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Abstract. Let G = (V, E) be a graph. A subset S of V is a dominating set
of G if every vertex in V \S is adjacent to a vertex in S. A dominating set S
is called a secure dominating set if for each v ∈ V \S there exists u ∈ S such
that v is adjacent to u and S1 = (S \{u})∪{v} is a dominating set. If further
the vertex u ∈ S is unique, then S is called a perfect secure dominating set.
The minimum cardinality of a perfect secure dominating set of G is called
the perfect secure domination number of G and is denoted by γps(G). In this
paper we initiate a study of this parameter and present several basic results.

1 Introduction

By a graph G = (V,E), we mean a finite, undirected graph with neither
loops nor multiple edges. For graph theoretic terminology we refer to Char-
trand and Lesniak [4]

The open neighborhood of a vertex v ∈ V is given by N(v) = {u ∈ V :
uv ∈ E} and its closed neighborhood is N [v] = N(v) ∪ {v}. Given S ⊆ V
and v ∈ S, a vertex u ∈ V is an S-private neighbor of v if N [u] ∩ S = {v}.
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The set of all S-private neighbors of v is denoted by PN(v, S). If further
u ∈ V \ S, then u is called an S-external private neighbor (abbreviated S-
epn) of v. The set of all S-epns of v is denoted by EPN(v, S). A set S ⊆ V
is called a dominating set of G if every vertex in V \S is adjacent to a vertex
in S. A dominating set S is called a minimal dominating set of G if S \ {v}
is not a dominating set for all v ∈ S. The minimum cardinality of a minimal
dominating set of G is called the domination number of G and is denoted
by γ(G).

Strategies for protection of a graph G = (V,E) by placing one or more
guards at every vertex of a subset S of V, where a guard at v can protect
any vertex in its closed neighborhood have resulted in the study of several
concepts such as Roman domination, weak Roman domination and secure
domination. The concept of secure domination is motivated by the following
situation. Given a graph G = (V,E) we wish to place one guard at each
vertex of a subset S of V in such a way that S is a dominating set of G
and if a guard at v moves along an edge to protect an unguarded vertex u,
then the new configuration of guards also forms a dominating set. In other
words, for each u ∈ V \ S there exists v ∈ S such that v is adjacent to u
and (S \ {v}) ∪ {u} is a dominating set of G. In this case we say that u is
S-defended by v or v S-defends u. A dominating set S in which every vertex
in V \ S is S-defended by a vertex in S is called a secure dominating set
of G. The secure domination number γs(G) is the minimum cardinality of
a secure dominating set of G. This concept was introduced by Cockayne et
al. [7]. It has been further investigated by several authors [1–3, 5, 6, 9, 10].

Weichsel [11] introduced the concept of perfect domination in graphs.
A dominating set S is called a perfect dominating set of a graph G if every
vertex in V \ S is adjacent to exactly one vertex in S. The minimum car-
dinality of a perfect dominating set of G is called the perfect domination
number of G and is denoted by γp(G).

In this paper we introduce the concept of perfect secure domination
number and initiate a study of this parameter.

We need the following definitions and results.

Definition 1.1. Let G1 and G2 be two graphs with disjoint vertex sets.
Then the graph G obtained by joining every vertex of G1 with every vertex
of G2 is called the join of G1 and G2 and is denoted by G1 +G2.

Definition 1.2. Let G1 and G2 be two graphs with disjoint vertex sets V1
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and V2 respectively. Then the Cartesian product G12G2 is defined to be
the graph with vertex set V1 × V2 and two vertices (u1, v1) and (u2, v2) are
adjacent if u1 = u2 and v1, v2 are adjacent in G2 or v1 = v2 and u1, u2 are
adjacent in G1.

Theorem 1.3. [7] For the path Pn we have γs(Pn) =
⌈

3n
7

⌉
.

Theorem 1.4. [7] For the cycle Cn we have γs(Cn) =
⌈

3n
7

⌉
.

2 Perfect secure domination number of standard graphs

In this section, we present some basic results on perfect secure domina-
tion and determine the perfect secure domination number of some standard
graphs including paths, cycles, complete bipartite graphs, caterpillars and
wheels. We end this section by showing that for two given positive integers
a and b with a ≤ b, there exists a graph G with γp(G) = a and γps(G) = b.

Definition 2.1. Let G = (V,E) be a graph. A subset S of V is called a
perfect secure dominating set (psd-set) of G if for every vertex v ∈ V \ S,
there exists a unique vertex u ∈ S such that u and v are adjacent and
(S \{u})∪{v} is a dominating set of G. The minimum cardinality of a psd-
set of G is called the pefect secure domination number of G and is denoted
by γps(G).

Since V is trivially a psd-set of G, γps(G) is defined for all graphs G. It
follows from the definition that γs(G) ≤ γps(G).

Since γs(G) = 1 if and only if G ∼= Kn, it follows that γps(G) = 1 if and
only if G is complete.

Note 2.2. A perfect secure dominating set need not be a perfect dominating
set and vice versa. For example, for the path P6 = (v1, v2, . . . , v6), S =
{v1, v4, v6} is a perfect secure dominating set but not a perfect dominating
set. Also for the path P5 = (v1, v2, v3, v4, v5), S = {v1, v4} is a perfect
dominating set, but not a perfect secure dominating set.

Note 2.3. If G is a graph of order n which is not complete and ∆ = n− 1,
then every vertex v of degree n−1 belongs to every perfect secure dominating
set S of G. Since G is not complete, |S| ≥ 2. Now, if v /∈ S, then v is defended
by every vertex in S which is a contradiction.
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Note 2.4. Let G be a graph of order n with k support vertices u1,
u2, . . . , uk and a unique leaf wi adjacent to ui, 1 ≤ i ≤ k. Then V (G) \
{w1, w2, . . . , wk} is a perfect secure dominating set of G and hence γps(G) ≤
n− k.

For any graph G of order n, we have 1 ≤ γps(G) ≤ n. Also γps(G) = 1
if and only if G = Kn. The following lemma gives a family of graphs with
γps(G) = n.

Lemma 2.5. Let G be a graph of order n which is not complete. If G has
at least two vertices u and v of degree n− 1, then γps(G) = n.

Proof. Let S be a perfect secure dominating set ofG. It follows from Note 2.3
that both u and v are in S. Now, if |S| ̸= n, then any vertex in V \ S is
defended by both u and v which is a contradiction. Thus |S| = n and
γps(G) = n.

The following examples show that removal of an edge or a vertex may
increase γps arbitrarily.

Example 2.6. For any n ≥ 4, γps(Kn) = 1 and by Lemma 2.5, γps(Kn \
{e}) = n, where e is any edge of Kn.

Example 2.7. Consider the graph G given in Figure 1. Then γps(G) = 2
and S = {x, y} is a perfect secure dominating set of G. Now γps(G \ {v}) =
n+ 2, since V (G) \ {v} is the only perfect secure dominating set of G \ {v}.
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This also shows that the converse of Lemma 2.5 is not true.

We now proceed to determine γps(G) for some standard graphs. If a
vertex v is S-defended by u we say that v is defended by u.

Theorem 2.8. For any path Pn with n ≥ 2, we have γps(Pn) =
⌈

3n
7

⌉
.

Proof. Let Pn = (v1, v2, . . . , vn). Clearly γps(Pn) ≥ γs(Pn) =
⌈

3n
7

⌉
by The-

orem 1.3. If n ≡ x(mod 7), let S = {vm : m − x ≡ 2, 4 or 6(mod 7) and
m ≥ x}. We consider the following cases.

Case 1. n ≡ 0(mod 7).

Let vx /∈ S.
If x ≡ 0(mod 7), then vx can only be defended by vx−1 since vx+1 /∈ S

and vx−2 is still dominated by vx−3.

If x ≡ 1(mod 7), then v1 can only be defended by v2 and for x > 7, vx
can only be defended by vx+1, since vx−1 /∈ S and vx+2 is still dominated
by vx+3.

If x ≡ 3(mod 7), then vx cannot be defended by vx−1, since then vx−2

is not dominated. So vx can only be defended by vx+1 as vx+2 is still
dominated by vx+3.

If x ≡ 5(mod 7), then vx cannot be defended by vx+1, since then vx+2 is
not dominated. So vx can only be defended by vx−1 as vx−2 is still dominated
by vx−3. Thus S is a perfect secure dominating set of Pn of order

⌈
3n
7

⌉
.

Case 2. n ≡ 1(mod 7).

Add to S the vertices v2 and v4 and delete v3. Then v1 is defended only
by v2. Also v3 cannot be defended by v2, since otherwise v1 will not be
dominated. Thus v3 is defended only by v4. Since v8 /∈ S, v6 is defended
only by v5. Similarly, v8 is defended only by v7 and v9 is defended only by
v10. Now by Case 1, each of the vertices in V (Pn)\S is defended by a unique
vertex in S. Thus S is a perfect secure dominating set and |S| =

⌈
3n
7

⌉
.

Case 3. n ≡ 2(mod 7).

Add to S the vertex v1. Since v3 /∈ S, v2 is defended only by v1. Since
v2 /∈ S, v3 is defended only by v4 and v5 is dominated by v6. Further by
Case 1, each of the vertices in V (Pn) \ S is defended by a unique vertex in
S. Thus S is a perfect secure dominating set and |S| =

⌈
3n
7

⌉
.

Case 4. n ≡ 3(mod 7).

Add to S the vertices v1 and v2. Since v4 /∈ S, v3 is defended only by v2.
Since v3 /∈ S, v4 is defended only by v5 and v6 is dominated by v7. Further
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by Case 1, each of the vertices in V (Pn) \ S is defended by a unique vertex
in S. Thus S is a perfect secure dominating set and |S| =

⌈
3n
7

⌉
.

Case 5. n ≡ 4(mod 7).
Add to S the vertices v1 and v3. Since both v4 and v5 are not in S, v2

is defended only by v1. Since v5 /∈ S, v4 is defended only by v3 and since
v4 /∈ S, v5 is defended only by v6. Further by Case 1, each of the vertices in
V (Pn) \ S is defended by a unique vertex in S. Thus S is a perfect secure
dominating set and |S| =

⌈
3n
7

⌉
.

Case 6. n ≡ 5(mod 7).
Add to S the vertices v2, v3 and v4. Then v1 is defended only by v2, v5

is defended only by v4, and v6 is defended only by v7. Further by Case 1,
each of the vertices in V (Pn) \ S is defended by a unique vertex in S. Thus
S is a perfect secure dominating set and |S| =

⌈
3n
7

⌉
.

Case 7. n ≡ 6(mod 7).
Add to S the vertices v1, v4 and v5. Then v2 is defended only by v1, v3 is

defended only by v4, v6 is defended only by v5 and v7 is defended only by v8.
Further by Case 1, each of the vertices in V (Pn)\S is defended by a unique
vertex in S. Thus S is a perfect secure dominating set and |S| =

⌈
3n
7

⌉
.

Theorem 2.9. For any cycle Cn with n ≥ 4,

γps(Cn) =





⌈
3n
7

⌉
+ 1 if n ≡ 2(mod 7)

⌈
3n
7

⌉
otherwise.

Proof. Let Cn = (v1, v2, . . . , vn, v1). Since γps(Cn) ≥ γs(Cn), it follows from
Theorem 1.4 that γps(Cn) ≥

⌈
3n
7

⌉
. Now let S be the same set defined in

Theorem 2.8 for each of the respective cases. If n ≡ 0, 1 or 5(mod 7),
then neither v1 nor vn are in S. Then v1 is defended only by v2 and vn is
defended only by vn−1. Since S is a perfect secure dominating set of Pn, all
the remaining vertices are uniquely defended. If n ≡ 4 or 6(mod 7), then
v1 ∈ S and S1 = (S \ {v1}) ∪ {v2} is a perfect secure dominating set of Cn.
If n ≡ 3(mod 7), then vn−1 ∈ S and S1 = (S \ {vn−1})∪ {vn−2} is a perfect
secure dominating set of Cn. In all these cases |S| = |S1| =

⌈
3n
7

⌉
and hence

γps(Cn) ≤
⌈

3n
7

⌉
. Thus γps(Cn) =

⌈
3n
7

⌉
.

Now, let n ≡ 2(mod 7). Let n = 7k+2, so that
⌈

3n
7

⌉
+1 = 3k+2. Then(

k−2∪
i=0
{v7i+2, v7i+4, v7i+6}

)
∪ {v7k−5, v7k−3, v7k−2, v7k−1, v7k+1} is a perfect
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secure dominating set of Cn of cardinality 3k+2. Hence γps(Cn) ≤ 3k+2 =⌈
3n
7

⌉
+ 1.

Now let S be a γps-set of Cn, S be independent, and v1 ∈ S. Then
exactly one of v3, v4 is in S. Suppose v4 ∈ S. Since v3 is defended by v4,
it follows that v6 ∈ S and v5 is defended by v6. Hence v8 ∈ S. Now if
v10 ∈ S, then v7 is defended by v6 and v8, which is a contradiction. Thus
v10 /∈ S. Thus by the previous argument v11, v13, and v15 are in S. Continuing
this process v7i+4, v7i+6, and v7i+8 are in S where 1 ≤ i ≤ k − 1. Thus
{v7k−3, v7k−1, v7k+1, v1} ⊆ S and v7k is defended by both v7k−1 and v7k+1

which is a contradiction. Hence S is not independent and we may assume
that v1, v2 ∈ S. Then T = S\{v1, v2} is a perfect secure dominating set of the

path Pn−4 = (v4, v5, v6, . . . , vn−1), and so |T | ≥
⌈

3(n−4)
7

⌉
=

⌈
21k−6

7

⌉
= 3k.

Thus γps(Cn) = |S| ≥ 3k + 2. Hence γps(Cn) =
⌈

3n
7

⌉
+ 1.

Theorem 2.10. For the complete bipartite graph G = Kr,s with r ≤ s we
have

γps(G) =





s if r = 1
2 if r = s = 2
r + s otherwise.

Proof. Let X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys} be the bipartition
of G.

Let S =





(Y \ {ys}) ∪ {x1} if r = 1
{x1, y1} if r = s = 2
V (G) otherwise.

Clearly S is a perfect secure dominating set of G and hence γps(G) ≤ |S|.
Now, let S be any γps-set of G.

If r = 1, then |S| ≥ s. Now, suppose r, s ≥ 2. Since S is a perfect
dominating set of G, |S ∩ X| = 1 or |X| and |S ∩ Y | = 1 or |Y |. Also if
s ≥ 3, then |S ∩X| = |X| and |S ∩ Y | = |Y |. Hence it follows that

γps(G) ≥





s if r = 1
2 if r = s = 2
r + s otherwise.

This completes the proof.
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Theorem 2.11. Let G = Kn1,n2,...,nr , where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr and

r ≥ 3. Let n =
r∑
i=1

ni. Then

γps(G) =





1 if ni = 1 for all i
2 if n1 = 1 and n2 = 2
n otherwise.

Proof. Let V1, V2, . . . , Vr be the partite sets of G with |Vi| = ni. If ni = 1
for all i, then G = Kr and γps(G) = 1. If n1 = 1 and n2 = 2, then G is not
complete and hence γps(G) > 1. Further S = {v1, v2}, where V1 = {v1} and
v2 ∈ V2 is a perfect secure dominating set of G and hence γps(G) = 2.

Now suppose (n1, n2) ̸= (1, 2) and ni ≥ 2 for at least one i. Let S be a
γps-set of G and suppose S ̸= V. If S ⊆ Vi for some i, then S = Vi and every
vertex of V \S is defended by every vertex of S. Hence S∩Vi ̸= ∅ for at least
two values of i, say i1 and i2. Let x ∈ S ∩ Vi1 and y ∈ S ∩ Vi2 . Then any
vertex of V \ (S ∪ Vi1 ∪ Vi2) is defended by both x and y. Hence it follows
that S = V and γps(G) = n.

We now proceed to determine the value of γps for caterpillars. Two
support vertices s1, s2 of a caterpillar T are said to be consecutive if all the
internal vertices of the unique s1-s2 path are of degree 2.

Theorem 2.12. Let T be a caterpillar with k support vertices s1, s2, . . . , sk
such that si and si+1 are consecutive and d(si, si+1) = ai. Then γps(T ) =
l +

∑
i
γps(Pai−1), where the summation is taken over all i with ai > 1 and

l is the number of leaves of T.

Proof. Let S = {s1, s2, . . . , sk} and let L denote the set of all leaves of T.
Choose one leaf vi adjacent to si, 1 ≤ i ≤ k. Let Pi be the si-si+1 path in T,
where ai > 1. Then P ′i = Pi \{si, si+1} is a subpath of Pi with ai−1 vertices.
Let Xi be a γps-set of P ′i . Then

D = S ∪ (L \ {v1, v2, . . . , vk})(
∪

i

Xi)

where the union is taken over all i with ai > 2 is a perfect secure dominating
set of T. Hence γps(T ) ≤ |D| = l+

∑
i
γps(Pai−1). Now, let D1 be any γps-set

of T. Obviously D1 ⊇ D and hence the reverse inequality follows.
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We now proceed to determine γps for wheels. We observe that γps(W4) =
1 and γps(W5) = 5.

Theorem 2.13. Let n ≥ 6. Then

γps(Wn) =





k if n = 3k
k + 1 if n = 3k + 1
k + 2 if n = 3k + 2.

Proof. Let Wn = Cn−1 + {vn} where Cn−1 = (v1, v2, . . . , vn−1, v1). Let

S =




{v1} ∪ {v3i : 2 ≤ i ≤ k} if n = 3k
{v1, v6} ∪ {v3i+1 : 2 ≤ i ≤ k} if n = 3k + 1
{v1, v6, vn} ∪ {v3i+1 : 2 ≤ i ≤ k} if n = 3k + 2.

It can be easily verified that S is a minimal perfect secure dominating set
of Wn and hence

γps(Wn) ≤ |S| =





k if n = 3k
k + 1 if n = 3k + 1
k + 2 if n = 3k + 2.

Now to prove the reverse inequality we first assume that n = 3k. Let
S be a minimal perfect secure dominating set of Wn. If vn /∈ S, then any
vertex of V (Cn−1) ∩ S defends vn which is a contradiction. Hence vn ∈ S.
Suppose |S| < k. Then |S ∩ V (Cn−1)| ≤ k − 2. Let l1, l2, . . . , ls be the
lengths of the segments of Cn−1 determined by the vertices of S \ {vn}
where s = |S| − 1. Since l1 + l2 + · · ·+ ls = 3k − 1 and s < k − 1, it follows
that li ≥ 4 for at least one i. Now if each li = 4 then the middle vertex
of each of the segment is not defended by any vertex of S. Hence it follows
that li ≥ 5 for at least one i, say i = 1. Also if l1 ≥ 6 then S is not a secure
dominating set. Hence l1 = 5. Now consider the path P of Cn−1 obtained
by removing all the six vertices of the segment of length l1. Then S ∩ V (P )

is a perfect secure dominating set of P and hence |S ∩ V (P )| ≥
⌈

3(3k−7)
7

⌉
.

Thus k − 4 ≥
⌈

9k
7 − 3

⌉
=

⌈
9k
7

⌉
− 3, and so k ≥

⌈
9k
7

⌉
+ 1, a contradiction.

Hence |S| ≥ k. The proof is similar if n = 3k + 1 or n = 3k + 2.

Theorem 2.14. Given two positive integers a and b with a ≤ b, there exists
a graph G with γs(G) = a and γps(G) = b.
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Proof. Case 1. a = b.
Choose n such that

⌈
3n
7

⌉
= a. Then it follows from Theorems 1.3 and

2.8 that γps(Pn) = γs(Pn) = a.
Case 2. a+ 1 = b.

Let G be the graph obtained from the cycle C7 = (v1, v2, v3, v4, v5, v6,
v7, v1) by adding a new vertex v8 and joining it to vi, where 2 ≤ i ≤ 7, joining
v1 to vi where i ̸= 4 and attaching a − 2 pendant vertices u1, u2, . . . , ua−2

adjacent to v8. Then S1 = {v1, v8, u1, u2, . . . , ua−2} is a γs-set of G and
S2 = {v1, v3, v4, u1, u2, . . . , ua−2} is γps-set of G.

Thus γs(G) = a and γps(G) = a+ 1 = b.
Case 3. a+ 2 = b.

If a = 2, then γs(K4 − {e}) = a and γps(K4 − {e}) = 4 = b. If a ≥ 3,
let G be the graph obtained from K2,a with bipartition V1 = {v1, v2} and
V2 = {u1, u2, . . . , ua} by attaching a pendant vertex wi adjacent to ui, where
1 ≤ i ≤ a− 2.

Then S1 = {v1, v2, u1, u2, . . . , ua−2} is a γs-set of G and S2 = {v1, v2,
u1, u2, . . . , ua} is a γps-set of G.

Thus γs(G) = a and γps(G) = a+ 2 = b.
Case 4. b ≥ a+ 3.

Let G be the graph obtained from K2,b−a with bipartition V1 = {v1, v2}
and V2 = {u1, u2, . . . , ub−a} and a − 2 copies of K3 and joining one vertex
wi of each copy of K3 to vi. Then S1 = {v1, v2, w1, w2, . . . , wa−2} is a γs-set
of G and S2 = S1 ∪ V2 is a γps-set of G.

Thus γs(G) = a and γps(G) = b.

3 Perfect secure domination and graph operations

In this section we determine γps(G+H) and γps(G2H) for any two graphs
G and H.

Theorem 3.1. Let G and H be two connected graphs. Then
γps(G2H) ≤ min{γps(G)|V (H)|, γps(H)|V (G)|}.

Proof. Let S be a perfect secure dominating set of G. We claim that S1 =
S×V (H) is a perfect secure dominating set of G2H. Let (ui, vj) ∈ (V (G)×
V (H)) \ S1. Then ui /∈ S. Let ui be S-defended by the vertex ur in S.
Then the vertex (ui, vj) is S1-defended by (ur, vj). Further any vertex in
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S1 which S1-defends (ui, vj) is of the form (uk, vj) where uk ∈ S and uk S-
defends ui. Hence (ui, vj) is S1-defended by exactly one vertex in S1, so that
S1 is a perfect secure dominating set of G2H. Thus γps(G2H) ≤ |S1| ≤
γps(G)|V (H)|. Similarly γps(G2H) ≤ γps(H)|V (G)| and hence the result
follows.

The following theorem shows that the bound in Theorem 3.1 is sharp.

Theorem 3.2. Let H be any graph of order at most n and G = Kn2H.
Then γps(G) = |V (H)|.

Proof. Let V (Kn) = {v1, v2, . . . , vn} and V (H) = {w1, w2, . . . , wr}. Since
γps(Kn) = 1 and |V (H)| ≤ n, it follows from Theorem 3.1 that γps(G) ≤
min{|V (H)|, γps(H)n} = |V (H)|. Now, let S be a γps-set of G. Suppose
|S| < |V (H)| ≤ n. Then there exists vi ∈ V (Kn) such that S∩ ({vi}×H) =
∅. Now the only possible neighbors of any vertex (vi, wj) outside {vi} ×H
is of the form (vi, wk) and hence no two vertices in {vi} × H are adjacent
to the same vertex in V (G) \ ({vi} × H). Since |S| < n, it follows that at
least one vertex in {vi} ×H is not dominated by a vertex in S, which is a
contradiction. Thus |S| ≥ |V (H)| and γps(G) = |V (H)|.

We now proceed to determine γps(G1 +G2). For this purpose we intro-
duce a property, which we denote by J. Any maximal complete subgraph of
G is called a clique in G.

Property J . Let G be a graph of order n. A vertex u ∈ V (G) is said to
have property J if deg u < n− 1 and V \N [u] is a clique in G.

Theorem 3.3. Let G and H be two graphs of order n1 and n2 respectively
with n1, n2 ≥ 2. Then γps(G+H) = 1 or 2 or n1 + n2. Further

(i) γps(G+H) = 1 if and only if G and H are complete.

(ii) γps(G+H) = 2 if and only if both G and H have a vertex that satisfy
property J.

(iii) If γps(G+H) ̸= 1 or 2, then γps(G+H) = n1 + n2.

Proof. Since γps(G) = 1 if and only if G is complete, (i) follows.

Now, let γps(G + H) = 2 and let S = {u, v} be a perfect secure domi-
nating set of G+H. If both u, v ∈ V (G), then every vertex of H is defended
by both u and v which is a contradiction. Similarly both u and v cannot
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be in V (H). Hence we assume that u ∈ V (G) and v ∈ V (H). We claim
that u and v satisfy the property J. If degG(u) = n1 − 1, then any vertex
of V (G) \ {u} is defended by both u and v, which is a contradiction. Hence
degG(u) < n1− 1 and V (G) \NG[u] ̸= ∅. Now, suppose there exist two non-
adjacent vertices x and y in V (G) \NG[u]. Then x and y are defended by v.
However {u, x} does not dominate y and {u, y} does not dominate x, which
is a contradiction. Thus ⟨V (G) \NG[u]⟩ is complete. Now, if V (G) \NG[u]
is not a clique in G, then there exists a vertex w in N(u) such that w is
adjacent to every vertex in V (G) \NG[u]. Clearly w is defended by both u
and v, a contradiction. Thus V (G) \NG[u] is a clique in G and u satisfies
property J in G. Similarly v satisfies property J in H.

Conversely, suppose there exist vertices u in G and v in H that satisfy
the property J. Let S = {u, v}. Then any vertex in V (G)\NG[u] is uniquely
defended by v. Further, since V (G) \ NG[u] is a clique, any vertex w ∈
N(u) is non-adjacent to at least one vertex in V (G) \ NG[u] and hence w
is uniquely defended by v. Similarly any vertex in V (H) \ {v} is uniquely
defended by u and hence S is a perfect secure dominating set of G+H. Thus
γps(G+H) = 2. It now remains to show that if γps(G+H) ̸= 1 or 2, then
γps(G+H) = n1 +n2. Suppose there exists a perfect secure dominating set
S of G+H with |S| < n1 + n2. Since |S| ≥ 3, we may assume without loss
of generality that |S ∩ V (G)| ≥ 2. Let v1, v2 ∈ V (G)∩S. If V (H) ⊆ S, then
any vertex in V (G) \ S is defended by every vertex of H, a contradiction.
Hence there exists u ∈ V (H)\S and now u is defended by both v1, v2 which
is again a contradiction. Hence γps(G1 +G2) = n1 + n2.

Corollary 3.4. If r ≥ 2 and s ≥ 3, then γps(Kr,s) = r + s.

Proof. Since Kr,s = Kr + Ks, no vertex of Kr satisfies property J and
Kr +Ks is not complete, it follows that γps(Kr,s) = r + s.

This gives an alternate proof of Theorem 2.10.

Property P . Let G = (V,E) be a graph. A subset S of V is said to satisfy
property P if V (G) \ NG[S] is a clique in G and (NG(a) ∩ NG(b)) \ S = ∅
for all a, b ∈ S.

Note that if |S| = 1, then the property P is the same as the property J.

Theorem 3.5. Let G be a graph of order n and let H = G + K1 where
V (K1) = {v1}. If γps(H) = 1 or n + 1, then for any subset S ⊆ V (G), the
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set S1 = S ∪ {v1} is a perfect secure dominating set of H if and only if S
satisfies property P and (NG(a) ∩NG(b)) \ (S ∪ {v1}) = ∅ for all a, b ∈ S.

Proof. Let S1 = S ∪ {v1} be a perfect secure dominating set of H. Suppose
NG[S] = V (G). Let w ∈ V (G)\S and let v be a vertex in S that is adjacent
to w. Then w is S-defended by both v and v1 which is a contradiction. Hence
V (G) \NG[S] ̸= ∅. If there exist two vertices a, b in V (G) \NG[S] which are
nonadjacent, then both a and b are not S1-defended. Hence ⟨V (G)\NG[S]⟩
is complete. Now if V (G) \NG[S] is not a clique in G, then there exists a
vertex a ∈ N(S) such that a is adjacent to every vertex in V (G) \NG[S]. If
b is any vertex in S which is adjacent to a, then a is S1-defended by both b
and v1, which is a contradiction. Hence V (G) \NG[S] is a clique in G. Now
if there exist two vertices a, b in S such that X = (NG(a) ∩NG(b)) \ S ̸= ∅,
then any vertex of X is S1-defended by both a and b. Hence X = ∅ and S
satisfies the property P. Clearly (NG(a) ∩NG(b)) \ (S ∪ {v1}) = ∅.

Conversely, let S be a subset of V (G) such that S satisfies the property
P and (NG(a) ∩NG(b)) \ (S ∪ {v1}) = ∅. Let S1 = S ∪ {v1} and let x /∈ S1.
If x ∈ N(S), choose w ∈ S such that w is adjacent to x. Since v1 ∈ S1,
it follows that x is S1-defended by w. Also since S satisfies the property
P, NG(w) ∩ NG(u) \ S = ∅ for all u ∈ S \ {w}. Hence x /∈ NG(u) and x
is S1-defended only by w. Now, suppose x /∈ N(S). Then x is S1-defended
only by v1. Thus S1 is a perfect secure dominating set of H.

4 Changing and unchanging of perfect secure domination

In this section we examine the effects on γps(G) when a vertex or an edge is
deleted from G. A detailed study of such results for the domination number
is given in Chapter 5 of Haynes et al. [8].

For the complete graph Kn with n ≥ 3, we have γps(Kn) = γps(Kn \
{v}) = 1. Now let G be the graph obtained from the complete graph Kn

with n ≥ 3 by adding a vertex x and joining x to two vertices v1 and v2
in Kn. It follows from Lemma 2.5 that γps(G) = n + 1. Further {v2, x}
is a perfect secure dominating set of G \ {v1} and G \ {v1v2} and hence
γps(G\{v1}) = γps(G\{v1v2}) = 2. This example also shows that addition of
an edge may result in increase of γps and the increase can be made arbitrarily
large. Also if G is the graph obtained from the complete bipartite graph
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K2,n by adding a vertex x and joining x to a vertex v in the partite set V1

with |V1| = 2, then γps(G) = 2 and γps(G \ {x}) = n+ 2.

We observe that γps(Kn) = 1 and γps(Kn \ {e}) = n for all n ≥ 4. For
the cycle C7k we have γps(C7k) = γps(C7k \ {e}) = 3k, by Theorems 2.8 and
2.9.

Thus γps may increase or decrease arbitrarily or remain the same when
a vertex or an edge is deleted. Hence as in the case of domination each of
the sets V (G) and E(G) can be partitioned into three subsets as follows.

V 0 = {v ∈ V (G) : γps(G \ {v}) = γps(G)},
V + = {v ∈ V (G) : γps(G \ {v}) > γps(G)},
V − = {v ∈ V (G) : γps(G \ {v}) < γps(G)},
E0 = {e ∈ E(G) : γps(G \ {e}) = γps(G)},
E+ = {e ∈ E(G) : γps(G \ {e}) > γps(G)} and

E− = {e ∈ E(G) : γps(G \ {e}) < γps(G)}.
We observe that some of these sets may be empty. For example for any

graph G with γps(G) = n, we have V (G) = V −, so that V + = V 0 = ∅. For
Kn with n ≥ 4, we have V (Kn) = V 0 and E(Kn) = E+.

Several properties of vertices in V 0, V +, V − and edges in E0, E+, E−

with respect to the domination number γ are given in Chapter 5 of Haynes
et al. [8]. Similar investigation can be taken up for γps and results in this
direction will be reported in a subsequent paper.

5 Conclusion and scope

We have given several families of graphs G for which γps(G) = |V (G)| = n.
Hence the following problems arise naturally.

Problem 1. Characterize graphs G of order n for which γps(G) = n.

Since γs(G) ≤ γps(G) for any graph G, we have the following problem.

Problem 2. Characterize graphs G for which γps(G) = γs(G).

Further the concepts related to changing and unchanging of γps(G) for
vertex or edge removal can be further investigated.
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