∩G, and hence F ∩G ⊆ I. Applying the above
proposition, we obtain F ⊆ I or G ⊆ I. It is enough to show that I ⊆ F
or I ⊆ G. By hypothesis, we have I = F ∩ G ⊆ F,G. Hence the proof is
complete.

By Theorem 3.13, it is easy to prove the following remark.

Remark 3.18. {1} is an obstinate state filter of (L, τ) if and only if every
state filter F of (L, τ) is an obstinate state filter.

Definition 3.19. Let (L, τ) be a state residuated lattice. A proper state
filter F of (L, τ) is called a primary state filter if for every a, b ∈ L, (a�b)∗ ∈
F implies (τ(a)n)∗ ∈ F for some n ≥ 1, or (τ(b)m)∗ ∈ F for some m ≥ 1.

Proposition 3.20. A state residuated lattice (L, τ) is local if and only if
ord(τ(x)) or ord(τ(x)∗) is finite, for every x ∈ L.

Proof. Suppose that (L, τ) is local, that is, it has only one maximal state
filter F . Let x ∈ L. Suppose that ord(τ(x)) = ord(τ(x∗)) =∞. If 〈x〉τ = L
then, according to Proposition 1.17, there is n ≥ 1 such that (x�τ(x))n = 0,
so, τ((x � τ(x))n) = 0 and, since τ((x � τ(x))n) ≥ τ(x)2n, it follows that
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τ(x)2n = 0, which is a contradiction. Thus 〈x〉τ is proper. Analogously,
〈x∗〉τ is proper. Then, 〈x〉τ , 〈x∗〉τ ⊆ F , and therefore x, x∗ ∈ F , so, x�x∗ =
0 ∈ F , which is a contradiction.

Conversely, suppose that there are F1, F2 ∈ Maxτ (L), F1 6= F2 and let
a ∈ F1 \ F2, for example. Then, by Lemma 1.18, there is n ≥ 1 such that
(τ(a)n)∗ ∈ F2, so, τ((τ(a)n)∗) ∈ F2. Let x = τ(a)n. Since τ(x∗) ∈ F2, we
deduce that (τ(x∗))n ∈ F2, for all n ∈ N . ord(τ(x∗)) = ord(τ(x)∗) = ∞
and, by the hypothesis, it follows that ord(τ(x)) < ∞, so, there is m ≥ 1
such that τ(x)m = 0, that is, τ(τ(a)n)m = 0. According to Proposition 1.14
(4), we have τ(τ(a)n)m ≥ (τ(τ(a))n)m = τ(a)mn, and infer that τ(a)mn = 0.
But a ∈ F1, and therefore 0 = τ(a)mn ∈ F1, which is a contradiction. Thus
(L, τ) has only a maximal state filter, and so, (L, τ) is local.

Theorem 3.21. Let (L, τ) be a state residuated lattice. Then, the following
are equivalent:

(i) (L, τ) is local;
(ii) Every proper state filter of (L, τ) is a primary state filter.

Proof. (i)⇒(ii) Suppose that (L, τ) is local and let F0 be its only maximal
state filter. Let F be a proper state filter of (L, τ) and a, b ∈ L such that
(a � b)∗ ∈ F . Since F ⊆ F0, it follows that (a � b)∗ ∈ F0, so a � b /∈ F0,
therefore a /∈ F0 or b /∈ F0. Because, if a ∈ F0 and b ∈ F0, then a� b ∈ F0,
which is a contradiction. Suppose that a /∈ F0. Then, 〈a〉τ is not a subset
of F0 since (L, τ) is local, so 〈a〉τ = L, and so, there is n ≥ 1 such that
(a� τ(a))n = 0. Since τ((a� τ(a))n) ≥ τ(a)2n, we deduce that τ(a)2n = 0,
that is, (τ(a)2n)∗ = 1 ∈ F . Analogously, if b /∈ F0, then there is m ≥ 1 such
that (τ(b)2m)∗ = 1 ∈ F . Thus F is a primary state filter.

(ii)⇒(i) Let F = {1} be a proper state filter of (L, τ) and x ∈ L. Then,
(x � x∗)∗ = 1 ∈ F , and so, there is n,m ≥ 1 such that (τ(x)n)∗ ∈ F or
(τ(x∗)m)∗ ∈ F . That is, (τ(x)n)∗ = 1 or (τ(x∗)m)∗ = 1, and therefore
τ(x)n = 0 or τ(x∗)m = 0. Thus ord(τ(x)) < ∞ or ord(τ(x∗)) < ∞ and,
according to Proposition 3.20, it follows that (L, τ) is local.

Acknowledgement

The authors are extremely grateful to anonymous referees for valuable com-
ments and helpful suggestions which improved the presentation of this paper.



36 Z. Dehghani and F. Forouzesh

References

[1] Balbes, R. and Dwinger, P., “Distributive lattices”, University of Missouri Press,
1974.

[2] Borumand Saeid, A. and Pourkhatoun, M., Obstinate filters in residuated lattices,
Bull. Math. Soc. Sci. Math. Roumanie, Nouvelle Série 55 (103)(4) (2012), 413-422.
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[4] Dvurečenskij, A., States on pseudo MV -algebras, Studia Logica 68 (2001), 301-327.

[5] Forouzesh, F., Eslami, E., and Borumand Saeid, A., On obstinate ideals in MV -
Algebras, U.P.B. Sci. Bull., Series A, 76(2) (2014), 53-62.

[6] Georgescu, G., Bosbach states on fuzzy structures, Soft Comput. 8 (2004), 217-230.

[7] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., and Scott, D.S.,
“Continuous Lattices and Domains”, Cambridge University Press, 2003.

[8] Gratzer, G., “Lattice theory”, First Concepts and Distributive Lattices, A Series of
Books in Mathematics, W.H. Freeman and Company, 1972.

[9] Hajek, P., “Metamathematics of Fuzzy Logic”, Trends in Logic Studia Logica Library
4, Kluwer Academic Publishers, 1998.

[10] He, P., Xin, X., and Yang, Y., On state residuated lattices, Soft Comput. 19 (2015),
2083-2094.

[11] Kroupa, T., Every state on semisimple MV -algebra is integral, Fuzzy Sets and Sys-
tems 157 (2006), 2771-2782.

[12] Liu, L. and Li, K., Boolean filters and positive implicative filters of residuated lattices,
Inf. Sci. 177 (2007), 5725-5738.

[13] Liu, L.Z. and Zhang, X.Y., States on finite linearly ordered IMTL-algebras, Soft
Comput. 15 (2011), 2021-2028.

[14] Liu, L.Z. and Zhang, X.Y., States on R0-algebras, Soft Comput. 12 (2008), 1099-
1104.

[15] Liu, L.Z., On the existence of states on MTL-algebras, Inf. Sci. 220 (2013), 559-567.

[16] Mundici, D., Averaging the truth-value in Łukasiewicz sentential logic, Studia Logica
55 (1995), 113-127.

[17] Muresan, C., Dense elements and classes of residuated lattices, Bull. Math. Soc. Sci.
Math. Roumanie 53 (2010), 11-24.



State filters in state residuated lattices 37

[18] Piciu, D., “Algebras of Fuzzy Logic”. Ed. Universitaria, 2007.
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