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Convex L-lattice subgroups in L-ordered
groups

R.A. Borzooei∗, F. Hosseini, and O. Zahiri

Abstract. In this paper, we have focused to study convex L-subgroups of an
L-ordered group. First, we introduce the concept of a convex L-subgroup and
a convex L-lattice subgroup of an L-ordered group and give some examples.
Then we find some properties and use them to construct convex L-subgroup
generated by a subset S of an L-ordered group G . Also, we generalize a well
known result about the set of all convex subgroups of a lattice ordered group
and prove that C(G), the set of all convex L-lattice subgroups of an L-ordered
group G, is an L-complete lattice on height one. Then we use these objects
to construct the quotient L-ordered groups and state some related results.

1 Introduction

Zhang and Liu in [20] defined a kind of an L-frame by a pair (A; iA), where
A is a classical frame and iA : L→ A is a frame morphism. For a stratified
L-topological space (X; δ), the pair (δ; iX) is one of this kind of L-frames,
where iX : L → δ, is a map which sends a ∈ L to the constant map with
the value a. Conversely, a point of an L-frame (A; iA) is a frame morphism
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p : (A; iA)→ (L; idL) satisfying p◦iA = idL and Lpt(A) denotes the set of all
points of (A; iA). Then {Φx : Lpt(A)→ L | ∀p ∈ Lpt(A); Φx(p) = p(x)} is a
stratified L-topology on Lpt(A). By these two assignments, Zhang and Liu
constructed an adjunction between SL−Top and L−Loc and consequently
they established the Stone representation theorem for distributive lattices
by means of this adjunction. They pointed out that, from the viewpoint of
lattice theory, Rodabaugh’s fuzzy version of the Stone representation theory
is just one and it has nothing different from the classical one. Recently, based
on complete Heyting algebras, Fan and Zhang [7, 19] studied quantitative
domains through fuzzy set theory. Their approach uses a fuzzy partial order,
specifically a degree function, on a non-empty set. Yao [16] introduced the
notion of L-frames. It is an L-complete ordered set with the meet operation
having a right fuzzy adjoint. Indeed, the category of L-frames introduced
by Yao is isomorphic to the category of L-frames defined by Zhang and Liu
in [20] (for more details see [17]). He established an adjunction between the
category of stratified L-topological spaces and the category of L-locales, the
opposite category of this kind of L-frames. Borzooei et al. in [4] defined
the notions of L-ordered and L-lattice ordered groups and found a relation
between positive cones and L-ordered relations of a group and verified a
quotient L-ordered group constructed by a convex normal L-subgroup. They
also stated a general form for Riesz decomposition property in L-lattice
ordered groups. In [5], they continued the study of this structure and defined
the notion of totally L-ordered group.

The content of this paper is organized as follows. In Section 2, some
notions and results about L-ordered groups and L-lattice ordered groups
are recalled. In Section 3, the concepts of positive cone, convex L-subgroup
and convex L-lattice subgroup in L-ordered groups, where L is a frame, are
defined, and it is proved that the set of all convex L-lattice subgroups is an
L-complete lattice of height one, and using a normal convex L-subgroup, an
L-ordered group is constructed and some related results are investigated.

2 Preliminaries

In this section, we gather some definitions and results which will be used in
the paper.

We recall that a frame is a complete lattice (L,∨,∧, 0, 1) satisfying the
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(infinite) distributive law

a ∧ (
∨

b∈B
b) =

∨

b∈B
(a ∧ b)

for any a ∈ L and B ⊆ L. If (L,∨,∧, 0, 1) is a frame, then we have a binary
operation →: L×L→ L defined by x→ y =

∨{z ∈ L|x∧ z ≤ y}, for every
x, y ∈ L. The following equations hold in all frames, for each x, y, z ∈ L and
Y ⊆ L:

(i) (x ∧ y)→ z = x→ (y → z);
(ii) x→ (

∧
Y ) =

∧
y∈Y (x→ y);

(iii) (
∨
Y )→ z =

∧
y∈Y (y → z).

From now on, in this paper, (L,∨,∧, 0, 1) or simply L is a frame.
Let P be a set and e : P ×P → L be a map. The pair (P, e) is called an

L-ordered set if for all x, y, z ∈ P ,
(E1): e(x, x) = 1,
(E2): e(x, y) ∧ e(y, z) ≤ e(x, z),
(E3): e(x, y) = e(y, x) = 1 implies x = y.
In an L-ordered set (P, e), the map e is called an L-order relation on P .

Note that, if (P,≤) is a poset, then (P, χ≤) is an L-ordered set, where χ≤
is the characteristic function of ≤. Moreover, for each L-ordered set (P, e),
the set ≤e= {(x, y) ∈ P × P | e(x, y) = 1} is a partial order on P and so
(P,≤e) is a poset. We denote LP for the set of all L-subsets of P , that is
LP = {f | f : P → L}. A map f : (P, eP )→ (Q, eQ) between two L-ordered
sets is called monotone if for all x, y ∈ P , eP (x, y) ≤ eQ(f(x), f(y)). Let
(P, e) be an L-ordered set and S be an L-subset of P . Then the support
of S is defined by Supp(S) = {x ∈ P | 0 < S(x)}. For an L-ordered set
(P, e) and S ∈ LP , an element x0 ∈ P is called a join (meet) of S, in symbol
x0 = tS (x0 = uS), if for all x ∈ P ,

(J1) S(x) ≤ e(x;x0) ((M1) S(x) ≤ e(x0;x)),

(J2)
∧
y∈P (S(y) → e(y, x)) ≤ e(x0, x) ((M2)

∧
y∈P (S(y) → e(x, y)) ≤

e(x, x0)).

If the join or meet of S exists, then they are unique. An L-ordered set (P, e)
is called a (weak) L-lattice if for every (x, y ∈ G) S ∈ LP where Supp(S) is
finite, (uχ{x,y} and tχ{x,y}) tS and uS exist. It can be easily seen that if



142 R.A. Borzooei, F. Hosseini, and O. Zahiri

(P, e) is an L-lattice, then (P,≤e) is a lattice and uχ{x,y} and tχ{x,y} are
x∧y and x∨y, respectively. An L-ordered set (P, e) is called an L-complete
lattice if for any S ∈ LP , tS and uS exist (see [18, 19, 21]).

Theorem 2.1. [19] Let (P, e) be an L-ordered set and S ∈ LP . Then
(i) x0 = tS if and only if e(x0, x) =

∧
y∈P (S(y) → e(y, x)), for all

x ∈ P ;
(ii) x0 = uS if and only if e(x;x0) =

∧
y∈P (S(y) → e(x, y)), for all

x ∈ P .

Proposition 2.2. [4] Let (P, e) be a weak L-lattice. Then for all x, y, a ∈ P ,
the following conditions hold:

(i) e(a, x ∧ y) = e(a, x) ∧ e(a, y);
(ii) e(x ∨ y, a) = e(x, a) ∧ e(y, a).

Definition 2.3. [4] S ∈ LP is called a convex L-subset of L-ordered set
(P, e) if for every x, y, a ∈ P ,

S(x) ∧ S(y) ∧ e(x, a) ∧ e(a, y) ≤ S(a).

An L-ordered group (or an L-fuzzy ordered group) (G, e, ., 1), is a group
(G, ., 1) together with an L-order relation e : G×G→ L such that for any
a ∈ G, the translation maps ( ).a : G→ G and a.( ) : G→ G are monotone
or, equivalently, (FOG): e(x, y) ≤ e(bxa, bya), for every x, y, a, b ∈ G.

An L-lattice ordered group is an L-ordered group in which for every x, y ∈
G, tχ{x,y} and uχ{x,y} exist. In each L-lattice ordered group (G, e, ., 1), the
ordered set (G,≤e) is a lattice. Let (G; e, ·, 1) be an L-ordered group, a ∈ G
and S ∈ LG. We define a ∧ S, a ∨ S and aS by

(a ∧ S)(y) =
∨
{S(x)|x ∈ G, a ∧ x = y},

(a ∨ S)(y) =
∨
{S(x)|x ∈ G, a ∨ x = y}, aS(y) = S(a−1y)

for any y ∈ G. A map f : (G, eG, ·, 1G) → (H, eH , ·, 1H) between two L-
ordered groups is called an L-ordered group homomorphism if it is monotone
and group homomorphism or, equivalently, f preserves the operations ·,
1 and for each x, y ∈ G, e(x, y) ≤ e(f(x), f(y)). If an L-ordered group
homomorphism is one to one and onto, then it is called an L-ordered group
isomorphism (for more details see [4]).
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Proposition 2.4. [4] Let (G; e, ., 1) be an L-ordered group. Then forever
x, y, a, b ∈ G and S ∈ LG, the following conditions hold:

(i) e(x, y) = e(bxa, bya);
(ii) e(x, y) = e(y−1, x−1);
(iii) If x ≤ y, then e(y, a) ≤ e(x, a) and e(a, x) ≤ e(a, y);
(iv) a t S = t(aS), a u S = u(aS) and (uS)−1 = uS−1;
(v) (G,≤e) is an ordered group.

Definition 2.5. [4] Let (G; e, ·, 1) be an L-ordered group. Then

(i) S ∈ LG is called an L-subgroup of G if S(1G) = 1, S(x) = S(x−1) and
S(x) ∧ S(y) ≤ S(xy), for every x, y ∈ G.

(ii) L-subgroup S of G is called normal if S(y) ≤ S(xyx−1) for all x, y ∈ G.
Clearly, if S is normal, then S(y) = S(xyx−1), for all x, y ∈ G.

(iii) The positive cone of S ∈ LG is the map S+ : G→ L, which is defined
by S+(x) = S(x) ∧ e(1, x), for all x ∈ G.

(iv) The positive (negative) cone of G is defined by

G+(x) = e(1, x)(G−(x) = e(x, 1))∀x ∈ G.

Theorem 2.6. [4] Let (G; e, ·, 1) be an L-ordered group. Then S ∈ LG is a
convex L-subset of G if and only if for every x, a ∈ G,

S(x) ∧ e(1, a) ∧ e(a, x) ≤ S(a).

3 Convex L-subgroups and convex L-lattice subgroups

In this section, we study some properties of convex L-subgroups and convex
L-lattice subgroups in L-ordered groups. Throughout this section (G; e, ·, 1)
(simply denoted by G) is an L-lattice ordered group, unless otherwise stated.

Definition 3.1. An L-subset S of G is called
(i) an L-Lattice subgroup if S is an L-subgroup such that S(x) ∧ S(y) ≤

S(x ∧ y) and S(x) ∧ S(y) ≤ S(x ∨ y), for all x, y ∈ G;
(ii) a convex L-subgroup of G, if it is both an L-subgroup and a convex

L-subset of G. A convex L-subgroup C ∈ LG is called a convex L-lattice
subgroup of (G; e, ·, 1) if it is an L-Lattice subgroup of G.
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Example 3.2. Let G = Z×Z and (L = {0, a, b, 1},≤) be a poset such that
a ∨ b = 1 and a ∧ b = 0. Then L is a frame. Now, let e : G × G → L and
C ∈ LG be defined by

e((x1, y1), (x2, y2))=





1 if x1 ≤ x2, y1 ≤ y2

a if x1 ≤ x2, y2 < y1

b if x2 < x1, y1 ≤ y2

0 if x2 < x1, y2 < y1

, C(x, y)=

{
1 if y = 0
a if y 6= 0.

Then C is a convex L-lattice subgroup of G.

Example 3.3. Let 0 < 1 and L =
∏∞
n=1 {0, 1} with the pointwise order

relation andG =
∏∞
n=1Z. For any (xi)N, (yi)N ∈ G, define e((xi)N, (yi)N) =

(χ≤(xi, yi))N where ≤ is the natural order on Z. Define S ∈ LG by

πj(S((xi)i∈N)) =

{
1 if xj is even
0 if xj is odd,

where πj is the j-th canonical projection map, for all j ∈ N. Then clearly,
(G, e,+, (0)N) is an L-ordered group. Moreover, S is an L-subgroup which
is not convex. Indeed, since 0 is even, S((0)N) = (1)N. For any x ∈ Z,
x is even if and only if −x is even. So, S((xi)N) = S((−xi)N). For each
x, y ∈ Z, x+ y is odd if and only if one of x, y is odd. It follows that, for all
(xi)N, (yi)N ∈ G, and all j ∈ N,

πj(S((xi)N)) ∧ πj(S((yi)N)) ≤ πj(S((xi)N + (yi)N)).

Hence, S((xi)N)∧S((yi)N) ≤ S((xi)N+(yi)N). That is, S is an L-subgroup.
Also, we have

S((2)N) ∧ e((0Z)N, (1)N) ∧ e((1)N, (2)N) = (1)N ∧ (1)N ∧ (1)N

� (0)N = S((1)N).

So, S is not convex.

Lemma 3.4. Let C ∈ LG be a convex L-subgroup of G. Then for any x ∈ G,

C(x ∨ x−1) = C(x ∧ x−1) = C(x).
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Proof. Let x ∈ G. Then C(x ∨ x−1) = C((x ∨ x−1)−1) = C(x ∧ x−1) and
e(x ∧ x−1, x) = e(x, x ∨ x−1) = 1. Since C is convex,

C(x∨x−1) = C(x∨x−1)∧C(x∧x−1)∧e(x∧x−1, x)∧e(x, x∨x−1) ≤ C(x).

On the other hand, since C is an L-lattice, C(x) ≤ C(x∧x−1) = C(x∨x−1).
Therefore,

C(x ∨ x−1) = C(x ∧ x−1) = C(x).

Theorem 3.5. Let C ∈ LG be an L-subgroup of G. Then C is a convex
L-lattice subgroup of G if and only if for every x, g ∈ G, C(x)∧e(g∨g−1, x∨
x−1) ≤ C(g).

Proof. (⇒) Let C be a convex L-lattice subgroup of G and x, g ∈ G. Then

C(x)∧e(g∨g−1, x∨x−1) = C(x∨x−1)∧e(g∨g−1, x∨x−1), by Lemma 3.4
= C(x∨x−1)∧e(g∨g−1, x∨x−1)∧e(1, g∨g−1)

≤ C(g∨g−1), by the definition of convexity
= C(g), by Lemma 3.4.

(⇐) Let C ∈ LG. Since for any x ∈ G, we have

e(1, x) = e(1, x)∧ e(x−1, 1)≤e(x−1, x) = e(x−1, x)∧ e(x, x) = e(x−1 ∨ x, x).

Hence, for every x, a ∈ G,

C(a) ∧ e(1, x) ∧ e(x, a) ≤ C(a) ∧ e(1, x) ∧ e(x, a ∨ a−1), by Lemma 2.4(iii)
≤ C(a) ∧ e(x ∨ x−1, x) ∧ e(x, a ∨ a−1)

≤ C(a) ∧ e(x ∨ x−1, a ∨ a−1), by (E2)
≤ C(x).

Then by Theorem 2.6, C is convex.

Proposition 3.6. The intersection of any convex L-lattice subgroups of G
is a convex L-lattice subgroup of G, too.
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Proof. Let {Ci ∈ LG|i ∈ I} be a family of convex L-subgroups of (G; e, ·, 1).
It is easy to see that

∧
iCi is an L-lattice subgroup of (G; e, ·, 1). It is enough

to show that
∧
iCi is convex. For ever a, x ∈ G, we have

(
∧

i∈I
Ci)(a) =

∧

i∈I
(Ci(a)) ≥

∧

i∈I
(Ci(x) ∧ e(1, a) ∧ e(a, x))

=
∧

i∈I
(Ci(x)) ∧ e(1, a) ∧ e(a, x).

Hence
∧
i∈I Ci is convex.

Lemma 3.7. For every x, a ∈ G

G+(x) = G+(axa−1) , G−(x) = G−(axa−1).

Proof. For every x, a ∈ G, we have

G+(x) = e(1, x) = e(a1a−1, axa−1) = e(1, axa−1) = G+(axa−1).

For G−, the proof is similar.

If S is an L-subgroup of an L-ordered group (G; e, ·, 1), then by Proposi-
tion 3.6, the intersection of any convex L-subgroups of (G; e, ·, 1) that con-
tains S is a convex L-subgroup of (G; e, ·, 1) which contains S, and is denoted
by 〈S〉C . We used 〈S〉C to denote the convex L-subgroup of G generated by
S.

Let (G; e, ·, 1) be an L-ordered group and S, T ∈ LG. Then for any
x ∈ G, we define S · T ∈ LG by

S · T (x) =
∨

ab=x

(S(a) ∧ T (b)),

for any x ∈ G.

Theorem 3.8. Let S be an L-subgroup of an L-ordered group (G; e, ·, 1).
Then

〈S〉C = S ·G+ ∧ S ·G−.
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Proof. First we show that S ·G+∧S ·G− is a convex L-subgroup of (G; e, ·, 1).
Since S is an L-subgroup of (G; e, ·, 1), S(1) = 1. From G+(1) = e(1, 1) = 1
and G−(1) = e(1, 1) = 1, we get

(S.G+ ∧ S.G−)(1) = (S ·G+)(1) ∧ (S ·G−)(1)

=
∨

xy=1

(S(x) ∧G+(y)) ∧
∨

xy=1

(S(x) ∧G−(y))

≥ S(1) ∧G+(1) ∧ S(1) ∧G−(1) = 1.

Now for every x, y ∈ G, by Definition 2.5 and Lemma 3.7, we have:

(S ·G+ ∧ S ·G−)(x) ∧ (S ·G+ ∧ S ·G−)(y)

= (
∨

ab=x

(S(a) ∧G+(b)) ∧
∨

a′b′=x

(S(a′) ∧G−(b′)))

∧(
∨

cd=y

(S(c) ∧G+(d)) ∧
∨

c′d′=y

(S(c′) ∧G−(d′)))

=
∨

ab=x

∨

cd=y

((S(a) ∧ S(c)) ∧ (G+(b) ∧G+(d)))

∧
∨

ab=x

∨

cd=y

((S(a′) ∧ S(c′)) ∧ (G−(b′) ∧G−(d′)))

≤
∨

abcd=xy

((S(ac)) ∧ (G+(c−1bc) ∧G+(d)))

∧
∨

a′b′c′d′=xy

((S(a′c′)) ∧ (G−(c′−1b′c′) ∧G−(d′)))

≤
∨

acc−1bcd=xy

((S(ac)) ∧ (G+(c−1bcd)))

∧
∨

a′c′c′−1b′c′d′=xy

((S(a′c′)) ∧ (G+(c−1bcd)))

≤
∨

uv=xy

((S(u)) ∧ (G+(v))) ∧
∨

u′v′=xy

((S(u′)) ∧ (G−(v′)))

= (S ·G+ ∧ S ·G−)(xy).
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Let x ∈ G. Then

(S ·G+ ∧ S ·G−)(x−1) =
∨

ab=x−1

(S(a) ∧G+(b)) ∧
∨

a′b′=x−1

(S(a′) ∧G−(b′))

=
∨

ab−1=x

(S(a−1) ∧G+(b)) ∧
∨

a′−1b′=x

(S(a′−1) ∧G−(b′))

= (S ·G+ ∧ S ·G−)(x).

So S ·G+ ∧ S ·G− is an L-subgroup of (G; e, ·, 1). Now, for every x, y ∈ G
we have

(S ·G+ ∧ S ·G−)(x) ∧ e(1, y) ∧ e(y, x)

=
∨

ab=x

(S(a) ∧G+(b)) ∧
∨

a′b′=x

(S(a′) ∧G−(b′)) ∧ e(1, y) ∧ e(y, x)

≤
∨

a′b′=x

(S(a′) ∧ e(b′, 1)) ∧ e(1, y) ∧ e(y, x)

=
∨

a′b′=x

(S(a′) ∧ e(b′, 1) ∧ e(1, y) ∧ e(y, x))

∧
∨

a′b′=x

(S(a′) ∧ e(b′, 1) ∧ e(1, y) ∧ e(y, x))

≤
∨

a′b′=x

(S(a′) ∧ e(1, (b′)−1) ∧ e(1, y) ∧ e(y, a′b′))

∧
∨

a′b′=x

(S(a′) ∧ e(b′, 1) ∧ e(x−1y, 1))

≤
∨

a′b′=x

(S(a′) ∧ e(1, (b′)−1) ∧ e((b′)−1, y(b′)−1) ∧ e(y(b′)−1, a′))

∧
∨

a′b′=x

(S(a′) ∧ e(b′x−1y, 1))

≤
∨

a′b′=x

(S(a′) ∧ e(1, y) ∧ e(1, a′)) ∧
∨

a′b′=x

(S(a′) ∧ e(b′x−1y, 1))

≤
∨

a′b′=x

(S(a′−1) ∧ e(1, a′y)) ∧
∨

a′b′=x

(S(a′) ∧ e(b′x−1y, 1))

=
∨

a′b′=x

(S(a′−1) ∧G+(a′y)) ∧
∨

a′b′=x

(S(a′) ∧G−(b′x−1y))
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≤
∨

st=y

(S(s) ∧G+(t)) ∧
∨

s′t′=y

(S(s′) ∧G−(t′)), since y = a′−1a′y, y = a′b′x−1y

= S ·G+ ∧ S ·G−(y).

Hence S ·G+ ∧ S ·G− is convex. Moreover, for any x ∈ G, we have

S(x) = (S(x) ∧ e(1, 1)) ∧ (S(x) ∧ e(1, 1))

≤
∨

ab=x

(S(a) ∧G+(b)) ∧
∨

ab=x

(S(a) ∧G−(b)) = (S ·G+ ∧ S ·G−)(x).

It follows that S ·G+∧S ·G− contains S. Now, let C be a convex L-subgroup
of (G; e, ·, 1) such that S(a) ≤ C(a) for any a ∈ G. Then

(S.G+ ∧ S.G−)(x) =
∨

ab=x

(S(a) ∧G+(b)) ∧
∨

a′b′=x

(S(a′) ∧G−(b′))

=
∨

ab=x

(S(a) ∧G+(a−1x)) ∧
∨

a′b′=x

(S(a′) ∧G−(a′−1x))

=
∨

ab=x

(S(a) ∧ e(1, a−1x)) ∧
∨

a′b′=x

(S(a′) ∧ e(a′−1x, 1))

=
∨

ab=x

(S(a) ∧ e(a, x)) ∧
∨

a′b′=x

(S(a′) ∧ e(x, a′))

=
∨

ab=x

∨

a′b′=x

(S(a) ∧ e(a, x) ∧ S(a′) ∧ e(x, a′))

≤
∨

ab=x

∨

a′b′=x

(C(a) ∧ e(a, x) ∧ C(a′) ∧ e(x, a′))

≤C(x).

Therefore, 〈S〉C = S ·G+ ∧ S ·G−.

It is well known that the set of all convex subgroups of a lattice ordered
group H is a complete lattice (see [16]). In the next theorem, we want to
generalize this result for the set of all convex L-lattice subgroups of G. First,
we recall that if X is a set, then for each S ∈ LX , the height of S is defined
by ht(S) =

∨
x∈X S(x).

Definition 3.9. Let (P, e) be an L-ordered set. If for S ∈ LP with ht(S) =
1, uS and tS exist then (P, e) is called an L-complete lattice of hight one.
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In the next theorem, we will show that C(G) is an L-complete lattice of
hight one.

Theorem 3.10. Let C(G) be the set of all convex L-lattice subgroups of G.
Then for each ϕ belonging to C = {ϕ ∈ LC(G) | ∨

f∈C(G)
ϕ(f) = 1}, tϕ and

uϕ exist and belong to C(G).

Proof. By [2] and [11, Exa. 3.7], we know that (LG, e′) is an L-complete
lattice where e′(A,B) =

∧
x∈G(A(x) → B(x)), for all A,B ∈ LG. Consider

the L-ordered set (C(G), e′). For any ϕ ∈ C, we claim that if S0(x) =∨
f∈C(G)(ϕ(f) ∧ f(x)) and S1(x) =

∧
f∈C(G)(ϕ(f) → f(x)), for all x ∈ G,

then tϕ = S0 and uϕ = S1 in (C(G), e′). First, we show that S0, S1 ∈ C.
(1) For all x, y, a ∈ G we have

S0(x) ∧ S0(y) ∧ e(x, a) ∧ e(a, y)

=
(∨

f∈C(G)

(ϕ(f) ∧ f(x))
)
∧
(∨

g∈C(G)

(
ϕ(g) ∧ g(y)

))
∧ e(x, a) ∧ e(a, y)

=
∨

g∈C(G)

∨

f∈C(G)

(
ϕ(f) ∧ ϕ(g) ∧ f(x) ∧ g(y) ∧ e(x, a) ∧ e(a, y)

)

≤
∨

f∈C(G)

(
ϕ(f) ∧ f(x) ∧ f(y) ∧ e(x, a) ∧ e(a, y)

)

∧
∨

g∈C(G)

(
ϕ(g) ∧ g(x) ∧ g(y) ∧ e(x, a) ∧ e(a, y)

)

≤
∨

f∈C(G)

(ϕ(f) ∧ f(a)) ∧
∨

g∈C(G)

(ϕ(g) ∧ g(a)) = S0(a).

(2) Since ϕ ∈ C, S0(1) =
∨
f∈C(G)(ϕ(f) ∧ f(1)) =

∨
f∈C(G) ϕ(f) = 1.

(3) Let x, y ∈ G. Then

S0(xy) =
∨

f∈C(G)

(ϕ(f) ∧ f(xy)) ≥
∨

f∈C(G)

(ϕ(f) ∧ f(x) ∧ f(y))

≥ (
∨

f∈C(G)

ϕ(f) ∧ f(x)) ∧ (
∨

f∈C(G)

ϕ(f) ∧ f(y))

= S0(x) ∧ S0(y).

In a similar way, we can show that S0(x ∧ y), S0(x ∨ y) ≥ S0(x) ∧ S0(y).
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From (1)-(3), it follows that S0 ∈ C(G). Now, we show that S0 = tϕ.
Since S0 is tϕ in (LG, e′) (see the proof of [21, Theorem 2.20]), then for each
f ∈ C(G), by (J1), we have ϕ(f) ≤ e′(f, S0). Let f ∈ C(G). Then

∧

g∈C(G)

(ϕ(g)→ e′(g, f)) =
∧

g∈C(G)

(
ϕ(g)→

∧

x∈G
(g(x)→ f(x))

)

=
∧

g∈C(G)

∧

x∈G

(
ϕ(g)→ (g(x)→ f(x))

)

=
∧

g∈C(G)

∧

x∈G

(
(ϕ(g) ∧ g(x))→ f(x)

)

=
∧

x∈G

∧

g∈C(G)

(
(ϕ(g) ∧ g(x))→ f(x)

)

=
∧

x∈G

(
(
∨

g∈C(G)

(ϕ(g) ∧ g(x)))→ f(x)
)

=
∧

x∈G
(S0(x)→ f(x)) = e′(S0 → f).

Therefore, S0 = tϕ. Also,

(4) S1(1) =
∧
g∈C(G)(ϕ(g)→ g(1))=

∧
g∈C(G)(ϕ(g)→ 1) = 1.

(5) For each x, y ∈ G,

S1(x.y) =
∧

g∈C(G)

(ϕ(g)→ g(xy)) ≥
∧

g∈C(G)

(ϕ(g)→ (g(x) ∧ g(y)))

=
∧

g∈C(G)

(
(ϕ(g)→ g(x)) ∧ (ϕ(g)→ g(y))

)
= S1(x) ∧ S1(y).

In a similar way, it can be easily seen that S1(x∧y), S1(x∨y) ≥ S(x)∧S(y).
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(6) For all x, y, a ∈ G we have

S1(x) ∧ S1(y) ∧ e(x, a) ∧ e(a, y)

= (
∧

g∈C(G)

(ϕ(g)→ g(x))) ∧ (
∧

f∈C(G)

(ϕ(f)→ f(y))) ∧ e(x, a) ∧ e(a, y)

≤
∧

f,g∈C(G)

(
(ϕ(g)→ g(y)) ∧ (ϕ(f)→ f(x))

)
∧ e(x, a) ∧ e(a, y)

≤
∧

f∈C(G)

(
(ϕ(f)→ f(y)) ∧ (ϕ(f)→ f(x))

)
∧ e(x, a) ∧ e(a, y)

≤
∧

f∈C(G)

(
ϕ(f)→ (f(y) ∧ f(x))

)
∧ e(x, a) ∧ e(a, y)

=
∧

f∈C(G)

((
ϕ(f)→ (f(y) ∧ f(x))

)
∧ e(x, a) ∧ e(a, y)

)

≤
∧

f∈C(G)

((
ϕ(f)→ (f(y) ∧ f(x))

)
∧
(
ϕ(f)→ (e(x, a) ∧ e(a, y))

))

≤
∧

f∈C(G)

(
ϕ(f)→ (f(y) ∧ f(x) ∧ e(x, a) ∧ e(a, y))

)

≤
∧

f∈C(G)

(ϕ(f)→ f(a)) = S1(a).

From (4)-(6), it follows that S1 ∈ C(G).
(7) Let f ∈ C(G). Then

e′(f, S1) =
∧

x∈G
(f(x)→ S1(x))=

∧

x∈G

(
f(x)→ (

∧

g∈C(G)

(ϕ(g)→ g(x)))
)

=
∧

x∈G

∧

g∈C(G)

(f(x)→ (ϕ(g)→ g(x)))

=
∧

g∈C(G)

∧

x∈G
(ϕ(g)→ (f(x)→ g(x)))

=
∧

g∈C(G)

(
ϕ(g)→ (

∧

x∈G
(f(x)→ g(x)))

)
=
∧

g∈C(G)

(ϕ(g)→ e′(f, g)).

That is, uϕ = S1. Summing up the above results, we get that for each
ϕ ∈ C, tϕ and uϕ exist and belong to C(G).
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Proposition 3.11. Let (G; e, ·, 1) be an L-ordered group, S be a normal
convex L-subgroup of G and let

G/S = {aS|a ∈ G} , ē(aS, bS) =
∨

x∈G
(e(ax, b) ∧ S(x)),

(aS)(bS) = (ab)S, and (aS)−1 = a−1S.

Then (G/S, ē, ·, S) is an L-ordered group.

Proof. Let (G; e, ·, 1) be an L-ordered group and S be a normal L-subgroup
of G. For every a, y ∈ G,

aS(y) = S(a−1y) = S(y−1a) = S(a−1ay−1a)

= S(ay−1) = a−1S(y−1) = a−1S(y).

So aS = a−1S. Let a, a′, y ∈ G. If aS(y) = a′S(y) then S(a−1y) = S(a′−1y).
Also, for every a, b, a′, b′ ∈ G, if aS = a′S and bS = b′S, then

ē(aS, bS) =
∨

x∈G
(e(ax, b) ∧ S(x)) =

∨

x∈G
(e(b−1, x−1a−1) ∧ S(x))

=
∨

x∈G
(e(xb−1, a−1) ∧ S(x)) =

∨

x∈G
(e(b−1bxb−1, a−1) ∧ S(bxb−1))

=
∨

y∈G
(e(b−1y, a−1) ∧ S(y)) = ē(b−1S, a−1S)

= ē(bS, aS)

and

ē(aS, bS) =
∨

x

(e(ax, b) ∧ S(x)) =
∨

x

(e(a′a′−1ax, b) ∧ S(a−1ax))

=
∨

x

(e(a′a′−1ax, b) ∧ S(a′−1ax)), since aS(ax) = a′S(ax)

=
∨

x

(e(a′y, b) ∧ S(y)), let y = a′−1ax

= ē(a′S, bS).

Hence

ē(aS, bS) = ē(a′S, bS) = ē(bS, a′S) = ē(b′S, a′S) = ē(a′S, b′S),
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and so ē is well-defined. Now, we show that (G/S, ē) is an L-ordered set.
(E1): Let a ∈ G. Then ē(aS, aS) =

∨
x(e(ax, a) ∧ S(x)) ≥ e(a1G, a) ∧

S(1G) = 1 ∧ 1 = 1.
(E2): Let a, b, c ∈ G. Then

ē(aS, bS) ∧ ē(bS, cS) =
∨

x∈G
(e(ax, b) ∧ S(x)) ∧

∨

y∈G
(e(by, c) ∧ S(y))

=
∨

x∈G
(e(ax, b) ∧ S(x)) ∧

∨

y∈G
(e(b, cy−1) ∧ S(y))

=
∨

x∈G

∨

y∈G
(e(ax, b) ∧ S(x) ∧ e(b, cy−1) ∧ S(y))

≤
∨

x,y∈G
(e(ax, cy−1) ∧ S(xy)), by Definition 2.5

=
∨

xy∈G
(e(axy, c) ∧ S(xy))

=
∨

z∈G
(e(az, c) ∧ S(z)) = ē(aS, cS).

(E3): Let a, b, c ∈ G such that ē(aS, bS) = ē(bS, aS) = 1. Then
∨

x

(e(ax, b) ∧ S(x)) =
∨

x

(e(bx, a) ∧ S(x)) = 1.

Since S is convex, S(ab−1) ≥ S(s) ∧ S(t) ∧ e(x, ab−1) ∧ e(ab−1, t) for every
s, t ∈ G. Thus,

S(ab−1) ≥
∨

s∈G

∨

t∈G
(S(s) ∧ S(t) ∧ e(s, ab−1) ∧ e(ab−1, t))

=
∨

s∈G
(S(s) ∧ e(s, ab−1)) ∧

∨

t∈G
(S(t) ∧ e(ab−1, t))

=
∨

s∈G
(S(s) ∧ e(a−1s, b−1)) ∧

∨

−t∈G
(S(t−1) ∧ e(b−1t−1, a−1)), by (FOG)

= ē(a−1S, b−1S) ∧ ē(b−1S, a−1S) = ē(aS, bS) ∧ ē(bS, aS) = 1.

So S(ab−1) = 1. Since S is normal, for any x ∈ G,

bS(x) = S(b−1x) = S(ab−1xa−1) ≥ S(ab−1) ∧ S(xa−1)

= 1 ∧ S(xa−1) = S(x−1xa−1x) = S(a−1x) = aS(x).



Convex L-lattice subgroups in L-ordered groups 155

Hence aS = bS. Therefore, (G/S, e′) is an L-ordered set. Finally, since for
every a, b, c ∈ G,

ē((aS).(cS), (bS).(cS)) = ē(acS, bcS) =
∧

x∈G
(e(acx, bc) ∧ S(x))

=
∧

x∈G
(e(acxc−1, b) ∧ S(cxc−1)), by Definition 2.5

=
∧

x′∈G
(e(ax′, b) ∧ S(x′)), (Let x′ = cxc−1)

= ē(aS, bS)

and

ē((cS).(aS), (cS).(bS)) = ē(caS, cbS) =
∧

x∈G
(e(cax, cb) ∧ S(x))

=
∧

x∈G
(e(ax, b) ∧ S(x)) = ē(aS, bS),

we get that (G/S, e′, ., S) is an L-ordered group.

Lemma 3.12. Let (G; e1, ·, 1G) and (H; e2, ·, 1H) be two L-ordered groups,
f : G → H be an L-ordered group homomorphism, and Kerf ∈ LG×G be
defined by

(Kerf)(x, y) = e2(f(x), f(y)) ∧ e2(f(y), f(x)).

If we define Nf ∈ LG, for any x ∈ G, by
Nf (x) = (Kerf)(1G, x) = e2(f(1G), f(x)) ∧ e2(f(x), f(1G))

= e2(1H , f(x)) ∧ e2(f(x), 1H),

then for all x ∈ G,
Nf (x) = e2(1H , f(x) ∧ f(x−1)).

Proof. Let x ∈ G. Then

Nf (x) = e2(1H , f(x)) ∧ e2(f(x), 1H) = e2(1H , f(x)) ∧ e2(1H , f(x)−1)

= e2(1H , f(x)) ∧ e2(1H , f(x−1))

= e2(1H , f(x) ∧ f(x−1)).
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Proposition 3.13. Let (G; e1, ·, 1G) and (H; e2, ·, 1H) be two L-ordered groups
and f : G → H be an L-ordered group homomorphism. Then Nf is a nor-
mal convex L-subgroup of G and there is a one to one and onto L-ordered
homomorphism from G/Nf to Im(f).

Proof. Clearly Nf (1G) = e2(1H , f(1G)) ∧ e2(f(1G), 1H) = 1 ∧ 1 = 1.
Now, let x, y ∈ G. Then, by Proposition 2.4 (i),

Nf (x)∧Nf (y)

= e2(1H , f(x))∧e2(f(x), 1H)∧e2(1H , f(y))∧e2(f(y), 1H)

= e2(1H , f(x))∧e2(f(x)f(y), f(y))∧e2(f(x), f(x)f(y))∧e2(f(y), 1H)

= e2(1H , f(x))∧e2(f(xy), f(y))∧e2(f(x), f(xy))∧e2(f(y), 1H)

≤ e2(1H , f(xy))∧e2(f(xy), 1H), by (E3)
= Nf (xy).

Moreover, for any x ∈ G, by Proposition 2.4 (ii),

Nf (x) = e2(1H , f(x))∧e2(f(x), 1H)=e2((f(x))−1, 1H)∧e2(1H , (f(x))−1)

= e2(f(x−1), 1H)∧e2(1H , f(x−1))

= Nf (x−1).

Hence Nf is an L-subgroup of G. Also Nf is normal, because for every
x, y ∈ G:

Nf (x) = e2(1H , f(x)) ∧ e2(f(x), 1H)

= e2(f(y−1y), f(x)) ∧ e2(f(x), f(y−1y))

= e2(f(y)−1f(y), f(x)) ∧ e2(f(x), f(y)−1f(y))

= e2(1H , f(y)f(x)f(y)−1) ∧ e2(f(y)f(x)f(y)−1, 1H), by (FOG)
= e2(1H , f(yxy−1)) ∧ e2(f(yxy−1), 1H)

= Nf (yxy−1).

Now, we prove that Nf is convex. Let a, x ∈ G. Since f is monotone, we
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get that

Nf (x)∧e1(1G, a)∧e1(a, x)

= e2(1H , f(x))∧e2(f(x), 1H)∧e1(1G, a)∧e1(a, x)

≤ e2(1H , f(x))∧e2(f(x), 1H)∧e2(1H , f(a))∧e2(f(a), f(x))

≤ e2(1H , f(x))∧e2(f(a), 1H)∧e2(1H , f(a)), by (E2)
≤ e2(1H , f(a))∧e2(f(a), 1H)

= Nf (a).

Hence Nf is convex. Define φ : G/Nf → Imf by φ(aNf ) = f(a), for any
a ∈ G. It is obvious that φ is a group homomorphism, one to one and onto.
It is enough to prove that ϕ is monotone. For every a, b ∈ G

ē(aNf , bNf ) =
∨

x

(e1(ax, b) ∧Nf (x))

=
∨

x

(e1(ax, b) ∧ e2(1H , f(x)) ∧ e2(f(x), 1H))

=
∨

x

(e1(x, a−1b) ∧ e2(1H , f(x)) ∧ e2(f(x), 1H)), by Proposition 2.4

≤
∨

x

(e2(f(x), f(a−1b))∧e2(1H , f(x)) ∧ e2(f(x), 1H)), since f is monotone

≤
∨

x

e2(1H , f(a−1b))∧e2(f(x), 1H), by (E2)

≤ e2(1H , f(a−1b)) = e2(1H , f(a−1)f(b)) = e2(1H , f(a)−1f(b))

= e2(f(a), f(b)) = e2(φ(aNf ), φ(bNf ))).

Hence, ē(aNf , bNf ) ≤ e2(φ(aNf ), φ(bNf )) and so φ is monotone. Therefore,
φ is an L-ordered group isomorphism.

Theorem 3.14. Let S be a convex L-lattice subgroups of G. Then G/S is
a distributive weak L-lattice ordered group.

Proof. By Proposition 3.11, G/S is an L-ordered group. Let S be a convex
L-lattice subgroups of G and x, y ∈ G. First we show that xS ∨ yS =
(x ∨ y)S. It is clear that ē(xS, (x ∨ y)S) = ē(yS, (x ∨ y)S) = 1. Now, let
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ē(xS, dS) ∧ ē(yS, dS) = 1. Then

1 =
∨

a∈G
(S(a)∧e(xa, d))∧

∨

b∈G
(S(b)∧e(yb, d))

≤
∨

a∈G

∨

b∈G
(S(a)∧S(b)∧e(xa, d)∧e(yb, d))

=
∨

a∈G

∨

b∈G
(S(a)∧S(b)∧e(x(a∧b), d)∧e(y(a∧b), d)), by Proposition 2.4(iii)

=
∨

a∈G

∨

b∈G
(S(a)∧S(b)∧e(x(a ∧ b)∨y(a∧b), d)), by Proposition 2.2(ii)

=
∨

a∈G

∨

b∈G
(S(a∧b)∧e((x∨y)(a∧b), d)), since S is L-lattice subgroup

≤
∨

c∈G
(S(c)∧e((x∨y)(c), d)) = ē((x∨y)S, dS).

So ē((x ∨ y)S, dS) = 1. Therefore, (x ∨ y)S = xS ∨ yS. By a similar way,
we can show that (x ∧ y)S = xS ∧ yS. So G/S is a weak L-lattice ordered
group. Now, for every x, y, z ∈ G we have

xS ∧ (yS ∨ zS) = xS ∧ (y ∨ z)S = (x ∧ (y ∨ z))S
= ((x ∧ y) ∨ (x ∧ z))S = (xS ∧ yS) ∨ (xS ∧ zS).

Therefore, G/S is a distributive weak L-lattice ordered group.

Theorem 3.15. Let NC(G) be the set of all normal convex L-lattice sub-
groups of G and N = {ϕ ∈ NC(G) | ∨

f∈NC(G)
ϕ(f) = 1}. Consider the

L-ordered relation e′ in Theorem 3.10. Then for each ϕ ∈ N , uϕ and uϕ
exist and belong to NC(G).

Proof. Let ϕ ∈ N . By Theorem 3.10, uϕ,tϕ ∈ C(G). It suffices to show
that uϕ,tϕ are normal. Let x, y ∈ G. Then

S0(xyx−1) =
∨

f∈NC(G)

(ϕ(f) ∧ f(xyx−1)) =
∨

f∈NC(G)

(ϕ(f) ∧ f(y)) = S0(y).

In a similar way, we can show that S1(xyx−1) = S1(y).
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Theorem 3.16. Let C be a normal convex L-lattice subgroups of G and A
be an L-subgroup of G, where C ≤ A. Suppose that A/C ∈ LG/C is defined
by

(A/C)(xC) =
∨

a∈G,aC=xC

A(a).

Then A/C is an L-subgroup of G/C.

Proof. By Proposition 3.11, G/C is an L-ordered group. Since C = 1GC,
(A/C)(1GC) =

∨
a∈G,aC=1GC

A(a) ≥ A(1G) = 1. For any x ∈ G,

(A/C)(xC) =
∨

a∈G,aC=xC

A(a) =
∨

a∈G,a−1C=x−1C

A(a−1)

=
∨

a′∈G,a′C=x−1C

A(a′) = (A/C)(x−1C).

Let x, y ∈ G. Then

(A/C)(xC) ∧ (A/C)(yC) =
∨

a∈G,aC=xC

A(a) ∧
∨

b∈G,bC=yC

A(b)

=
∨

a∈G,aC=xC

∨

b∈G,bC=yC

(A(a) ∧A(b))

≤
∨

a∈G,aC=xC

∨

b∈G,bC=yC

(A(ab)), since A is an L-subgroup of G.

≤
∨

ab∈G,aCbC=xCyC

(A(ab))

=
∨

ab∈G,abC=xyC

(A(ab)) = (A/C)(xyC)

= (A/C)(xCyC).

So A/C is an L-subgroup of G/C.

4 Conclusion

In this paper, the concepts of a convex L-subgroup and a convex L-lattice
subgroup in L-ordered groups, where L is a frame, are defined and some
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properties are investigated. The convex L-subgroup generated by an L-
subgroup is characterized. It is proved that the set of all convex L-lattice
subgroups is an L-complete lattice on height one. Finally, using a normal
convex L-subgroup, an L-ordered group constructed and some related results
are investigated.
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