# Categories and General Algebraic Structures with Applications Volume 8, Number 1, January 2018, 35-49.



## On (po-)torsion free and principally weakly (po-)flat S-posets

Roghaieh Khosravi\* and Xingliang Liang

**Abstract.** In this paper, we first consider (po-)torsion free and principally weakly (po-)flat S-posets, specifically we discuss when (po-)torsion freeness implies principal weak (po-)flatness. Furthermore, we give a counterexample to show that Theorem 3.22 of Shi is incorrect. Thereby we present a correct version of this theorem. Finally, we characterize pomonoids over which all cyclic S-posets are weakly po-flat.

#### 1 Introduction and Preliminaries

A monoid S is called a *pomonoid* if it is also a poset whose partial order is compatible with the binary operation. A right S-poset  $A_S$  is a right S-act  $A_S$  equipped with a partial order  $\leq$  and, in addition,  $s \leq t$  implies  $as \leq at$ , and  $a \leq b$  implies  $as \leq bs$  for all  $s, t \in S$  and  $a, b \in A$ . A sub S-poset of a right S-poset A is a subset of A that is closed under the S-action. Ideals are the same as for acts. Moreover, S-poset morphisms or simply S-poset maps are monotone maps between S-posets which preserve actions. The

Keywords: Torsion free, po-torsion free, principally weakly flat, pomonoid, S-poset. Mathematics Subject Classification [2010]: 06F05, 20M30.

Received: 24 October 2016, Accepted: 25 January 2017

ISSN Print: 2345-5853 Online: 2345-5861

© Shahid Beheshti University

<sup>\*</sup> Corresponding author

class of S-posets and S-poset maps form a category, denoted by S-POS, which comprises the main background of this work. For an account on this category and categorical notions used in this paper, the reader is referred to [2].

Let  $A_S$  be a right S-poset. An S-poset congruence  $\theta$  on  $A_S$  is a right S-act congruence with the property that the S-act  $A/\theta$  can be made into an S-poset in such a way that the natural map  $A \longrightarrow A/\theta$  is an S-poset map. For an S-act congruence  $\theta$  on  $A_S$  we write  $a \leq_{\theta} a'$  if the so-called  $\theta$ -chain

$$a \le a_1 \theta b_1 \le a_2 \theta b_2 \le \ldots \le a_n \theta b_n \le a'$$

from a to a' exists in A, where  $a_i, b_i \in A$ ,  $1 \le i \le n$ . It can be shown that an S-act congruence  $\theta$  on a right S-poset A is an S-poset congruence if and only if  $a\theta a'$  whenever  $a \le_{\theta} a' \le_{\theta} a$ .

Let  $A_S$  be an S-poset and  $H \subseteq A \times A$ . Define a relation  $\alpha(H)$  on A by  $a \leq_{\alpha(H)} b$  if and only if  $a \leq b$  or there exist  $n \geq 1, (c_i, d_i) \in H, s_i \in S, 1 \leq i \leq n$  such that

$$a \le c_1 s_1$$
  $d_1 s_1 \le c_2 s_2$  ...  $d_n s_n \le b$ .

The relation  $\nu(H)$  given by  $a \ \nu(H) \ b$  if and only if  $a \leq_{\alpha(H)} b \leq_{\alpha(H)} a$  is called the S-poset congruence induced by H. The order relation on  $A/\nu(H)$  is given by  $[a]_{\nu(H)} \leq [b]_{\nu(H)}$  if and only if  $a \leq_{\alpha(H)} b$ . Moreover,  $\theta(H) = \nu(H \cup H^{-1})$  for any  $H \subseteq A \times A$  is called the S-poset congruence generated by H. In particular, the S-poset congruence generated by (a,b) is called a monocyclic S-poset congruence and is denoted by  $\theta(a,b)$ . Also, the S-poset congruence induced by (a,b) is called an induced monocyclic S-poset congruence and is denoted by  $\nu(a,b)$ .

Let A be a right S-poset and B a left S-poset. The order relation on  $A_S \otimes_S B$  can be described as follows:  $a \otimes b \leq a' \otimes b'$  holds in  $A_S \otimes_S B$  if and only if there exist  $s_1, \ldots, s_n, t_1, \ldots, t_n \in S, a_1, \ldots, a_n \in A_S, b_2, \ldots, b_n \in SB$  such that

Specifically, when B = Sb and b = b', we can replace all  $b_i$  by b in the above scheme. Moreover,  $a \otimes b = a' \otimes b'$  if and only if  $a \otimes b \leq a' \otimes b'$  and

 $a' \otimes b' \leq a \otimes b$ . A right S-poset  $A_S$  is weakly po-flat if  $as \leq a't$  implies that  $a \otimes s \leq a' \otimes t$  in  $A_S \otimes_S (Ss \cup St)$  for  $a, a' \in A_S, s, t \in S$ . A right S-poset  $A_S$  is principally weakly po-flat if  $as \leq a's$  implies  $a \otimes s \leq a' \otimes s$  in  $A_S \otimes_S Ss$  for  $a, a' \in A_S$  and  $s \in S$ . Weak flatness and principal weak flatness can be defined similarly, replacing  $\leq$  by equality.

An element c of a pomonoid S is called *right po-cancellable* if, for all  $s, t \in S$ ,  $sc \le tc$  implies  $s \le t$ . A right S-poset  $A_S$  is called *po-torsion* (torsion) free if  $ac \le a'c$  (ac = a'c) implies  $a \le a'$  (a = a') for  $a, a' \in A_S$  and a right po-cancellable (cancellable) element c of S.

Also, recall that if  $A_S$  is a sub S-poset of  $B_S$ , the amalgamated coproduct of two copies of  $B_S$  over a proper sub S-poset  $A_S$ , denoted by  $B_S \sqcup^A B_S$ , is defined by  $B_S \sqcup^A B_S = (\{x,y\} \times (B \setminus A)) \cup (\{z\} \times A)$ , where  $x,y,z \notin B$ , with the right S-action given by

$$(w,u)s = \begin{cases} (w,us), & us \notin A, w \in \{x,y\} \\ (z,us), & us \in A \end{cases}$$

and the order defined as:

$$(w_1, u_1) \le (w_2, u_2) \iff (w_1 = w_2 \text{ and } u_1 \le u_2) \text{ or } (w_1 \ne w_2, u_1 \le u \le u_2 \text{ for some } u \in A).$$

In particular, for a proper right ideal I of a pomonoid S, we denote the amalgamated coproduct of two copies of S over I by A(I).

The flatness properties of S-posets, specially (po-)torsion freeness and principal weak (po-)flatness, have been studied in [1], [3], [11], [12]. In [1] and [10], (po-)torsion free and principally weakly (po-)flat Rees factor S-posets were discussed. In [8] the authors characterized pomonoids over which all S-posets are (po-)torsion free or principally weakly (po-)flat. In [9], the flatness properties of A(I) were investigated.

In this paper, we will continue the study of (po-)torsion freeness and principal weak (po-)flatness of S-posets. First our attention is restricted to (po-)torsion free monocyclic S-posets of the form  $S/\theta(wt,t)$ . Then in Section 2 we present some conditions under which (po-)torsion freeness implies principal weak (po-)flatness. In Section 3, we give a counterexample for Theorem 3.22 of [12], and further we present a correct form of this theorem. Finally, we characterize the pomonoids over which all cyclic S-posets are weakly po-flat.

A subpomonoid K of a pomonoid S is called *convex* if K = [K] where  $[K] = \{x \in S \mid \exists p, q \in K, p \leq x \leq q\}$ . If X is a subset of a poset P,  $(X] := \{p \in P \mid \exists x \in X, p \leq x\}$  is the *down-set of* X;  $[X) := \{p \in P \mid \exists x \in X, x \leq p\}$  is the *up-set of* X. First we recall the (po-)torsion freeness of Rees factor S-posets.

**Proposition 1.1** ([1]). Let  $K_S$  be a convex, proper right ideal of a pomonoid S. Then  $S/K_S$  is torsion free if, and only if, for every  $s \in S$  and every right cancellable  $c \in S$ ,  $sc \in K$  implies  $s \in K$ .

In the following, we present another version of Proposition 6 of [1] using the symbol (K].

**Proposition 1.2.** Suppose  $K_S$  is a proper, convex right ideal of a pomonoid S. Then  $S/K_S$  is po-torsion free if, and only if, for every  $s \in S$  and every right po-cancellable element  $c \in S$ ,  $sc \in (K]$  implies  $s \in (K]$  and  $sc \in [K]$  implies  $s \in (K]$ .

Similar to the case of acts, an element t of a pomonoid S is called w-regular for  $w \in S$  if  $wt \neq t$  and for any right cancellable element  $c \in S$  and any  $u \in S$ ,  $uc \in tS$  implies  $u\theta(wt,t)wu$ . The following lemma is easily proved.

**Lemma 1.3.** Let t, w be elements of a pomonoid  $S, wt \neq t$  and  $\rho = \theta(wt, t)$ . If  $S/\rho$  is torsion free, then t is w-regular.

**Definition 1.4.** Let t, w be elements of a pomonoid  $S, wt \neq t$  and  $\rho = \theta(wt, t)$ . We call the element t ordered w-regular if for any right po-cancellable element c and any  $u \in S$ ,  $uc \in (tS]$  implies  $u \leq_{\rho} wu$ , and  $uc \in [tS)$  implies  $wu \leq_{\rho} u$ .

**Lemma 1.5.** Let t, w be elements of a pomonoid S,  $wt \neq t$  and  $\rho = \theta(wt, t)$ . If t is ordered w-regular, then  $S/\rho$  is po-torsion free.

Proof. Let c be a right po-cancellable element of S and  $xc \leq_{\rho} yc$  for  $x, y \in S$ . By Proposition 1.4 of [3], there exist n, m > 0 such that  $w^n xc \leq w^m yc$ ,  $w^i xc \in (tS]$ , and  $w^j yc \in [tS)$  for each  $0 \leq i < n$  and  $0 \leq j < m$ . Clearly,  $w^n x \leq w^m y$ . Moreover, since t is ordered w-regular,  $w^i xc \in (tS]$  implies  $w^i x \leq_{\rho} w^{i+1} x$  for  $0 \leq i < n$ , and  $w^j y c \in [tS)$  implies  $w^{j+1} y \leq_{\rho} w^j y$  for  $0 \leq j < m$ . Therefore,

$$x \leq_{\rho} wx \leq_{\rho} w^2x \leq_{\rho} \ldots \leq_{\rho} w^nx \leq_{\rho} w^my \leq_{\rho} w^{m-1}y \leq_{\rho} \ldots \leq_{\rho} y,$$
 and the proof is complete.  $\Box$ 

### 2 When (po-)torsion free S-posets are principally weakly (po-)flat

In this section, we first characterize pomonoids S over which all (po-)torsion free right S-posets are principally weakly (po-)flat. Then we give some conditions under which all (po-)torsion free right Rees factor S-posets are principally weakly (po-)flat.

First see the following lemma.

**Lemma 2.1** ([9]). Let I be a right ideal of a pomonoid S. Then A(I) is torsion free if and only if for each right cancellable element  $c \in S$  and  $s \in S$ ,  $sc \in I$  implies that  $s \in I$ .

In view of the previous lemma we have the following.

**Corollary 2.2.** Let  $I = \{s \in S | s \text{ is not right cancellable}\}$ . Then A(I) is torsion free.

**Corollary 2.3.** If A(I) is torsion free for a proper right ideal I of S, then  $I \subseteq \{s \in S | s \text{ is not right cancellable}\}.$ 

In [6], Laan introduced the notion of a left almost regular monoid, and proved that all torsion free right S-acts are principally weakly flat if and only if S is left almost regular. Now, we shall prove an analogue of this result for S-posets.

**Definition 2.4.** An element s of a pomonoid S is called *left almost regular* if there exist right cancellable elements  $c_i$  and elements  $s_i, r_i, r \in S, 1 \le i \le n$ , such that

$$s_1c_1 = sr_1$$
  
 $s_2c_2 = s_1r_2$   
 $\vdots$   
 $s_nc_n = s_{n-1}r_n$   
 $s = s_nrs$ .

A pomonoid S is left almost regular if all its elements are left almost regular.

**Theorem 2.5.** For any pomonoid S, the following statements are equivalent:

- (i) all torsion free right S-posets are principally weakly flat;
- (ii) all finitely generated torsion free right S-posets are principally weakly flat;
  - (iii) S is left almost regular.

*Proof.* (i) $\Longrightarrow$  (ii): It is obvious.

(ii)  $\Longrightarrow$  (iii): Let  $s \in S$ . Take I to be the set of all  $t \in S$  with

$$s_1c_1 = sr_1$$

$$s_2c_2 = s_1r_2$$

$$\vdots$$

$$tc_n = s_{n-1}r_n.$$
(1)

Since  $s \in I$ ,  $I \neq \emptyset$ . If  $t \in I$  and  $r \in S$ , then we could add the row  $(tr) \cdot 1 = t \cdot r$  to the above scheme, which follows that  $tr \in I$ , and so I is a right ideal of S. Next let us show that A(I) is torsion free. Using Lemma 2.1, it suffices to show that if  $s'c \in I$  for  $s' \in S$  and a right cancellable element  $c \in S$ , then  $s' \in I$ . Let  $s'c = t \in I$ . Then the scheme (1) holds. Now, by adding the row  $s'c = t \cdot 1$  to the scheme (1), we get  $s' \in I$ , so A(I) is torsion free. By (ii), A(I) is principally weakly flat. Then for  $s \in I$ , by Lemma 2.2 of [8], there exists  $j \in I$  such that s = js. Therefore,

$$\begin{array}{rcl} s_1c_1 & = & sr_1 \\ s_2c_2 & = & s_1r_2 \\ & \vdots \\ jc_m & = & s_{m-1}r_m \\ s & = & j \cdot 1 \cdot s, \end{array}$$

and so S is left almost regular, as required.

(iii)
$$\Longrightarrow$$
 (i): The proof is similar to that of Theorem 4.6.5 of [4].

Regularly right almost regular pomonoids were introduced in [13] where the authors proved that these are precisely pomonoids over which all regularly divisible right S-posets are regularly principally weakly injective. The definition of a regularly left almost regular pomonoid is a dual form of the definition of a regularly right almost regular pomonoid, as follows.

**Definition 2.6.** An element s of a pomonoid S is called regularly left almost regular if there exist  $s_i, r_i, s'_i, r \in S$  and right po-cancellable elements  $c_i, 1 \le i \le n$ , such that

A pomonoid S is regularly left almost regular if all its elements are regularly left almost regular.

Here, we consider when all po-torsion free right S-posets are principally weakly po-flat. Notice that the notation D(S) is applied for S-poset  $S \times S$ .

**Theorem 2.7.** The following are equivalent for a pomonoid S:

- (i) all po-torsion free right S-posets are principally weakly po-flat;
- (ii) all finitely generated po-torsion free right S-posets are principally weakly po-flat;
  - (iii) S is regularly left almost regular.

*Proof.* (i) $\Longrightarrow$  (ii): It is clear.

(ii)  $\Longrightarrow$  (iii): Let  $s \in S$ , and I be the set of all  $(s_n, s'_n) \in D(S)$  with

Since  $(s,s) \in I$ ,  $I \neq \emptyset$ . If  $(s_n,s'_n) \in I$  and  $r \in S$ , then the above scheme together with  $(s_nr) \cdot 1 \leq s_n \cdot r$  and  $s'_n \cdot r \leq (s'_nr) \cdot 1$  implies  $(s_n,s'_n)r \in I$ . Thus I is a right sub S-poset of D(S). First, we show that  $B_S = D(S) \sqcup^I D(S)$  is po-torsion free. Suppose that  $(w_1,(s',t'))c \leq (w_2,(s'',t''))c$  for a right pocancellable element  $c \in S$ . If  $w_1 = w_2$ , from the fact that D(S) is po-torsion free we deduce the result. Now, assume that  $w_1 \neq w_2$ . By the order relation of A(I), there exists  $(s_n,s'_n) \in I$  such that  $(s',t')c \leq (s_n,s'_n) \leq (s'',t'')c$ . So

we have

which means that  $(s',t'') \in I$ . Hence the inequalities  $(s',t') \leq (s',t'') \leq (s'',t'')$  imply that  $(w_1,(s',t')) \leq (w_2,(s'',t''))$ , and so  $B_S$  is po-torsion free. By (ii),  $B_S$  is principally weakly po-flat. Then from  $(s,s) \in I$  we see that  $(x,(1,1))s \leq (y,(1,1))s$ . Therefore,  $(x,(1,1)) \otimes s \leq (y,(1,1)) \otimes s$  in  $B_S \otimes_S S_S$ . This implies

. This implies 
$$(x,(1,1)) \leq (w_1,(u_1,v_1))k_1$$
 
$$(w_1,(u_1,v_1))l_1 \leq (w_2,(u_2,v_2))k_2 \qquad k_1s \leq l_1s$$
 
$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$
 
$$(w_n,(u_n,v_n))l_n \leq (y,(1,1)) \qquad k_ns \leq l_ns.$$

One can easily prove that there exists  $j = (s_n, s'_n) \in I$  such that  $(1, 1)s \le js \le (1, 1)s$ . Thus  $s = s_n s$ ,  $s'_n s = s$ , and the result follows.

(iii)  $\Longrightarrow$  (i): Let  $A_S$  be a po-torsion free S-poset, and  $as \leq a's$  for  $a, a' \in A$ ,  $s \in S$ . By (iii), there exist  $s_i, r_i, s'_i, r \in S$  and right po-cancellable elements  $c_i, 1 \leq i \leq n$ , such that

So we have  $as_1c_1 \leq asr_1 \leq a'sr_1 \leq a's'_1c_1$ , and since  $A_S$  is po-torsion free,  $as_1 \leq a's'_1$ . Again, from  $as_2c_2 \leq as_1r_2 \leq a's'_1r_2 \leq a's'_2c_2$  we get that  $as_2 \leq a's'_2$ . Continuing this process, we conclude that  $as_n \leq a's'_n$ . Therefore,

$$a \otimes s = a \otimes s_n s = a s_n \otimes s \le a' s'_n \otimes s = a' \otimes s_n s = a' \otimes s$$

in  $A_S \otimes_S S_s$ , and consequently  $A_S$  is principally weakly po-flat.

In the case of S-acts, torsion free right Rees factor S-acts are principally weakly flat if and only if S is left almost regular. But this is not the case for S-posets. Now, we define the weaker version of regularly left almost regular pomonoids to obtain the minor results on torsion free Rees factor S-posets.

**Definition 2.8.** An element s of a pomonoid S is called *ordered left* (po-)almost regular if there exist right (po-)cancellable elements  $c_i$ ,  $c'_j$  and elements  $s_i$ ,  $r_i$ ,  $s'_j$ ,  $r'_j$ , r,  $r' \in S$ ,  $1 \le i \le n$ ,  $1 \le j \le m$ , such that

A pomonoid S is ordered left (po-) almost regular if all its elements are ordered left (po-) almost regular.

**Proposition 2.9.** If all torsion free Rees factor S-posets are principally weakly flat, then S is ordered left almost regular.

*Proof.* Let  $s \in S$ , and K be the set of all  $t \in S$  with

where  $c_i, c'_j$  are right cancellable elements of S. Since  $s \in K$ ,  $K \neq \emptyset$ . It can be easily checked that K is a convex right ideal of S. Next we show that S/K is torsion free. Suppose that  $s'c \in K$  for  $s' \in S$  and a right cancellable element  $c \in S$ . Put s'c = t for some  $t \in K$ . Then we have the scheme (2) holds. Now, from the scheme (2) and  $s'c \leq t \cdot 1$ ,  $t \cdot 1 \leq s'c$ , it follows that  $s' \in K$ . By Proposition 1.1, S/K is torsion free. By the assumption, S/K is principally weakly flat. Then by Proposition 9 of [1], for  $s \in K$ , there exist  $s', s'' \in K$  such that  $s's \leq s \leq s''s$ . Therefore, from the above scheme for s', s'', we can see that s is ordered left almost regular.

**Proposition 2.10.** If S is ordered left po-almost regular, then all po-torsion free Rees factor S-posets are principally weakly po-flat.

*Proof.* Let S/K be po-torsion free where K is a proper convex right ideal of S, and  $s \in S$ ,  $k \in K$  such that  $s \leq k$ . We shall show that there exists  $l \in K$  such that  $s \leq ls$ . Actually, s is ordered left po-almost regular, and so

where  $c_i, c'_j$  are right po-cancellable elements of S. By Proposition 6 of [1], from  $s_1c_1 \leq sr_1 \leq kr_1$  we have  $s_1 \leq k'$  for some  $k' \in K$ . Then  $s_2c_2 \leq s_1r_2 \leq k'r_2$  implies that  $s_2 \leq k''$  for some  $k'' \in K$ . Continuing in this manner, we eventually reach  $s_mr \leq l \in K$ , and hence  $s \leq ls$ . Similarly, if  $k \leq s$ , one can show that there exists  $l' \in K$  such that  $l's \leq s$ . Therefore, by Proposition 10 of [1] the result follows.

By a similar argument of Proposition 2.9, we get the following corollary.

**Corollary 2.11.** Let S be a pomonoid such that [sS] = (sS] = [sS) for every  $s \in S$ . Then S is ordered left po-almost regular if and only if all po-torsion free Rees factor S-posets are principally weakly po-flat.

### 3 Principally weakly po-flat S-posets

Shi presented in [12, Theorem 3.22] that over a right po-cancellable pomonoid, principal weak po-flatness, weak po-flatness and condition  $(P_w)$  are coincident. But in this proof it is only shown that weak po-flatness coincides with condition  $(P_w)$ . Using this theorem, Liang and Luo in [7, Corollary 2.3] give more equivalent descriptions over a right po-cancellable pomonoid. In this section, we shall provide an example that deny these results, and further give the correct versions of them.

Recall that a pomonoid S is called *left PP*, if the sub S-poset Sx of the left S-poset S is projective for every  $x \in S$ . A pomonoid S is called *left* 

PSF if all principal left ideals of S are strongly flat as a left S-poset (that is, satisfies both conditions (P) and (E)). Clearly, every right po-cancellable pomonoid is left PP, and every left PP pomonoid is left PSF.

Recall also that an S-poset  $A_S$  satisfies condition  $(P_w)$  if, for all  $a, b \in A$  and  $s, t \in S$ ,  $as \leq bt$  implies  $a \leq a'u$ ,  $a'v \leq b$  for some  $a' \in A$ ,  $u, v \in S$  with  $us \leq vt$ . An S-poset  $A_S$  is said to satisfy condition  $(PWP)_w$  if, for all  $a, b \in A_S$  and  $s \in S$ ,  $as \leq bs$  implies  $a \leq a'u$  and  $a'v \leq b$  for some  $a' \in A_S$ ,  $u, v \in S$  with  $us \leq vs$ .

**Theorem 3.1** ([12, Theorem 3.22]). Let S be a right po-cancellable pomonoid and A a right S-poset. Then the following statements are equivalent:

- (i) A satisfies condition  $(P_w)$ ;
- (ii) A is principally weakly po-flat;
- (iii) A is weakly po-flat.

Corollary 3.2 ([7, Corollary 2.3]). Let S be a right po-cancellable pomonoid and A be a right S-poset. Then the following statements are equivalent:

- (i) A satisfies condition  $(P_w)$ ;
- (ii) A satisfies condition  $(WP)_w$ ;
- (iii) A satisfies condition  $(PWP)_w$ ;
- (iv) A is principally weakly po-flat;
- (v) A is weakly po-flat;
- (vi) A is po-torsion free.

To give the example, we first recall the following result from [5].

**Lemma 3.3** ([5]). The diagonal S-poset D(S) is weakly po-flat if and only if it is principally weakly po-flat and  $Ss \cap (St] = \emptyset$  or for each (as, a't) and (bs, b't) in H(s,t) there exists  $(p,q) \in H(s,t)$  such that  $(as, a't), (bs, b't) \in \widehat{S(p,q)}$ , where  $\widehat{S(p,q)} = \{(u,v) \in D(S) | \exists w \in S, u \leq wp, wq \leq v\}$  and  $H(s,t) = \{(as,a't) | as \leq a't\}$  if  $Ss \cap (St] \neq \emptyset$ .

Now we give a counterexample of Theorem 3.1 and Corollary 3.2.

**Example 3.4.** Let S denote the free monoid  $\{a, b\}^*$ . Define the relation  $\leq$  on S by

$$w \le z$$
 if, and only if,  $w = z$  or  $l(w) > l(z)$ ,

where l(w) is the usual length of a word w. It can be checked that  $\leq$  is a compatible order relation on S. First we show that S is a right po-cancellable

pomonoid. Let  $xc \leq yc$  for  $x, y, c \in S$ . If xc = yc, clearly x = y. Otherwise, xc < yc, that is l(xc) > l(yc), which implies that l(x) + l(c) > l(y) + l(c). Then l(x) > l(y) which means x < y.

Next we show that D(S) is principally weakly po-flat, but not weakly poflat. Since S is a right po-cancellable pomonoid, S is a left PSF pomonoid. From Proposition 2.3 of [5] it follows that  $S^n$  is principally weakly po-flat for each  $n \in \mathbb{N}$ . In particular, D(S) is principally weakly po-flat. However, to prove that D(S) is not weakly po-flat we show that D(S) does not satisfy the condition of Proposition 3.3. Clearly,  $Sa \cap (Sb] \neq \emptyset$  and  $(a^2,b),(ba,b) \in H(a,b)$ . On the contrary, let there exist  $(p,q) \in H(a,b)$  such that  $(a^2,b),(ba,b) \in \widehat{S(p,q)}$ . Then  $p=ua,\ q=vb$  and  $p\leq q$  for some  $u,v\in S$ . By the order relation on S, we have l(p)>l(q) and  $u\neq 1$ . Moreover,  $ba\leq wp,\ wq\leq b$  and  $a^2\leq zp,\ zq\leq b$  for some  $w,z\in S$ . If l(ba)>l(wp), then l(ba)=2 implies l(wp)=l(wua)=1 and so u=1, a contradiction. If ba=wp=wua, then  $w=1,\ u=b$ , that is, p=ba. On the other hand, from  $a^2\leq zp,\ zq\leq b$ , by a similar argument, we get  $p=a^2$ , which is a contradiction to p=ba. Therefore, D(S) is not weakly po-flat.

Next we give correct versions of Theorem 3.1 and Corollary 3.2.

**Proposition 3.5.** Let S be a right po-cancellable pomonoid and  $A_S$  be an S-poset. Then the following statements are equivalent:

- (i)  $A_S$  satisfies condition  $(P_w)$ ;
- (ii)  $A_S$  satisfies condition  $(WP)_w$ ;
- (iii)  $A_S$  is weakly po-flat.

*Proof.* (i) $\Longrightarrow$  (ii) and (ii) $\Longrightarrow$  (iii) are obvious.

(iii)  $\Longrightarrow$  (i): Let  $A_S$  be weakly po-flat. If  $as \leq bt$  for  $a, b \in A$ ,  $s, t \in S$ , then by Corollary 3.17 of [12], there exist  $a' \in A$ ,  $x, y \in E(S)$  (where E(S) is the set of all idempotent elements of S) and  $u, v \in S$  such that

$$xs = s$$
,  $yt = t$ ,  $us \le vt$ ,  $ax \le a'u$ ,  $a'v \le by$ .

Since S is right po-cancellable, we have x = y = 1. So  $a \le a'u$ ,  $a'v \le b$  and  $us \le vt$ . Therefore,  $A_S$  satisfies condition  $(P_w)$ .

**Proposition 3.6.** Let S be a right po-cancellable pomonoid and  $A_S$  an S-poset. Then the following statements are equivalent:

- (ii)  $A_S$  satisfies condition  $(PWP)_w$ ;
- (ii)  $A_S$  is principally weakly po-flat;
- (iii)  $A_S$  is po-torsion free.

*Proof.* (i) $\Longrightarrow$  (ii) is clear.

- $(ii) \iff (iii)$  follows by Theorem 3.21 of [12].
- (ii)  $\Longrightarrow$  (i): Let  $A_S$  be principally weakly po-flat. Assume  $a, a' \in A$  and  $s \in S$  are such that  $as \leq a's$ . Since S is also a left PP pomonoid, from Corollary 3.15 of [12], it follows that es = s and  $ae \leq a'e$  for some  $e \in S$ . Since S is right po-cancellable, we have e = 1. Therefore,  $a \leq a \cdot 1$  and  $a \cdot 1 \leq a'$ . This means  $A_S$  satisfies condition  $(PWP)_w$ .

At last, we turn our attention to the case that all cyclic S-posets are weakly po-flat.

**Proposition 3.7.** The following are equivalent for a pomonoid S:

- (i) all cyclic S-posets are weakly po-flat;
- (ii) all induced monocyclic S-posets are weakly po-flat;
- (iii) all induced monocyclic S-posets are principally weakly po-flat, and S satisfies condition (R): for each  $s,t\in S$  there exist  $u,v\in S$  such that  $s\leq_{\nu(s,t)}us\leq vt\leq_{\nu(s,t)}t$ .

*Proof.* (i) $\Longrightarrow$  (ii) is clear.

(ii)  $\Longrightarrow$  (iii): Suppose that  $s, t \in S$  and set  $\sigma = \nu(s, t)$ . Then  $S/\sigma$  is weakly po-flat. Now,  $s \leq_{\sigma} t$ , and by Proposition 3.22 of [11], there exist  $u, v \in S$  such that  $us \leq vt$ ,  $1 \leq_{ker\rho_s \vee \sigma} u$  and  $v \leq_{ker\rho_t \vee \sigma} 1$ . If  $1 \leq_{ker\rho_s \vee \sigma} u$ , then there exist  $k_1, \ldots, k_n, l_1, \ldots, l_n \in S$  such that

$$s \le k_1 s$$
  $l_1 s \le k_2 s$   $\cdots$   $l_n s \le u s$ .  
 $k_1 \le_{\sigma} l_1$   $k_2 \le_{\sigma} l_2$   $\cdots$   $k_n \le_{\sigma} l_n$ 

Therefore,  $s \leq k_1 s \leq_{\sigma} l_1 s \leq k_2 s \leq_{\sigma} \ldots \leq_{\sigma} l_n s \leq u s$ . Indeed,  $s \leq_{\sigma} u s$ . In a similar way, from  $v \leq_{ker\rho_t \vee \sigma} 1$ , we deduce that  $vt \leq_{\sigma} t$ , and so  $s \leq_{\sigma} u s \leq vt \leq_{\sigma} t$ .

(iii)  $\Longrightarrow$  (i): Let  $\rho$  be a right congruence on S, and  $s \leq_{\rho} t$ . Take  $\sigma = \nu(s,t)$ . By the assumption, there exist  $u,v \in S$  such that  $s \leq_{\sigma} us \leq vt \leq_{\sigma} t$ . Since  $S/\sigma$  is principally weakly po-flat, by Proposition 3.20 of [11],  $1 \leq_{ker\rho_s\vee\sigma} u$  and  $v \leq_{ker\rho_t\vee\sigma} 1$ . Now,  $\sigma \leq \rho$  implies that  $1 \leq_{ker\rho_s\vee\rho} u$  and  $v \leq_{ker\rho_t\vee\rho} 1$ . Thus by Proposition 3.22 of [11],  $S/\rho$  is weakly po-flat.  $\square$ 

Corollary 3.8. If  $S/\theta(s, s^2)$  is principally weakly po-flat, then s is an ordered regular element of S (that is,  $ss's \leq s \leq ss''s$  for some  $s', s'' \in S$ ).

*Proof.* Let  $\rho = \theta(s, s^2)$  and suppose  $S/\rho$  is principally weakly po-flat. Then we have  $[s]_{\rho} = [s^2]_{\rho}$ . If  $[s]_{\rho} \leq [s^2]_{\rho}$ , then we have  $[1]_{\rho} \otimes s \leq [1]_{\rho} \otimes s^2$  in  $S/\rho \otimes Ss$ . By Lemma 3.5 of [11], either  $s \leq s^2$ , or there exist  $a_i \in Ss$ ,  $s_i, t_i \in \{s, s^2\}, i = 1, 2, ..., n$ , such that

$$s \le s_1 a_1, \quad t_1 a_1 \le s_2 a_2, \quad \dots, \quad t_n a_n \le s^2.$$

Since  $a_1 \in Ss$ , we have  $s \leq s_1a_1 = ss''s$  for some  $s'' \in S$ . If  $[s^2]_{\rho} \leq [s]_{\rho}$ , then we have  $[1]_{\rho} \otimes s^2 \leq [1]_{\rho} \otimes s$  in  $S/\rho \otimes Ss$ , it follows that  $ss's \leq s$  for some  $s' \in S$ . Therefore, s is ordered regular.

### Acknowledgement

The authors wish to express their appreciation to the anonymous referee for his/her constructive comments improving the paper. They would also like to acknowledge Professor M.M. Ebrahimi for his useful communications.

### References

- [1] Bulman-Fleming, S., Gutermuth, D., Glimour, A., and Kilp, M., Flatness properties of S-posets, Comm. Algebra 34(4) (2006), 1291-1317.
- [2] Bulman-Fleming, S. and Mahmoudi, M., *The category of S-posets*, Semigroup Forum 71(3) (2005), 443-461.
- [3] Ershad, M. and Khosravi, R., On strongly flat and Condition (P) S-posets, Semi-group Forum 82(3) (2011), 530-541.
- [4] Kilp, M., Knauer, U., and Mikhalev, A., "Monoids, Acts and Categories", Walter de Gruyter, 2000.
- [5] Khosravi, R., On direct products of S-posets satisfying flatness properties, Turkish J. Math. 38(1) (2014), 79-86.
- [6] Laan, V., When torsion free acts are principally weakly flat, Semigroup Forum 60(2) (2000), 321-325.
- [7] Liang, X.L. and Luo, Y.F., On Condition (PWP)<sub>w</sub> for S-posets, Turkish J. Math. 39(6) (2015), 795-809.

- [8] Qiao, H.S. and Li, F., When all S-posets are principally weakly flat, Semigroup Forum 75(3) (2007), 536-542.
- [9] Qiao, H.S. and Li, F., The flatness properties of S-poset A(I) and Rees factor S-posets, Semigroup Forum 77(2) (2008), 306-315.
- [10] Qiao, H.S. and Liu, Z.K., On the homological classification of pomonoids by their Rees factor S-posets, Semigroup Forum 79(2) (2009), 385-399.
- [11] Shi, X.P., On flatness properties of cyclic S-posets, Semigroup Forum 77(2) (2008), 248-266.
- [12] Shi, X.P., Strongly flat and po-flat S-posets, Comm. Algebra 33(12) (2005), 4515-4531.
- [13] Zhang, X. and Laan, V., On homological classification of pomonoids by regular weak injectivity properties of S-posets, Cent. Eur. J. Math. 5(1) (2007), 181-200.

Roghaieh Khosravi, Department of Mathematics, Fasa University, Fasa, P.O. Box 74617-81189, Iran.

Email: khosravi@fasau.ac.ir

Xingliang Liang, Department of Mathematics, Shaanxi University of Science and Technology, Shaanxi, P.O. Box 710021, China.

Email: lxl 119@126.com